Articles | Volume 18, issue 12
https://doi.org/10.5194/hess-18-5149-2014
https://doi.org/10.5194/hess-18-5149-2014
Research article
 | 
12 Dec 2014
Research article |  | 12 Dec 2014

Analyzing runoff processes through conceptual hydrological modeling in the Upper Blue Nile Basin, Ethiopia

M. Dessie, N. E. C. Verhoest, V. R. N. Pauwels, T. Admasu, J. Poesen, E. Adgo, J. Deckers, and J. Nyssen

Related authors

Identification of compound drought and heatwave events on a daily scale and across four seasons
Baoying Shan, Niko E. C. Verhoest, and Bernard De Baets
EGUsphere, https://doi.org/10.5194/egusphere-2023-147,https://doi.org/10.5194/egusphere-2023-147, 2023
Short summary
Probabilistic Hydrological Estimation of LandSlides (PHELS): global ensemble landslide hazard modelling
Anne Felsberg, Zdenko Heyvaert, Jean Poesen, Thomas Stanley, and Gabriëlle J. M. De Lannoy
EGUsphere, https://doi.org/10.5194/egusphere-2023-869,https://doi.org/10.5194/egusphere-2023-869, 2023
Short summary
Impact of agricultural management on soil aggregates and associated organic carbon fractions: analysis of long-term experiments in Europe
Ioanna S. Panagea, Antonios Apostolakis, Antonio Berti, Jenny Bussell, Pavel Čermak, Jan Diels, Annemie Elsen, Helena Kusá, Ilaria Piccoli, Jean Poesen, Chris Stoate, Mia Tits, Zoltan Toth, and Guido Wyseure
SOIL, 8, 621–644, https://doi.org/10.5194/soil-8-621-2022,https://doi.org/10.5194/soil-8-621-2022, 2022
Short summary
Estimating global landslide susceptibility and its uncertainty through ensemble modeling
Anne Felsberg, Jean Poesen, Michel Bechtold, Matthias Vanmaercke, and Gabriëlle J. M. De Lannoy
Nat. Hazards Earth Syst. Sci., 22, 3063–3082, https://doi.org/10.5194/nhess-22-3063-2022,https://doi.org/10.5194/nhess-22-3063-2022, 2022
Short summary
Impact of bias nonstationarity on the performance of uni- and multivariate bias-adjusting methods: a case study on data from Uccle, Belgium
Jorn Van de Velde, Matthias Demuzere, Bernard De Baets, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 26, 2319–2344, https://doi.org/10.5194/hess-26-2319-2022,https://doi.org/10.5194/hess-26-2319-2022, 2022
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
airGRteaching: an open-source tool for teaching hydrological modeling with R
Olivier Delaigue, Pierre Brigode, Guillaume Thirel, and Laurent Coron
Hydrol. Earth Syst. Sci., 27, 3293–3327, https://doi.org/10.5194/hess-27-3293-2023,https://doi.org/10.5194/hess-27-3293-2023, 2023
Short summary
Stable water isotopes and tritium tracers tell the same tale: no evidence for underestimation of catchment transit times inferred by stable isotopes in StorAge Selection (SAS)-function models
Siyuan Wang, Markus Hrachowitz, Gerrit Schoups, and Christine Stumpp
Hydrol. Earth Syst. Sci., 27, 3083–3114, https://doi.org/10.5194/hess-27-3083-2023,https://doi.org/10.5194/hess-27-3083-2023, 2023
Short summary
Uncertainty in water transit time estimation with StorAge Selection functions and tracer data interpolation
Arianna Borriero, Rohini Kumar, Tam V. Nguyen, Jan H. Fleckenstein, and Stefanie R. Lutz
Hydrol. Earth Syst. Sci., 27, 2989–3004, https://doi.org/10.5194/hess-27-2989-2023,https://doi.org/10.5194/hess-27-2989-2023, 2023
Short summary
Changes in Mediterranean flood processes and seasonality
Yves Tramblay, Patrick Arnaud, Guillaume Artigue, Michel Lang, Emmanuel Paquet, Luc Neppel, and Eric Sauquet
Hydrol. Earth Syst. Sci., 27, 2973–2987, https://doi.org/10.5194/hess-27-2973-2023,https://doi.org/10.5194/hess-27-2973-2023, 2023
Short summary
Can the combining of wetlands with reservoir operation reduce the risk of future floods and droughts?
Yanfeng Wu, Jingxuan Sun, Boting Hu, Y. Jun Xu, Alain N. Rousseau, and Guangxin Zhang
Hydrol. Earth Syst. Sci., 27, 2725–2745, https://doi.org/10.5194/hess-27-2725-2023,https://doi.org/10.5194/hess-27-2725-2023, 2023
Short summary

Cited articles

Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., and Srinivasan, R.: Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT, J. Hydrol., 333, 413–430, 2007.
Allen, R. G., Pereira, L. S., Raes D., and Smith, M.: Crop evapotranspiration. Guide- lines for computing crop water requirements, FAO Irrigation and Drainage Paper 56, FAO, Rome, 1998.
Antar, M. A., Elassiouti, I., and Allam, M. N.: Rainfall-runoff modeling using artificial neural networks technique: a Blue Nile catchment case study, Hydrol. Process., 20, 1201–1216, 2006.
Arnold, J. G., Srinivasin, R., Muttiah, R. S., and Williams, J. R.: Large Area Hydrologic Modeling and Assessment: Part I. Model Development, JAWRA J. Am. Water Resour. Assoc., 34, 73–89, 1998.
Bayabil, H. K., Tilahun, S. A., Collick, A. S., and Steenhuis, T. S.: Are runoff processes ecologically or topographically driven in the Ethiopian Highlands? The case of the Maybar, Ecohydrology, 3, 457–466, https://doi.org/10.1002/eco.170, 2010.
Download
Short summary
In this study, topography is considered as a proxy for the variability of most of the catchment characteristics. The model study suggests that classifying the catchments into different runoff production areas based on topography and including the impermeable rocky areas separately in the modeling process mimics the rainfall–runoff process in the Upper Blue Nile basin well and yields a useful result for operational management of water resources in this data-scarce region.