Articles | Volume 18, issue 12
https://doi.org/10.5194/hess-18-5041-2014
https://doi.org/10.5194/hess-18-5041-2014
Research article
 | 
11 Dec 2014
Research article |  | 11 Dec 2014

Accounting for environmental flow requirements in global water assessments

A. V. Pastor, F. Ludwig, H. Biemans, H. Hoff, and P. Kabat

Related authors

Future upstream water consumption and its impact on downstream water availability in the transboundary Indus Basin
Wouter J. Smolenaars, Sanita Dhaubanjar, Muhammad K. Jamil, Arthur Lutz, Walter Immerzeel, Fulco Ludwig, and Hester Biemans
Hydrol. Earth Syst. Sci., 26, 861–883, https://doi.org/10.5194/hess-26-861-2022,https://doi.org/10.5194/hess-26-861-2022, 2022
Short summary
Simulating human impacts on global water resources using VIC-5
Bram Droppers, Wietse H. P. Franssen, Michelle T. H. van Vliet, Bart Nijssen, and Fulco Ludwig
Geosci. Model Dev., 13, 5029–5052, https://doi.org/10.5194/gmd-13-5029-2020,https://doi.org/10.5194/gmd-13-5029-2020, 2020
Short summary
Climate change vs. socio-economic development: understanding the future South Asian water gap
René Reijer Wijngaard, Hester Biemans, Arthur Friedrich Lutz, Arun Bhakta Shrestha, Philippus Wester, and Walter Willem Immerzeel
Hydrol. Earth Syst. Sci., 22, 6297–6321, https://doi.org/10.5194/hess-22-6297-2018,https://doi.org/10.5194/hess-22-6297-2018, 2018
Short summary
Seasonal streamflow forecasts for Europe – Part I: Hindcast verification with pseudo- and real observations
Wouter Greuell, Wietse H. P. Franssen, Hester Biemans, and Ronald W. A. Hutjes
Hydrol. Earth Syst. Sci., 22, 3453–3472, https://doi.org/10.5194/hess-22-3453-2018,https://doi.org/10.5194/hess-22-3453-2018, 2018
Short summary
LPJmL4 – a dynamic global vegetation model with managed land – Part 1: Model description
Sibyll Schaphoff, Werner von Bloh, Anja Rammig, Kirsten Thonicke, Hester Biemans, Matthias Forkel, Dieter Gerten, Jens Heinke, Jonas Jägermeyr, Jürgen Knauer, Fanny Langerwisch, Wolfgang Lucht, Christoph Müller, Susanne Rolinski, and Katharina Waha
Geosci. Model Dev., 11, 1343–1375, https://doi.org/10.5194/gmd-11-1343-2018,https://doi.org/10.5194/gmd-11-1343-2018, 2018
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Theory development
Towards understanding the intrinsic variations of the Priestley-Taylor coefficient based on a theoretical derivation
Ziwei Liu, Hanbo Yang, Changming Li, and Taihua Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-17,https://doi.org/10.5194/hess-2024-17, 2024
Revised manuscript accepted for HESS
Short summary
A hydrologist's guide to open science
Caitlyn A. Hall, Sheila M. Saia, Andrea L. Popp, Nilay Dogulu, Stanislaus J. Schymanski, Niels Drost, Tim van Emmerik, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 647–664, https://doi.org/10.5194/hess-26-647-2022,https://doi.org/10.5194/hess-26-647-2022, 2022
Short summary
From mythology to science: the development of scientific hydrological concepts in Greek antiquity and its relevance to modern hydrology
Demetris Koutsoyiannis and Nikos Mamassis
Hydrol. Earth Syst. Sci., 25, 2419–2444, https://doi.org/10.5194/hess-25-2419-2021,https://doi.org/10.5194/hess-25-2419-2021, 2021
Short summary
Comment on: “A review of the complementary principle of evaporation: from the original linear relationship to generalized nonlinear functions” by Han and Tian (2020)
Richard D. Crago, Jozsef Szilagyi, and Russell Qualls
Hydrol. Earth Syst. Sci., 25, 63–68, https://doi.org/10.5194/hess-25-63-2021,https://doi.org/10.5194/hess-25-63-2021, 2021
Short summary
Global distribution of hydrologic controls on forest growth
Caspar T. J. Roebroek, Lieke A. Melsen, Anne J. Hoek van Dijke, Ying Fan, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 24, 4625–4639, https://doi.org/10.5194/hess-24-4625-2020,https://doi.org/10.5194/hess-24-4625-2020, 2020
Short summary

Cited articles

Abell, R., Thieme, M. L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., Coad, B., Mandrak, N., Balderas, S. C., and Bussing, W.: Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation, Bioscience, 58, 403–414, 2008.
Acreman, M., Dunbar, M., Hannaford, J., Mountford, O., Wood, P., Holmes, N., Cowx, I., Noble, R., Extence, C., and Aldrick, J.: Developing environmental standards for abstractions from uk rivers to implement the eu water framework directive/développement de standards environnementaux sur les prélèvements d'eau en rivière au royaume uni pour la mise en \oe uvre de la directive cadre sur l'eau de l'union européenne, Hydrol. Sci. J., 53, 1105–1120, 2008.
Alcamo, J., Flörke, M., and Märker, M.: Future long-term changes in global water resources driven by socio-economic and climatic changes, Hydrol. Sci. J., 52, 247–275, 2007.
Alexandratos, N. and Bruinsma, J.: World agriculture towards 2030/2050: The 2012 revision, ESA Working paper, 2012.
Allain, M. and El-Jabi, N.: Hydrological approach to instream flow evaluation: A sensitivity analysis, Annual Conference of the Canadian Society for Civil Engineering, Montréal, Québec, Canada, 2002.
Download
Short summary
Freshwater ecosystems encompass the most threatened species on earth. Environmental flow requirements need to be addressed globally to provide sufficient water for humans and nature. We present a comparison of five environmental flow methods validated with locally calculated EFRs. We showed that methods based on monthly average flow such as the variable monthly flow method are more reliable than methods based on annual thresholds. A range of EFRs was calculated for large river basins.