Articles | Volume 18, issue 2
https://doi.org/10.5194/hess-18-479-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-18-479-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Modelling pesticide leaching under climate change: parameter vs. climate input uncertainty
K. Steffens
Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 75007 Uppsala, Sweden
M. Larsbo
Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 75007 Uppsala, Sweden
Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 75007 Uppsala, Sweden
E. Kjellström
Rossby Centre, Swedish Meteorological and Hydrological Institute, 60176 Norrköping, Sweden
N. Jarvis
Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 75007 Uppsala, Sweden
E. Lewan
Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 75007 Uppsala, Sweden
Related authors
No articles found.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024, https://doi.org/10.5194/nhess-24-2875-2024, 2024
Short summary
Short summary
Associating extreme weather events with changes in the climate remains difficult. We have explored two ways these relationships can be investigated: one using a more common method and one relying solely on long-running records of meteorological observations.
Our results show that while both methods lead to similar conclusions for two recent weather events in Sweden, the commonly used method risks underestimating the strength of the connection between the event and changes to the climate.
Abhay Devasthale, Sandra Andersson, Erik Engström, Frank Kaspar, Jörg Trentmann, Anke Duguay-Tetzlaff, Jan Fokke Meirink, Erik Kjellström, Tomas Landelius, Manu Anna Thomas, and Karl-Göran Karlsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1805, https://doi.org/10.5194/egusphere-2024-1805, 2024
Short summary
Short summary
Using the satellite-based climate data record CLARA-A3 spanning 1982–2020 and ERA5 reanalysis, we present climate regimes that are favourable or unfavourable for solar energy applications. We show that the favourable climate regimes are emerging over much of Europe during spring and early summer for solar energy exploitation.
Fredrik Lagergren, Robert G. Björk, Camilla Andersson, Danijel Belušić, Mats P. Björkman, Erik Kjellström, Petter Lind, David Lindstedt, Tinja Olenius, Håkan Pleijel, Gunhild Rosqvist, and Paul A. Miller
Biogeosciences, 21, 1093–1116, https://doi.org/10.5194/bg-21-1093-2024, https://doi.org/10.5194/bg-21-1093-2024, 2024
Short summary
Short summary
The Fennoscandian boreal and mountain regions harbour a wide range of ecosystems sensitive to climate change. A new, highly resolved high-emission climate scenario enabled modelling of the vegetation development in this region at high resolution for the 21st century. The results show dramatic south to north and low- to high-altitude shifts of vegetation zones, especially for the open tundra environments, which will have large implications for nature conservation, reindeer husbandry and forestry.
Gustav Strandberg, Jie Chen, Ralph Fyfe, Erik Kjellström, Johan Lindström, Anneli Poska, Qiong Zhang, and Marie-José Gaillard
Clim. Past, 19, 1507–1530, https://doi.org/10.5194/cp-19-1507-2023, https://doi.org/10.5194/cp-19-1507-2023, 2023
Short summary
Short summary
The impact of land use and land cover change (LULCC) on the climate around 2500 years ago is studied using reconstructions and models. The results suggest that LULCC impacted the climate in parts of Europe. Reconstructed LULCC shows up to 1.5 °C higher temperature in parts of Europe in some seasons. This relatively strong response implies that anthropogenic LULCC that had occurred by the late prehistoric period may have already affected the European climate by 2500 years ago.
Guillaume Blanchy, Lukas Albrecht, Gilberto Bragato, Sarah Garré, Nicholas Jarvis, and John Koestel
Hydrol. Earth Syst. Sci., 27, 2703–2724, https://doi.org/10.5194/hess-27-2703-2023, https://doi.org/10.5194/hess-27-2703-2023, 2023
Short summary
Short summary
We collated the Open Tension-disk Infiltrometer Meta-database (OTIM). We analysed topsoil hydraulic conductivities at supply tensions between 0 and 100 mm of 466 data entries. We found indications of different flow mechanisms at saturation and at tensions >20 mm. Climate factors were better correlated with near-saturated hydraulic conductivities than soil properties. Land use, tillage system, soil compaction and experimenter bias significantly influenced K to a similar degree to soil properties.
John Erik Engström, Lennart Wern, Sverker Hellström, Erik Kjellström, Chunlüe Zhou, Deliang Chen, and Cesar Azorin-Molina
Earth Syst. Sci. Data, 15, 2259–2277, https://doi.org/10.5194/essd-15-2259-2023, https://doi.org/10.5194/essd-15-2259-2023, 2023
Short summary
Short summary
Newly digitized wind speed observations provide data from the time period from around 1920 to the present, enveloping one full century of wind measurements. The results of this work enable the investigation of the historical variability and trends in surface wind speed in Sweden for
the last century.
Guillaume Blanchy, Gilberto Bragato, Claudia Di Bene, Nicholas Jarvis, Mats Larsbo, Katharina Meurer, and Sarah Garré
SOIL, 9, 1–20, https://doi.org/10.5194/soil-9-1-2023, https://doi.org/10.5194/soil-9-1-2023, 2023
Short summary
Short summary
European agriculture is vulnerable to weather extremes. Nevertheless, by choosing well how to manage their land, farmers can protect themselves against drought and peak rains. More than a thousand observations across Europe show that it is important to keep the soil covered with living plants, even in winter. A focus on a general reduction of traffic on agricultural land is more important than reducing tillage. Organic material needs to remain or be added on the field as much as possible.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Changgui Lin, Erik Kjellström, Renate Anna Irma Wilcke, and Deliang Chen
Earth Syst. Dynam., 13, 1197–1214, https://doi.org/10.5194/esd-13-1197-2022, https://doi.org/10.5194/esd-13-1197-2022, 2022
Short summary
Short summary
This study endorses RCMs' added value on the driving GCMs in representing observed heat wave magnitudes. The future increase of heat wave magnitudes projected by GCMs is attenuated when downscaled by RCMs. Within the downscaling, uncertainties can be attributed almost equally to choice of RCMs and to the driving data associated with different GCMs. Uncertainties of GCMs in simulating heat wave magnitudes are transformed by RCMs in a complex manner rather than simply inherited.
Nicholas Jarvis, Jannis Groh, Elisabet Lewan, Katharina H. E. Meurer, Walter Durka, Cornelia Baessler, Thomas Pütz, Elvin Rufullayev, and Harry Vereecken
Hydrol. Earth Syst. Sci., 26, 2277–2299, https://doi.org/10.5194/hess-26-2277-2022, https://doi.org/10.5194/hess-26-2277-2022, 2022
Short summary
Short summary
We apply an eco-hydrological model to data on soil water balance and grassland growth obtained at two sites with contrasting climates. Our results show that the grassland in the drier climate had adapted by developing deeper roots, which maintained water supply to the plants in the face of severe drought. Our study emphasizes the importance of considering such plastic responses of plant traits to environmental stress in the modelling of soil water balance and plant growth under climate change.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Erika Médus, Emma D. Thomassen, Danijel Belušić, Petter Lind, Peter Berg, Jens H. Christensen, Ole B. Christensen, Andreas Dobler, Erik Kjellström, Jonas Olsson, and Wei Yang
Nat. Hazards Earth Syst. Sci., 22, 693–711, https://doi.org/10.5194/nhess-22-693-2022, https://doi.org/10.5194/nhess-22-693-2022, 2022
Short summary
Short summary
We evaluate the skill of a regional climate model, HARMONIE-Climate, to capture the present-day characteristics of heavy precipitation in the Nordic region and investigate the added value provided by a convection-permitting model version. The higher model resolution improves the representation of hourly heavy- and extreme-precipitation events and their diurnal cycle. The results indicate the benefits of convection-permitting models for constructing climate change projections over the region.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
H. E. Markus Meier, Christian Dieterich, Matthias Gröger, Cyril Dutheil, Florian Börgel, Kseniia Safonova, Ole B. Christensen, and Erik Kjellström
Earth Syst. Dynam., 13, 159–199, https://doi.org/10.5194/esd-13-159-2022, https://doi.org/10.5194/esd-13-159-2022, 2022
Short summary
Short summary
In addition to environmental pressures such as eutrophication, overfishing and contaminants, climate change is believed to have an important impact on the marine environment in the future, and marine management should consider the related risks. Hence, we have compared and assessed available scenario simulations for the Baltic Sea and found considerable uncertainties of the projections caused by the underlying assumptions and model biases, in particular for the water and biogeochemical cycles.
Ole Bøssing Christensen, Erik Kjellström, Christian Dieterich, Matthias Gröger, and Hans Eberhard Markus Meier
Earth Syst. Dynam., 13, 133–157, https://doi.org/10.5194/esd-13-133-2022, https://doi.org/10.5194/esd-13-133-2022, 2022
Short summary
Short summary
The Baltic Sea Region is very sensitive to climate change, whose impacts could easily exacerbate biodiversity stress from society and eutrophication of the Baltic Sea. Therefore, there has been a focus on estimations of future climate change and its impacts in recent research. Models show a strong warming, in particular in the north in winter. Precipitation is projected to increase in the whole region apart from the south during summer. New results improve estimates of future climate change.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Renate Anna Irma Wilcke, Erik Kjellström, Changgui Lin, Daniela Matei, Anders Moberg, and Evangelos Tyrlis
Earth Syst. Dynam., 11, 1107–1121, https://doi.org/10.5194/esd-11-1107-2020, https://doi.org/10.5194/esd-11-1107-2020, 2020
Short summary
Short summary
Two long-lasting high-pressure systems in summer 2018 led to heat waves over Scandinavia and an extended summer period with devastating impacts on both agriculture and human life. Using five climate model ensembles, the unique 263-year Stockholm temperature time series and a composite 150-year time series for the whole of Sweden, we found that anthropogenic climate change has strongly increased the probability of a warm summer, such as the one observed in 2018, occurring in Sweden.
Katharina Hildegard Elisabeth Meurer, Claire Chenu, Elsa Coucheney, Anke Marianne Herrmann, Thomas Keller, Thomas Kätterer, David Nimblad Svensson, and Nicholas Jarvis
Biogeosciences, 17, 5025–5042, https://doi.org/10.5194/bg-17-5025-2020, https://doi.org/10.5194/bg-17-5025-2020, 2020
Short summary
Short summary
We present a simple model that describes, for the first time, the dynamic two-way interactions between soil organic matter and soil physical properties (porosity, pore size distribution, bulk density and layer thickness). The model was able to accurately reproduce the changes in soil organic carbon, soil bulk density and surface elevation observed during 63 years in a field trial, as well as soil water retention curves measured at the end of the experimental period.
Minchao Wu, Grigory Nikulin, Erik Kjellström, Danijel Belušić, Colin Jones, and David Lindstedt
Earth Syst. Dynam., 11, 377–394, https://doi.org/10.5194/esd-11-377-2020, https://doi.org/10.5194/esd-11-377-2020, 2020
Short summary
Short summary
Regional Climate Models constitute a downscaling tool to provide high-resolution data for impact and adaptation studies. However, there is no unique definition of the added value of downscaling as it depends on many factors. We investigate the impact of spatial resolution and model formulation on downscaled rainfall in Africa. Our results show that improvements in downscaled rainfall compared to the driving reanalysis are often related to model formulation and not always to higher resolution.
Danijel Belušić, Hylke de Vries, Andreas Dobler, Oskar Landgren, Petter Lind, David Lindstedt, Rasmus A. Pedersen, Juan Carlos Sánchez-Perrino, Erika Toivonen, Bert van Ulft, Fuxing Wang, Ulf Andrae, Yurii Batrak, Erik Kjellström, Geert Lenderink, Grigory Nikulin, Joni-Pekka Pietikäinen, Ernesto Rodríguez-Camino, Patrick Samuelsson, Erik van Meijgaard, and Minchao Wu
Geosci. Model Dev., 13, 1311–1333, https://doi.org/10.5194/gmd-13-1311-2020, https://doi.org/10.5194/gmd-13-1311-2020, 2020
Short summary
Short summary
A new regional climate modelling system, HCLIM38, is presented and shown to be applicable in different regions ranging from the tropics to the Arctic. The main focus is on climate simulations at horizontal resolutions between 1 and 4 km, the so-called convection-permitting scales, even though the model can also be used at coarser resolutions. The benefits of simulating climate at convection-permitting scales are shown and are particularly evident for climate extremes.
Stephen Blenkinsop, Hayley J. Fowler, Renaud Barbero, Steven C. Chan, Selma B. Guerreiro, Elizabeth Kendon, Geert Lenderink, Elizabeth Lewis, Xiao-Feng Li, Seth Westra, Lisa Alexander, Richard P. Allan, Peter Berg, Robert J. H. Dunn, Marie Ekström, Jason P. Evans, Greg Holland, Richard Jones, Erik Kjellström, Albert Klein-Tank, Dennis Lettenmaier, Vimal Mishra, Andreas F. Prein, Justin Sheffield, and Mari R. Tye
Adv. Sci. Res., 15, 117–126, https://doi.org/10.5194/asr-15-117-2018, https://doi.org/10.5194/asr-15-117-2018, 2018
Short summary
Short summary
Measurements of sub-daily (e.g. hourly) rainfall totals are essential if we are to understand short, intense bursts of rainfall that cause flash floods. We might expect the intensity of such events to increase in a warming climate but these are poorly realised in projections of future climate change. The INTENSE project is collating a global dataset of hourly rainfall measurements and linking with new developments in climate models to understand the characteristics and causes of these events.
Erik Kjellström, Grigory Nikulin, Gustav Strandberg, Ole Bøssing Christensen, Daniela Jacob, Klaus Keuler, Geert Lenderink, Erik van Meijgaard, Christoph Schär, Samuel Somot, Silje Lund Sørland, Claas Teichmann, and Robert Vautard
Earth Syst. Dynam., 9, 459–478, https://doi.org/10.5194/esd-9-459-2018, https://doi.org/10.5194/esd-9-459-2018, 2018
Short summary
Short summary
Based on high-resolution regional climate models we investigate European climate change at 1.5 and 2 °C of global warming compared to pre-industrial levels. Considerable near-surface warming exceeding that of the global mean is found for most of Europe, already at the lower 1.5 °C of warming level. Changes in precipitation and near-surface wind speed are identified. The 1.5 °C of warming level shows significantly less change compared to the 2 °C level, indicating the importance of mitigation.
M. Larsbo, J. Koestel, and N. Jarvis
Hydrol. Earth Syst. Sci., 18, 5255–5269, https://doi.org/10.5194/hess-18-5255-2014, https://doi.org/10.5194/hess-18-5255-2014, 2014
Short summary
Short summary
The characteristics of the macropore network determine the potential for fast transport of solutes through soil. Such characteristics computed from 3-dimensional X-ray tomography images were combined with measured solute breakthrough curves and near-saturated hydraulic conductivities. At a given flow rate, smaller macroporosities, poorer local connectivity of the macropore network and smaller near-saturated hydraulic conductivities resulted in a greater degree of preferential transport.
G. Strandberg, E. Kjellström, A. Poska, S. Wagner, M.-J. Gaillard, A.-K. Trondman, A. Mauri, B. A. S. Davis, J. O. Kaplan, H. J. B. Birks, A. E. Bjune, R. Fyfe, T. Giesecke, L. Kalnina, M. Kangur, W. O. van der Knaap, U. Kokfelt, P. Kuneš, M. Lata\l owa, L. Marquer, F. Mazier, A. B. Nielsen, B. Smith, H. Seppä, and S. Sugita
Clim. Past, 10, 661–680, https://doi.org/10.5194/cp-10-661-2014, https://doi.org/10.5194/cp-10-661-2014, 2014
N. Jarvis, J. Koestel, I. Messing, J. Moeys, and A. Lindahl
Hydrol. Earth Syst. Sci., 17, 5185–5195, https://doi.org/10.5194/hess-17-5185-2013, https://doi.org/10.5194/hess-17-5185-2013, 2013
Related subject area
Subject: Vadose Zone Hydrology | Techniques and Approaches: Uncertainty analysis
Evaluation of root zone soil moisture products over the Huai River basin
Data worth analysis within a model-free data assimilation framework for soil moisture flow
Impact of parameter updates on soil moisture assimilation in a 3D heterogeneous hillslope model
Technical Note: Sequential ensemble data assimilation in convergent and divergent systems
On the uncertainty of initial condition and initialization approaches in variably saturated flow modeling
Inflation method for ensemble Kalman filter in soil hydrology
Sensitivity and identifiability of hydraulic and geophysical parameters from streaming potential signals in unsaturated porous media
Deep drainage estimates using multiple linear regression with percent clay content and rainfall
En Liu, Yonghua Zhu, Jean-Christophe Calvet, Haishen Lü, Bertrand Bonan, Jingyao Zheng, Qiqi Gou, Xiaoyi Wang, Zhenzhou Ding, Haiting Xu, Ying Pan, and Tingxing Chen
Hydrol. Earth Syst. Sci., 28, 2375–2400, https://doi.org/10.5194/hess-28-2375-2024, https://doi.org/10.5194/hess-28-2375-2024, 2024
Short summary
Short summary
Overestimated root zone soil moisture (RZSM) based on land surface models (LSMs) is attributed to overestimated precipitation and an underestimated ratio of transpiration to total evapotranspiration and performs better in the wet season. Underestimated SMOS L3 surface SM triggers the underestimated SMOS L4 RZSM, which performs better in the dry season due to the attenuated radiation in the wet season. LSMs should reduce and increase the frequency of wet and dry soil moisture, respectively.
Yakun Wang, Xiaolong Hu, Lijun Wang, Jinmin Li, Lin Lin, Kai Huang, and Liangsheng Shi
Hydrol. Earth Syst. Sci., 27, 2661–2680, https://doi.org/10.5194/hess-27-2661-2023, https://doi.org/10.5194/hess-27-2661-2023, 2023
Short summary
Short summary
To avoid overloaded monitoring cost from redundant measurements, this study proposed a non-parametric data worth analysis framework to assess the worth of future soil moisture data regarding the model-free unsaturated flow models before data gathering. Results indicated that (1) the method can quantify the data worth of alternative monitoring schemes to obtain the optimal one, and (2) high-quality and representative small data could be a better choice than unfiltered big data.
Natascha Brandhorst and Insa Neuweiler
Hydrol. Earth Syst. Sci., 27, 1301–1323, https://doi.org/10.5194/hess-27-1301-2023, https://doi.org/10.5194/hess-27-1301-2023, 2023
Short summary
Short summary
Data assimilation aims at quantifying and minimizing model uncertainty. In hydrological models, this uncertainty is mainly caused by the uncertain soil hydraulic parameters and their spatial variability. In this study, the impact of updating these parameters along with the model states on the estimated soil moisture is investigated. It is shown that parameter updates are beneficial and that it is advisable to resolve heterogeneous structures instead of applying a simplified soil structure.
Hannes Helmut Bauser, Daniel Berg, and Kurt Roth
Hydrol. Earth Syst. Sci., 25, 3319–3329, https://doi.org/10.5194/hess-25-3319-2021, https://doi.org/10.5194/hess-25-3319-2021, 2021
Short summary
Short summary
Data assimilation methods are used throughout the geosciences to combine information from uncertain models and uncertain measurement data. In this study, we distinguish between the characteristics of geophysical systems, i.e., divergent systems (initially nearby states will drift apart) and convergent systems (initially nearby states will coalesce), and demonstrate the implications for sequential ensemble data assimilation methods, which require a sufficient divergent component.
Danyang Yu, Jinzhong Yang, Liangsheng Shi, Qiuru Zhang, Kai Huang, Yuanhao Fang, and Yuanyuan Zha
Hydrol. Earth Syst. Sci., 23, 2897–2914, https://doi.org/10.5194/hess-23-2897-2019, https://doi.org/10.5194/hess-23-2897-2019, 2019
Hannes H. Bauser, Daniel Berg, Ole Klein, and Kurt Roth
Hydrol. Earth Syst. Sci., 22, 4921–4934, https://doi.org/10.5194/hess-22-4921-2018, https://doi.org/10.5194/hess-22-4921-2018, 2018
Short summary
Short summary
Data assimilation methods like the ensemble Kalman filter (EnKF) can combine models and measurements to estimate states and parameters, but require a proper representation of uncertainties. In soil hydrology, model errors typically vary rapidly in space and time, which is difficult to represent. Inflation methods can account for unrepresented model errors. To improve estimations in soil hydrology, we designed a method that can adjust the inflation of states and parameters to fast varying errors.
Anis Younes, Jabran Zaouali, François Lehmann, and Marwan Fahs
Hydrol. Earth Syst. Sci., 22, 3561–3574, https://doi.org/10.5194/hess-22-3561-2018, https://doi.org/10.5194/hess-22-3561-2018, 2018
Short summary
Short summary
Water movement through unsaturated soils generates streaming potential (SP). Reliability of SP for the determination of soil properties is investigated. First, influence of hydraulic and geophysical soil parameters on the SP signals is assessed using global sensitivity analysis. Then, a Bayesian approach is used to assess the identifiability of the parameters from SP data. The results of a synthetic drainage column experiment show that all parameters can be reasonably estimated from SP signals.
D. L. Wohling, F. W. Leaney, and R. S. Crosbie
Hydrol. Earth Syst. Sci., 16, 563–572, https://doi.org/10.5194/hess-16-563-2012, https://doi.org/10.5194/hess-16-563-2012, 2012
Cited articles
Anandhi, A., Frei, A., Pierson, D. C., Schneiderman, E. M., Zion, M. S., Lounsbury, D., and Matonse, A. H.: Examination of change factor methodologies for climate change impact assessment, Water Resour. Res., 47, W03501, https://doi.org/10.1029/2010WR009104, 2011.
Bengtsson, L.: The global atmospheric water cycle, Environ. Res. Lett., 5, 025002, https://doi.org/10.1088/1748-9326/5/2/025002, 2010.
Bergström, L., Jarvis, N. J., and Stenström, J.: Pesticide leaching data to validate simulation-models for registration purposes, J. Environ. Sci. Heal. A, 29, 1073–1104, 1994.
Beulke, S., Brown, C. D., Fryer, C. J., and Walker, A.: Lysimeter study to investigate the effect of rainfall patterns on leaching of isoproturon, Pest Manag. Sci., 58, 45–53, https://doi.org/10.1002/ps.419, 2002.
Beulke, S., Boxall, A. B. A., Brown, C. D., Thomas, M., and Falloon, P.: Impacts of climate change on pesticide transport to groundwater and surface water, in: Environmental Fate and Ecological Effects, edited by: Del Re, A. A. M., Capri, E., Fraoulis, G., and Trevisan, M., XIII Symposium Pesticide Chemistry, Piacenza, Italy, 444–451, 2007.
Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320, 18–36, https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006.
Beven, K. and Binley, A.: The future of distributed models: model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, https://doi.org/10.1002/hyp.3360060305, 1992.
Bleck, R. and Rooth, C. and Hu, D. and Smith, L. T.: Salinity-driven thermocline transients in a wind-forced and thermohaline-forced isopycnic coordinate model of the North-Atlantic, J. Phys. Oceanogr., 22, 1486–1505, https://doi.org/10.1175/1520-0485(1992)022<1486:SDTTIA>2.0.CO;2, 1992.
Bloomfield, J. P., Williams, R. J., Gooddy, D. C., Cape, J. N., and Guha, P.: Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater – a UK perspective, Sci. Total Environ., 369, 163–177, https://doi.org/10.1016/j.scitotenv.2006.05.019, 2006.
Boesten, J. J. T. I. and Van der Linden, A. M. A.: Modeling the influence of sorption and transformation on pesticide leaching and persistence, J. Environ. Qual., 20, 425–435, 1991.
Boesten, J. J. T. I.:Sensitivity analysis of a mathematical model for pesticide leaching to groundwater, Pestic. Sci., 31, 375–388, 1991.
Brücher, J. and Bergström, L.: Temperature dependence of linuron sorption to three different agricultural soils, J. Environ. Qual., 26, 1327–1335, 1997.
Capel, P. D., Larson, S. J., and Winterstein, T. A.: The behaviour of 39 pesticides in surface waters as a function of scale, Hydrol. Process., 15, 1251–1269, https://doi.org/10.1002/hyp.212, 2001.
Chen, J., Brissette, F. P., and Leconte, R.: Uncertainty of downscaling method in quantifying the impact of climate change on hydrology, J. Hydrol., 401, 190–202, https://doi.org/10.1016/j.jhydrol.2011.02.020, 2011.
Christensen, J. H., Carter, T. R., Rummukainen, M., and Amanatidis, G.: Evaluating the performance and utility of regional climate models: the PRUDENCE project, Climatic Change, 81, 1–6, https://doi.org/10.1007/s10584-006-9211-6, 2007.
Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, Gordon B., Bretherton, C. S., Carton, J. A., Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B., Kiehl, J. T. and Large, W. G., McKenna, D. S., Santer, B. D., and Smith, R. D.: The Community Climate System Model version 3 (CCSM3), J. Climate, 19, 2122–2143, https://doi.org/10.1175/JCLI3761.1, 2006.
Delpla, I., Jung, A.-V., Baures, E., Clement, M., and Thomas, O.: Impacts of climate change on surface water quality in relation to drinking water production, Environ. Int., 35, 1225–1233, https://doi.org/10.1016/j.envint.2009.07.001, 2009.
Déqué, M., Dreveton, C., Braun, A., and Cariolle, D: The ARPEGE/IFS atmosphere model – a contribution to the French community climate modeling, Clim. Dynam., 10, 249–266, 1994.
Dobler, C., Hagemann, S., Wilby, R. L., and Stötter, J.: Quantifying different sources of uncertainty in hydrological projections in an Alpine watershed, Hydrol. Earth Syst. Sci., 16, 4343–4360, https://doi.org/10.5194/hess-16-4343-2012, 2012.
Dubus, I. G. and Brown, C. D.: Sensitivity and first-step uncertainty analyses for the preferential flow model MACRO, J. Environ. Qual., 31, 227–240, 2002.
Dubus, I. G., Brown, C. D., and Beulke, S.: Sources of uncertainty in pesticide fate modelling, Sci. Total Environ., 317, 53–72, https://doi.org/10.1016/S0048-9697(03)00362-0, 2003.
Dubus, I. G., Brown, C. D., and Beulke, S.: Sensitivity analyses for four pesticide leaching models, Pest Manag. Sci., 59, 962–982, https://doi.org/10.1002/ps.723, 2003.
FOCUS: FOCUS groundwater scenarios in the EU review of active substances, Report of the FOCUS Groundwater Scenarios Workgroup, EC Document Reference SANCO/321/2000 rev.2, 202 pp., 2000.
FOCUS: FOCUS Surface Water Scenarios in the EU Evaluation Process under 91/414/EEC, Report of the FOCUS Working Group on Surface Water Scenarios, EC Document Reference SANCO/4802/2001-rev.2, 245 pp., 2001.
Fowler, H. J., Blenkisop, S., and Tebaldi, C.: Review – linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling, Int. J. Climatol., 27, 1547–1578, https://doi.org/10.1002/joc.1556, 2007.
Gerke, H. H. and Van Genuchten, M. T.: Macroscopic representation of structural geometry for simulating water and solute movement in dual-porosity media, Adv. Water Resour., 19, 343–357, 1996.
Germann, P. F.: Kinematic wave approach to infiltration and drainage into and from soil macropores, T. ASAE, 28, 745–749, 1985.
Ghafoor, A., Jarvis, N. J., and Stenström, J.: Modelling pesticide sorption in the surface and subsurface soils of an agricultural catchment, Pest Manag. Sci., 69, 919–929, https://doi.org/10.1002/ps.3453, 2013.
Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., Mitchell, J. F. B., and Wood, R. A.: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments, Clim. Dynam., 16, 147–168, https://doi.org/10.1007/s003820050010, 2000.
Graaf, S., Adielsson, S., and Kreuger, J.: Resultat från miljöövervakningen av bekämpningsmedel (växtskyddsmedel) Årssammanställning 2009, Ekohydrologi 120 version 2, Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2010.
Graaf, S., Adielsson, S., and Kreuger, J.: Resultat från miljöövervakningen av bekämpningsmedel (växtskyddsmedel) Årssammanställning 2010, Ekohydrologi 128, Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2011.
Graham, L. P., Hagemann, S., Jaun, S., and Beniston, M.: On interpreting hydrological change from regional climate models, Climatic Change, 81, 97–122, https://doi.org/10.1007/s10584-006-9217-0, 2007.
Hawkins, E. and Sutton, R.: The potential to narrow uncertainty in regional climate predictions, B. Am. Meteorol. Soc., 90, 1095–1107, https://doi.org/10.1175/2009BAMS2607.1, 2009.
Holvoet, K. M. A., Seuntjens, P., and Vanrolleghem, P. A.: Monitoring and modeling pesticide fate in surface waters at the catchment scale, Ecol. Model., 209, 53–64, https://doi.org/10.1016/j.ecolmodel.2007.07.030, 2007.
Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J.-L., Fairhead, L., Filiberti, M.-A., Friedlingstein, P., Grandpeix, J.-Y., Krinner, G., LeVan, P., Li, Z.-X., and Lott, F.: The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection, Clim. Dynam., 27, 787–813, https://doi.org/10.1007/s00382-006-0158-0, 2006.
Jarvis, N. J.: A simple empirical model of root water uptake, J. Hydrol., 107, 57–72, 1989.
Jarvis, N. J.: The MACRO model (version 4.2), Tech. rep., Swedish University of Agricultural Sciences, Department of Soil Science, Uppsala, Sweden, 1994.
Jarvis, N. J.: Modelling the impact of preferential flow on non-point source pollution, in: Physical Nonequilibrium in Soils: Modeling and Application, edited by: Selim, H. M. and Ma, L., Ann Arbor Press, Chelsea, Michigan, 195–221, 1998.
Johnsson, H., Larsson, M., Lindsjö, A., Mårtensson, K., Persson, K., and Torstensson, G.: Läckage av näringsämnen från svensk åkermark – Beräkningar av normalläckage av kväve och fosfor för 1995 och 2005, Rapport 5832, Naturvårdsverket, Stockholm, Sweden, 2008.
Jungclaus, J. H., Keenlyside, N., Botzet, M., Haak, H., Luo, J.-J., Latif, M., Marotzke, J., Mikolajewicz, U., and Roeckner, E.: Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM, J. Climate, 19, 3952–3972, https://doi.org/10.1175/JCLI3827.1, 2006.
Kattwinkel, M., Kühne, J.-V., Foit, K., and Liess, M.: Climate change, agricultural insecticide exposure, and risk for freshwater communities, Ecol. Appl., 21, 2068–2081, https://doi.org/10.1890/10-1993.1, 2011.
Kjellström, E., Nikulin, G., Hansson, U., Strandberg, G., and Ullerstig, A.: 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations, Tellus, 63, 24–40, https://doi.org/10.1111/j.1600-0870.2010.00475.x, 2011.
Lamon, L., Dalla Valle, M., Critto, A., and Marcomini, A.: Introducing an integrated climate change perspective in POPs modelling, monitoring and regulation, Environ. Pollut., 157, 1971–1980, https://doi.org/10.1016/j.envpol.2009.02.016, 2009.
Larsbo, M., Roulier, S., Stenemo, F., Kasteel, R., and Jarvis, N. J.: An improved dual-permeability model of water flow and solute transport in the vadose zone, Vadose Zone J., 4, 398–406, https://doi.org/10.2136/vzj2004.0137, 2005.
Larsbo, M. and Jarvis, N. J.: Simulating solute transport in a structured field soil: Uncertainty in parameter identification and predictions, J. Environ. Qual., 34, 621–634, 2005.
Larsson, M. H. and Jarvis, N. J.: Evaluation of a dual-porosity model to predict field-scale solute transport in a macroporous soil, J. Hydrol., 215, 153–171, https://doi.org/10.1016/S0022-1694(98)00267-4, 1999.
Ledbetter, R., Prudhomme, C., and Arnell, N.: A method for incorporating climate variability in climate change impact assessments: sensitivity of river flows in the Eden catchment to precipitation scenarios, Climatic Change, 113, 803–823, https://doi.org/10.1007/s10584-011-0386-0, 2012.
Lewan, E., Kreuger, J., and Jarvis, N. J.: Implications of precipitation patterns and antecedent soil water content for leaching of pesticides from arable land, Agr. Water Manage., 96, 1633–1640, https://doi.org/10.1016/j.agwat.2009.06.006, 2009.
Lind, P. and Kjellström, E.: Temperature and precipitation changes in Sweden; a wide range of model-based projections for the 21st century, Reports Meteorology and Climatology, SMHI, Norrköping, Sweden, 113, 50 pp., 2008.
Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh, L., Manzini, E., Schlese, U., and Schulzweida, U.: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model, J. Climate, 19, 3771–3791, https://doi.org/10.1175/JCLI3824.1, 2006.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models, Part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Nolan, B. T., Dubus, I. G., Surdyk, N., Fowler, H. J., Burton, A., Hollis, J. M., Reichenberger, S., and Jarvis, N. J.: Identification of key climatic factors regulating the transport of pesticides in leaching and to tile drains, Pest Manag. Sci., 64, 933–944, https://doi.org/10.1002/ps.1587, 2008.
Noyes, P. D., McElwee, M. K., Miller, H. D., Clark, B. W., Van Tiem, L. A., Walcott, K. C., Erwin, K. N., and Levin, E. D.: The toxicology of climate change: environmental contaminants in a warming world, Environ. Int., 35, 971–986, 2009.
Olsson, J.: Evaluation of a scaling cascade model for temporal rain- fall disaggregation, Hydrol. Earth Syst. Sci., 2, 19–30, https://doi.org/10.5194/hess-2-19-1998, 1998.
Prudhomme, C., Wilby, R. L., Crooks, S., Kay, A. L., and Reynard, N. S.: Scenario-neutral approach to climate change impact studies: application to flood risk, J. Hydrol., 390, 198–209, https://doi.org/10.1016/j.jhydrol.2010.06.043, 2010.
Rummukainen, M.: State-of-the-art with regional climate models, WIRE Climatic Change, 1, 82–96, https://doi.org/10.1002/wcc.8, 2010.
Samuelsson, P., Jones, C. G., Willén, U., Ullerstig, A., Gollvik, S., Hansson, U., Jansson, C., Kjellström, E., Nikulin, G., and Wyser, K.: The Rossby Centre Regional Climate model RCA3: model description and performance, Tellus A, 63, 4–23, https://doi.org/10.1111/j.1600-0870.2010.00478.x, 2011.
Shariff, R. M. and Shareef, K. M.: Thermodynamic adsorption of herbicides on eight agricultural soils, International Journal of Scientific & Engineering Research, 2, 238–245, 2011.
Steffens, K., Larsbo, M., Moeys, J., Jarvis, N., and Lewan, E.: Predicting pesticide leaching under climate change: importance of model structure and parameter uncertainty, Agr. Ecosyst. Environ., 172, 24–34, https://doi.org/10.1016/j.agee.2013.03.018, 2013.
ten Hulscher, T. E. M. and Cornelissen, G.: Effect of temperature on sorption equilibrium and sorption kinetics of organic micropollutants – a review, Chemosphere, 32, 609–626, https://doi.org/10.1016/0045-6535(95)00345-2, 1996.
Teutschbein, C. and Seibert, J.: Regional climate models for hydrological impact studies at the catchment scale: a review of recent modeling strategies, Geography Compass, 4, 834–860, https://doi.org/10.1111/j.1749-8198.2010.00357.x, 2010.
Teutschbein, C. and Seibert, J.: Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods, J. Hydrol., 456–457, 12–29, https://doi.org/10.1016/j.jhydrol.2012.05.052, 2012.
Teutschbein, C., Wetterhall, F., and Seibert, J.: Evaluation of different downscaling techniques for hydrological climate-change impact studies at the catchment scale, Clim. Dynam., 37, 2087–2105, https://doi.org/10.1007/s00382-010-0979-8, 2011.
van der Linden, P. and Mitchell, J. F. B.: ENSEMBLES: Climate change and its impacts: Summary of research and results from the ENSEMBLES project, Met Office Hadley Centre, Exeter, UK, 2009.
Vrugt, J. A., ter Braak, C. J. F., Gupta, H. V., and Robinson, B. A.: Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?, Stoch. Env. Res. Risk A., 23, 1011–1026, https://doi.org/10.1007/s00477-008-0274-y, 2009.
Walker, A.: A simulation model for prediction of herbicide persistence, J. Environ. Qual., 3, 396–401, 1974.
Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M., and Wade, A. J.: A review of the potential impacts of climate change on surface water quality, Hydrolog. Sci. J., 54, 101–123, https://doi.org/10.1623/hysj.54.1.101, 2009.
Wilby, R. L., Hay, L. E., Gutowski, W. J., Arritt, R. W., Takle, E. S., Pan, Z. T., Leavesley, G. H., and Clark, M. P.: Hydrological responses to dynamically and statistically downscaled climate model output, Geophys. Res. Lett., 27, 1199–1202, https://doi.org/10.1029/1999GL006078, 2000.
Wilby, R. L., Troni, J., Biot, Y., Tedd, L., Hewitson, B. C., Smith, D. M., and Sutton, R. T.: A review of climate risk information for adaptation and development planning, Int. J. Climatol., 29, 1193–1215, https://doi.org/10.1002/joc.1839, 2009.
Zhao, M., Held, I. M., Lin, S. J., and Vecchi, G. A.: Simulations of global hurricane climatology, interannual variability and response to global warming using a 50-km resolution GCM, J. Climate, 22, 6653–6678, https://doi.org/10.1175/2009JCLI3049.1, 2009.