Articles | Volume 18, issue 9
https://doi.org/10.5194/hess-18-3461-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-18-3461-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
New method for assessing the susceptibility of glacial lakes to outburst floods in the Cordillera Blanca, Peru
Department of Physical Geography and Geoecology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
V. Vilímek
Department of Physical Geography and Geoecology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
Related authors
Adam Emmer, Oscar Vilca, Cesar Salazar Checa, Sihan Li, Simon Cook, Elena Pummer, Jan Hrebrina, and Wilfried Haeberli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2316, https://doi.org/10.5194/egusphere-2024-2316, 2024
Short summary
Short summary
We report in detail the most recent large landslide-triggered glacial lake outburst flood (GLOF) in the Peruvian Andes (the 2023 Rasac GLOF), analyze its preconditions, consequences, and the role of changing climate. Our study contibutes to understanding GLOF occurrence patterns in space and time and corroborates increasing frequency of such events in changing mountains.
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, https://doi.org/10.5194/nhess-22-3041-2022, 2022
Short summary
Short summary
Glacial lake outburst floods (GLOFs) have attracted increased research attention recently. In this work, we review GLOF research papers published between 2017 and 2021 and complement the analysis with research community insights gained from the 2021 GLOF conference we organized. The transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Guoxiong Zheng, Martin Mergili, Adam Emmer, Simon Allen, Anming Bao, Hao Guo, and Markus Stoffel
The Cryosphere, 15, 3159–3180, https://doi.org/10.5194/tc-15-3159-2021, https://doi.org/10.5194/tc-15-3159-2021, 2021
Short summary
Short summary
This paper reports on a recent glacial lake outburst flood (GLOF) event that occurred on 26 June 2020 in Tibet, China. We find that this event was triggered by a debris landslide from a steep lateral moraine. As the relationship between the long-term evolution of the lake and its likely landslide trigger revealed by a time series of satellite images, this case provides strong evidence that it can be plausibly linked to anthropogenic climate change.
Christian Huggel, Mark Carey, Adam Emmer, Holger Frey, Noah Walker-Crawford, and Ivo Wallimann-Helmer
Nat. Hazards Earth Syst. Sci., 20, 2175–2193, https://doi.org/10.5194/nhess-20-2175-2020, https://doi.org/10.5194/nhess-20-2175-2020, 2020
Short summary
Short summary
There is increasing interest and need to analyze the contribution of anthropogenic climate change to negative impacts of climate change. We study the case of glacial lake Palcacocha in Peru, which poses a significant flood risk to the city of Huaraz. We found that greenhouse gas emissions; strong urbanization processes without appropriate land use planning; and social, cultural, political, and institutional factors all contribute to the existing flood risk.
Martin Mergili, Shiva P. Pudasaini, Adam Emmer, Jan-Thomas Fischer, Alejo Cochachin, and Holger Frey
Hydrol. Earth Syst. Sci., 24, 93–114, https://doi.org/10.5194/hess-24-93-2020, https://doi.org/10.5194/hess-24-93-2020, 2020
Short summary
Short summary
In 1941, the glacial lagoon Lake Palcacocha in the Cordillera Blanca (Peru) drained suddenly. The resulting outburst flood/debris flow consumed another lake and had a disastrous impact on the town of Huaraz 23 km downstream. We reconstuct this event through a numerical model to learn about the possibility of prediction of similar processes in the future. Remaining challenges consist of the complex process interactions and the lack of experience due to the rare occurrence of such process chains.
Stephan Harrison, Jeffrey S. Kargel, Christian Huggel, John Reynolds, Dan H. Shugar, Richard A. Betts, Adam Emmer, Neil Glasser, Umesh K. Haritashya, Jan Klimeš, Liam Reinhardt, Yvonne Schaub, Andy Wiltshire, Dhananjay Regmi, and Vít Vilímek
The Cryosphere, 12, 1195–1209, https://doi.org/10.5194/tc-12-1195-2018, https://doi.org/10.5194/tc-12-1195-2018, 2018
Short summary
Short summary
Most mountain glaciers have receded throughout the last century in response to global climate change. This recession produces a range of natural hazards including glacial lake outburst floods (GLOFs). We have produced the first global inventory of GLOFs associated with the failure of moraine dams and show, counterintuitively, that these have reduced in frequency over recent decades. In this paper we explore the reasons for this pattern.
Adam Emmer
Nat. Hazards Earth Syst. Sci., 18, 813–827, https://doi.org/10.5194/nhess-18-813-2018, https://doi.org/10.5194/nhess-18-813-2018, 2018
Short summary
Short summary
This study focuses on bibliometrics, geographies and global trends of research on glacial lake outburst floods (GLOFs). It shows how research on GLOFs has become topical over the past few decades (analysed period: 1979–2016). Issues such as (i) where GLOFs are studied, (ii) who studies GLOFs, (iii) the export of research on GLOFs and (iv) international collaboration are addressed.
A. Emmer and V. Vilímek
Nat. Hazards Earth Syst. Sci., 13, 1551–1565, https://doi.org/10.5194/nhess-13-1551-2013, https://doi.org/10.5194/nhess-13-1551-2013, 2013
Adam Emmer, Oscar Vilca, Cesar Salazar Checa, Sihan Li, Simon Cook, Elena Pummer, Jan Hrebrina, and Wilfried Haeberli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2316, https://doi.org/10.5194/egusphere-2024-2316, 2024
Short summary
Short summary
We report in detail the most recent large landslide-triggered glacial lake outburst flood (GLOF) in the Peruvian Andes (the 2023 Rasac GLOF), analyze its preconditions, consequences, and the role of changing climate. Our study contibutes to understanding GLOF occurrence patterns in space and time and corroborates increasing frequency of such events in changing mountains.
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, https://doi.org/10.5194/nhess-22-3041-2022, 2022
Short summary
Short summary
Glacial lake outburst floods (GLOFs) have attracted increased research attention recently. In this work, we review GLOF research papers published between 2017 and 2021 and complement the analysis with research community insights gained from the 2021 GLOF conference we organized. The transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Guoxiong Zheng, Martin Mergili, Adam Emmer, Simon Allen, Anming Bao, Hao Guo, and Markus Stoffel
The Cryosphere, 15, 3159–3180, https://doi.org/10.5194/tc-15-3159-2021, https://doi.org/10.5194/tc-15-3159-2021, 2021
Short summary
Short summary
This paper reports on a recent glacial lake outburst flood (GLOF) event that occurred on 26 June 2020 in Tibet, China. We find that this event was triggered by a debris landslide from a steep lateral moraine. As the relationship between the long-term evolution of the lake and its likely landslide trigger revealed by a time series of satellite images, this case provides strong evidence that it can be plausibly linked to anthropogenic climate change.
Christian Huggel, Mark Carey, Adam Emmer, Holger Frey, Noah Walker-Crawford, and Ivo Wallimann-Helmer
Nat. Hazards Earth Syst. Sci., 20, 2175–2193, https://doi.org/10.5194/nhess-20-2175-2020, https://doi.org/10.5194/nhess-20-2175-2020, 2020
Short summary
Short summary
There is increasing interest and need to analyze the contribution of anthropogenic climate change to negative impacts of climate change. We study the case of glacial lake Palcacocha in Peru, which poses a significant flood risk to the city of Huaraz. We found that greenhouse gas emissions; strong urbanization processes without appropriate land use planning; and social, cultural, political, and institutional factors all contribute to the existing flood risk.
Martin Mergili, Shiva P. Pudasaini, Adam Emmer, Jan-Thomas Fischer, Alejo Cochachin, and Holger Frey
Hydrol. Earth Syst. Sci., 24, 93–114, https://doi.org/10.5194/hess-24-93-2020, https://doi.org/10.5194/hess-24-93-2020, 2020
Short summary
Short summary
In 1941, the glacial lagoon Lake Palcacocha in the Cordillera Blanca (Peru) drained suddenly. The resulting outburst flood/debris flow consumed another lake and had a disastrous impact on the town of Huaraz 23 km downstream. We reconstuct this event through a numerical model to learn about the possibility of prediction of similar processes in the future. Remaining challenges consist of the complex process interactions and the lack of experience due to the rare occurrence of such process chains.
Stephan Harrison, Jeffrey S. Kargel, Christian Huggel, John Reynolds, Dan H. Shugar, Richard A. Betts, Adam Emmer, Neil Glasser, Umesh K. Haritashya, Jan Klimeš, Liam Reinhardt, Yvonne Schaub, Andy Wiltshire, Dhananjay Regmi, and Vít Vilímek
The Cryosphere, 12, 1195–1209, https://doi.org/10.5194/tc-12-1195-2018, https://doi.org/10.5194/tc-12-1195-2018, 2018
Short summary
Short summary
Most mountain glaciers have receded throughout the last century in response to global climate change. This recession produces a range of natural hazards including glacial lake outburst floods (GLOFs). We have produced the first global inventory of GLOFs associated with the failure of moraine dams and show, counterintuitively, that these have reduced in frequency over recent decades. In this paper we explore the reasons for this pattern.
Adam Emmer
Nat. Hazards Earth Syst. Sci., 18, 813–827, https://doi.org/10.5194/nhess-18-813-2018, https://doi.org/10.5194/nhess-18-813-2018, 2018
Short summary
Short summary
This study focuses on bibliometrics, geographies and global trends of research on glacial lake outburst floods (GLOFs). It shows how research on GLOFs has become topical over the past few decades (analysed period: 1979–2016). Issues such as (i) where GLOFs are studied, (ii) who studies GLOFs, (iii) the export of research on GLOFs and (iv) international collaboration are addressed.
A. Emmer and V. Vilímek
Nat. Hazards Earth Syst. Sci., 13, 1551–1565, https://doi.org/10.5194/nhess-13-1551-2013, https://doi.org/10.5194/nhess-13-1551-2013, 2013
Related subject area
Subject: Rivers and Lakes | Techniques and Approaches: Theory development
Spatiotemporal variation of modern lake, stream, and soil water isotopes in Iceland
Impacts of science on society and policy in major river basins globally
Conceptualising surface water–groundwater exchange in braided river systems
Evaporation and sublimation measurement and modeling of an alpine saline lake influenced by freeze–thaw on the Qinghai–Tibet Plateau
Rediscovering Robert E. Horton's lake evaporation formulae: new directions for evaporation physics
Ionic aluminium concentrations exceed thresholds for aquatic health in Nova Scotian rivers, even during conditions of high dissolved organic carbon and low flow
Turbulence in the stratified boundary layer under ice: observations from Lake Baikal and a new similarity model
Changing suspended sediment in United States rivers and streams: linking sediment trends to changes in land use/cover, hydrology and climate
Freshwater pearl mussels from northern Sweden serve as long-term, high-resolution stream water isotope recorders
Integrating network topology metrics into studies of catchment-level effects on river characteristics
Estimating the effect of rainfall on the surface temperature of a tropical lake
Toward a conceptual framework of hyporheic exchange across spatial scales
HESS Opinions: Science in today's media landscape – challenges and lessons from hydrologists and journalists
River water quality changes in New Zealand over 26 years: response to land use intensity
A review of current and possible future human–water dynamics in Myanmar's river basins
A century-scale, human-induced ecohydrological evolution of wetlands of two large river basins in Australia (Murray) and China (Yangtze)
An index of floodplain surface complexity
Hydroclimatological influences on recently increased droughts in China's largest freshwater lake
Quantitative analysis of biogeochemically controlled density stratification in an iron-meromictic lake
Reconstruction of flood events based on documentary data and transnational flood risk analysis of the Upper Rhine and its French and German tributaries since AD 1480
A methodological approach of estimating resistance to flow under unsteady flow conditions
Quantitative historical hydrology in Europe
Quantifying groundwater dependence of a sub-polar lake cluster in Finland using an isotope mass balance approach
Variations in quantity, composition and grain size of Changjiang sediment discharging into the sea in response to human activities
The KULTURisk Regional Risk Assessment methodology for water-related natural hazards – Part 1: Physical–environmental assessment
The use of taxation records in assessing historical floods in South Moravia, Czech Republic
Dissolved and particulate nutrient transport dynamics of a small Irish catchment: the River Owenabue
Water balance of selected floodplain lake basins in the Middle Bug River valley
Winter stream temperature in the rain-on-snow zone of the Pacific Northwest: influences of hillslope runoff and transient snow cover
Inverse streamflow routing
A fluid-mechanics based classification scheme for surface transient storage in riverine environments: quantitatively separating surface from hyporheic transient storage
Variation in turbidity with precipitation and flow in a regulated river system – river Göta Älv, SW Sweden
A novel approach to analysing the regimes of temporary streams in relation to their controls on the composition and structure of aquatic biota
Mass transport of contaminated soil released into surface water by landslides (Göta River, SW Sweden)
Physical and chemical consequences of artificially deepened thermocline in a small humic lake – a paired whole-lake climate change experiment
A flume experiment on the effect of constriction shape on the formation of forced pools
David J. Harning, Jonathan H. Raberg, Jamie M. McFarlin, Yarrow Axford, Christopher R. Florian, Kristín B. Ólafsdóttir, Sebastian Kopf, Julio Sepúlveda, Gifford H. Miller, and Áslaug Geirsdóttir
Hydrol. Earth Syst. Sci., 28, 4275–4293, https://doi.org/10.5194/hess-28-4275-2024, https://doi.org/10.5194/hess-28-4275-2024, 2024
Short summary
Short summary
As human-induced global warming progresses, changes to Arctic precipitation are expected, but predictions are limited by an incomplete understanding of past changes in the hydrological system. Here, we measured water isotopes, a common tool to reconstruct past precipitation, from lakes, streams, and soils across Iceland. These data will allow robust reconstruction of past precipitation changes in Iceland in future studies.
Shuanglei Wu and Yongping Wei
Hydrol. Earth Syst. Sci., 28, 3871–3895, https://doi.org/10.5194/hess-28-3871-2024, https://doi.org/10.5194/hess-28-3871-2024, 2024
Short summary
Short summary
This study developed a framework to understand the structures of knowledge development in 72 river basins globally from 1962–2017 using Web of Science. It was found that the knowledge systems were characterized by increasingly interconnected management issues addressed by limited disciplines and were linked more strongly to societal impacts than that to policy. Understanding the current state of knowledge casts a light on sustainable knowledge transformations for river basin management.
Scott R. Wilson, Jo Hoyle, Richard Measures, Antoine Di Ciacca, Leanne K. Morgan, Eddie W. Banks, Linda Robb, and Thomas Wöhling
Hydrol. Earth Syst. Sci., 28, 2721–2743, https://doi.org/10.5194/hess-28-2721-2024, https://doi.org/10.5194/hess-28-2721-2024, 2024
Short summary
Short summary
Braided rivers are complex and dynamic systems that are difficult to understand. Here, we proposes a new model of how braided rivers work in the subsurface based on field observations in three braided rivers in New Zealand. We suggest that braided rivers create their own shallow aquifers by moving bed sediments during flood flows. This new conceptualisation considers braided rivers as whole “river systems” consisting of channels and a gravel aquifer, which is distinct from the regional aquifer.
Fangzhong Shi, Xiaoyan Li, Shaojie Zhao, Yujun Ma, Junqi Wei, Qiwen Liao, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 163–178, https://doi.org/10.5194/hess-28-163-2024, https://doi.org/10.5194/hess-28-163-2024, 2024
Short summary
Short summary
(1) Evaporation under ice-free and sublimation under ice-covered conditions and its influencing factors were first quantified based on 6 years of eddy covariance observations. (2) Night evaporation of Qinghai Lake accounts for more than 40 % of the daily evaporation. (3) Lake ice sublimation reaches 175.22 ± 45.98 mm, accounting for 23 % of the annual evaporation. (4) Wind speed weakening may have resulted in a 7.56 % decrease in lake evaporation during the ice-covered period from 2003 to 2017.
Solomon Vimal and Vijay P. Singh
Hydrol. Earth Syst. Sci., 26, 445–467, https://doi.org/10.5194/hess-26-445-2022, https://doi.org/10.5194/hess-26-445-2022, 2022
Short summary
Short summary
Evaporation from open water is a well-studied problem in hydrology. Robert E. Horton, unknown to most investigators on the subject, studied it in great detail by conducting experiments and relating them to physical laws. His work furthered known theories of lake evaporation but was not recognized. This is unfortunate because it performs better than five variously complex methods across scales (local to continental; 30 min–2 months) and seems quite relevant for climate-change-era problems.
Shannon M. Sterling, Sarah MacLeod, Lobke Rotteveel, Kristin Hart, Thomas A. Clair, Edmund A. Halfyard, and Nicole L. O'Brien
Hydrol. Earth Syst. Sci., 24, 4763–4775, https://doi.org/10.5194/hess-24-4763-2020, https://doi.org/10.5194/hess-24-4763-2020, 2020
Short summary
Short summary
Wild salmon numbers in Nova Scotia, Canada, have been plummeting in recent decades. In 2014, we launched an ionic aluminium monitoring program in Nova Scotia to see if this toxic element was a threat to salmon populations. We found that all 10 monitored rivers had ionic aluminium concentrations that exceeded the threshold for aquatic health. Our results demonstrate that elevated aluminium still threatens aquatic ecosystems and that delays in recovery from acid rain remains a critical issue.
Georgiy Kirillin, Ilya Aslamov, Vladimir Kozlov, Roman Zdorovennov, and Nikolai Granin
Hydrol. Earth Syst. Sci., 24, 1691–1708, https://doi.org/10.5194/hess-24-1691-2020, https://doi.org/10.5194/hess-24-1691-2020, 2020
Short summary
Short summary
We found that heat transported from Lake Baikal to its ice cover is up to 10 times higher than traditionally assumed and strongly affects the ice melting. The heat is transported by under-ice currents on the background of a strong temperature gradient between the ice base and warmer waters beneath. To parameterize this newly quantified transport mechanism, an original boundary layer model was developed. The results are crucial for understanding seasonal ice dynamics on lakes and marginal seas.
Jennifer C. Murphy
Hydrol. Earth Syst. Sci., 24, 991–1010, https://doi.org/10.5194/hess-24-991-2020, https://doi.org/10.5194/hess-24-991-2020, 2020
Short summary
Short summary
Between 1992 and 2012, concentrations of suspended sediment decreased at about 60 % of 137 US stream sites, with increases at only 17 % of sites. Sediment trends were primarily attributed to changes in land management, but streamflow changes also contributed to these trends at > 50 % of sites. At many sites, decreases in sediment occurred despite small-to-moderate increases in the amount of anthropogenic land use, suggesting sediment reduction activities across the US may be seeing some success.
Bernd R. Schöne, Aliona E. Meret, Sven M. Baier, Jens Fiebig, Jan Esper, Jeffrey McDonnell, and Laurent Pfister
Hydrol. Earth Syst. Sci., 24, 673–696, https://doi.org/10.5194/hess-24-673-2020, https://doi.org/10.5194/hess-24-673-2020, 2020
Short summary
Short summary
We present the first annually resolved stable isotope record (1819–1998) from shells of Swedish river mussels. Data reflect hydrological processes in the catchment and changes in the isotope value of local precipitation. The latter is related to the origin of moisture from which precipitation formed (North Atlantic or the Arctic) and governed by large-scale atmospheric circulation patterns. Results help to better understand climate dynamics and constrain ecological changes in river ecosystems.
Eleanore L. Heasley, Nicholas J. Clifford, and James D. A. Millington
Hydrol. Earth Syst. Sci., 23, 2305–2319, https://doi.org/10.5194/hess-23-2305-2019, https://doi.org/10.5194/hess-23-2305-2019, 2019
Short summary
Short summary
River network structure is an overlooked feature of catchments. We demonstrate that network structure impacts broad spatial patterns of river characteristics in catchments using regulatory data. River habitat quality increased with network density, but other characteristics responded differently between study catchments. Network density was quantified using a method that can easily be applied to any catchment. We suggest that river network structure should be included in catchment-level studies.
Gabriel Gerard Rooney, Nicole van Lipzig, and Wim Thiery
Hydrol. Earth Syst. Sci., 22, 6357–6369, https://doi.org/10.5194/hess-22-6357-2018, https://doi.org/10.5194/hess-22-6357-2018, 2018
Short summary
Short summary
This paper uses a unique observational dataset of a tropical African lake (L. Kivu) to assess the effect of rain on lake surface temperature. Data from 4 years were categorised by daily rain amount and total net radiation to show that heavy rain may reduce the end-of-day lake temperature by about 0.3 K. This is important since lake surface temperature may influence local weather on short timescales, but the effect of rain on lake temperature has been little studied or parametrised previously.
Chiara Magliozzi, Robert C. Grabowski, Aaron I. Packman, and Stefan Krause
Hydrol. Earth Syst. Sci., 22, 6163–6185, https://doi.org/10.5194/hess-22-6163-2018, https://doi.org/10.5194/hess-22-6163-2018, 2018
Short summary
Short summary
The hyporheic zone is the area below riverbeds where surfacewater and groundwater mix. Hyporheic flow is linked to river processes and functions, but research to date has not sufficiently addressed how factors operating at different scales in time and space drive hyporheic flow variations at reach and larger scales. This review presents the scale-specific processes and interactions that control hyporheic flow, and a case study showing how valley factors affect its expression at the reach scale.
Stefanie R. Lutz, Andrea Popp, Tim van Emmerik, Tom Gleeson, Liz Kalaugher, Karsten Möbius, Tonie Mudde, Brett Walton, Rolf Hut, Hubert Savenije, Louise J. Slater, Anna Solcerova, Cathelijne R. Stoof, and Matthias Zink
Hydrol. Earth Syst. Sci., 22, 3589–3599, https://doi.org/10.5194/hess-22-3589-2018, https://doi.org/10.5194/hess-22-3589-2018, 2018
Short summary
Short summary
Media play a key role in the communication between scientists and the general public. However, the interaction between scientists and journalists is not always straightforward. In this opinion paper, we present insights from hydrologists and journalists into the benefits, aftermath and potential pitfalls of science–media interaction. We aim to encourage scientists to participate in the diverse and evolving media landscape, and we call on the scientific community to support scientists who do so.
Jason P. Julian, Kirsten M. de Beurs, Braden Owsley, Robert J. Davies-Colley, and Anne-Gaelle E. Ausseil
Hydrol. Earth Syst. Sci., 21, 1149–1171, https://doi.org/10.5194/hess-21-1149-2017, https://doi.org/10.5194/hess-21-1149-2017, 2017
Short summary
Short summary
New Zealand is a natural laboratory for investigating water quality responses to land use intensity because it has one of the highest rates of agricultural intensification globally over recent decades. We interpreted water quality state and trends (1989–2014) of 77 river sites across NZ. We show that the greatest long-term negative impacts on river water quality have been increased cattle densities and legacy nutrients from intensively managed grasslands and plantation forests.
Linda Taft and Mariele Evers
Hydrol. Earth Syst. Sci., 20, 4913–4928, https://doi.org/10.5194/hess-20-4913-2016, https://doi.org/10.5194/hess-20-4913-2016, 2016
Short summary
Short summary
The country of Myanmar and its abundant water resources are facing major challenges due to political and economic reforms, massive investments from neighbouring countries and climate change impacts. Publications on current and future impacts from human activities and climate change on Myanmar's river basins have been reviewed in order to gain an overview of the key drivers in these human–water dynamics. The review reveals the relevance of this information with regard to human–water interactions.
Giri R. Kattel, Xuhui Dong, and Xiangdong Yang
Hydrol. Earth Syst. Sci., 20, 2151–2168, https://doi.org/10.5194/hess-20-2151-2016, https://doi.org/10.5194/hess-20-2151-2016, 2016
M. W. Scown, M. C. Thoms, and N. R. De Jager
Hydrol. Earth Syst. Sci., 20, 431–441, https://doi.org/10.5194/hess-20-431-2016, https://doi.org/10.5194/hess-20-431-2016, 2016
Short summary
Short summary
An index of floodplain surface complexity is developed in this paper and applied to eight floodplains from different geographic settings. Floodplain width and sediment yield were associated with the index or with sub-indicators, whereas hydrology was not. These findings suggest that valley and sediment conditions are important determinants of floodplain surface complexity, and these should complement hydrology as a focus of floodplain research and management.
Y. Liu and G. Wu
Hydrol. Earth Syst. Sci., 20, 93–107, https://doi.org/10.5194/hess-20-93-2016, https://doi.org/10.5194/hess-20-93-2016, 2016
Short summary
Short summary
Lake droughts result in significant hydrological, ecological and economic consequences. This study proposes approaches for quantifying the lake drought features and estimating the contributions from individual factors, taking China’s largest freshwater lake as a case examination. Our results showed that the recently increased lake droughts were due to hydroclimatic effects, with less important contributions from the water impoundments of the world’s largest dam affecting the lake outflows.
E. Nixdorf and B. Boehrer
Hydrol. Earth Syst. Sci., 19, 4505–4515, https://doi.org/10.5194/hess-19-4505-2015, https://doi.org/10.5194/hess-19-4505-2015, 2015
I. Himmelsbach, R. Glaser, J. Schoenbein, D. Riemann, and B. Martin
Hydrol. Earth Syst. Sci., 19, 4149–4164, https://doi.org/10.5194/hess-19-4149-2015, https://doi.org/10.5194/hess-19-4149-2015, 2015
Short summary
Short summary
The article presents a long-term analysis of flood occurrence along the southern part of the Upper Rhine River system and of 14 of its tributaries in France and Germany since 1480 BC. Special focus is given to temporal and spatial variations of flood events and their underlying meteorological causes over time, knowledge about the historical aspects of flood protection and flood vulnerability, while comparing selected historical and modern extreme events, establishing a common evaluation scheme.
M. M. Mrokowska, P. M. Rowiński, and M. B. Kalinowska
Hydrol. Earth Syst. Sci., 19, 4041–4053, https://doi.org/10.5194/hess-19-4041-2015, https://doi.org/10.5194/hess-19-4041-2015, 2015
Short summary
Short summary
This paper presents evaluation of resistance parameters: friction slope, friction velocity and Manning coefficient in unsteady flow. Theoretical description is facilitated with the analysis of field data from artificial dam-break flood waves in a small lowland watercourse. The methodology to enhance the evaluation of resistance by relations derived from flow equations is proposed. The study shows the Manning coefficient is less sensitive to simplified relations than other parameters.
G. Benito, R. Brázdil, J. Herget, and M. J. Machado
Hydrol. Earth Syst. Sci., 19, 3517–3539, https://doi.org/10.5194/hess-19-3517-2015, https://doi.org/10.5194/hess-19-3517-2015, 2015
Short summary
Short summary
Historical hydrology combines documentary data with hydrological methods to lengthen flow records to the past centuries. We describe the methodological evolution of historical hydrology under the influence of developments in hydraulics and statistics. Analysis of 45 case studies in Europe show that present flood magnitudes are not unusual in the context of the past, whereas flood frequency has decreased, although some rivers show a reactivation of rare floods over the last two decades.
E. Isokangas, K. Rozanski, P. M. Rossi, A.-K. Ronkanen, and B. Kløve
Hydrol. Earth Syst. Sci., 19, 1247–1262, https://doi.org/10.5194/hess-19-1247-2015, https://doi.org/10.5194/hess-19-1247-2015, 2015
Short summary
Short summary
An iterative isotope mass balance approach was used to quantify the groundwater dependence of 67 kettle lakes and ponds. A quantitative measure for the dependence of a lake on groundwater (G index) introduced in this study revealed generally large groundwater dependency among the lakes. The isotope mass balance approach proved to be especially useful when the groundwater reliance of lakes situated in a relatively small area with similar climatic conditions needs to be determined.
J. H. Gao, J. Jia, Y. P. Wang, Y. Yang, J. Li, F. Bai, X. Zou, and S. Gao
Hydrol. Earth Syst. Sci., 19, 645–655, https://doi.org/10.5194/hess-19-645-2015, https://doi.org/10.5194/hess-19-645-2015, 2015
P. Ronco, V. Gallina, S. Torresan, A. Zabeo, E. Semenzin, A. Critto, and A. Marcomini
Hydrol. Earth Syst. Sci., 18, 5399–5414, https://doi.org/10.5194/hess-18-5399-2014, https://doi.org/10.5194/hess-18-5399-2014, 2014
Short summary
Short summary
This paper proposes a methodology, shaped by the EU Flood Directive, for the integrated assessment of flood risk at the regional scale for multiple receptors (i.e. people, economic activities, natural and semi-natural systems and cultural heritage) based on the subsequent assessment of hazards, exposure and vulnerability. By means of MCDA and GIS tools, it supports the ranking of the area, sub-areas and hotspots at risk, in order to evaluate the benefits of different risk prevention scenarios.
R. Brázdil, K. Chromá, L. Řezníčková, H. Valášek, L. Dolák, Z. Stachoň, E. Soukalová, and P. Dobrovolný
Hydrol. Earth Syst. Sci., 18, 3873–3889, https://doi.org/10.5194/hess-18-3873-2014, https://doi.org/10.5194/hess-18-3873-2014, 2014
S. T. Harrington and J. R. Harrington
Hydrol. Earth Syst. Sci., 18, 2191–2200, https://doi.org/10.5194/hess-18-2191-2014, https://doi.org/10.5194/hess-18-2191-2014, 2014
J. Dawidek and B. Ferencz
Hydrol. Earth Syst. Sci., 18, 1457–1465, https://doi.org/10.5194/hess-18-1457-2014, https://doi.org/10.5194/hess-18-1457-2014, 2014
J. A. Leach and R. D. Moore
Hydrol. Earth Syst. Sci., 18, 819–838, https://doi.org/10.5194/hess-18-819-2014, https://doi.org/10.5194/hess-18-819-2014, 2014
M. Pan and E. F. Wood
Hydrol. Earth Syst. Sci., 17, 4577–4588, https://doi.org/10.5194/hess-17-4577-2013, https://doi.org/10.5194/hess-17-4577-2013, 2013
T. R. Jackson, R. Haggerty, and S. V. Apte
Hydrol. Earth Syst. Sci., 17, 2747–2779, https://doi.org/10.5194/hess-17-2747-2013, https://doi.org/10.5194/hess-17-2747-2013, 2013
G. Göransson, M. Larson, and D. Bendz
Hydrol. Earth Syst. Sci., 17, 2529–2542, https://doi.org/10.5194/hess-17-2529-2013, https://doi.org/10.5194/hess-17-2529-2013, 2013
F. Gallart, N. Prat, E. M. García-Roger, J. Latron, M. Rieradevall, P. Llorens, G. G. Barberá, D. Brito, A. M. De Girolamo, A. Lo Porto, A. Buffagni, S. Erba, R. Neves, N. P. Nikolaidis, J. L. Perrin, E. P. Querner, J. M. Quiñonero, M. G. Tournoud, O. Tzoraki, N. Skoulikidis, R. Gómez, M. M. Sánchez-Montoya, and J. Froebrich
Hydrol. Earth Syst. Sci., 16, 3165–3182, https://doi.org/10.5194/hess-16-3165-2012, https://doi.org/10.5194/hess-16-3165-2012, 2012
G. Göransson, M. Larson, D. Bendz, and M. Åkesson
Hydrol. Earth Syst. Sci., 16, 1879–1893, https://doi.org/10.5194/hess-16-1879-2012, https://doi.org/10.5194/hess-16-1879-2012, 2012
M. Forsius, T. Saloranta, L. Arvola, S. Salo, M. Verta, P. Ala-Opas, M. Rask, and J. Vuorenmaa
Hydrol. Earth Syst. Sci., 14, 2629–2642, https://doi.org/10.5194/hess-14-2629-2010, https://doi.org/10.5194/hess-14-2629-2010, 2010
D. M. Thompson and C. R. McCarrick
Hydrol. Earth Syst. Sci., 14, 1321–1330, https://doi.org/10.5194/hess-14-1321-2010, https://doi.org/10.5194/hess-14-1321-2010, 2010
Cited articles
Ames, A. M. and Francou, B.: Cordillera Blanca – glaciares en la historia, Bull. Inst. fr. Études andines, 24, 37–64, 1995.
Awal, R., Nakagawa, H., Fujita, M., Kawaike, K., Baba, Y., and Zhang, H.: Experimental study on glacial lake outburst floods due to waves overtopping and erosion of moraine dam, Ann. Disaster Prevention Res. Institute, 53, 583–594, 2010.
Benn, D. I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L. I., Quincey, D., Thompson, S., Toumi, R., and Wiesman, S.: Response of debris-covered glaciers in the Mount Everest region to recent warming,and implications for outburst flood hazards, Earth-Sci. Rev., 114, 156–174, https://doi.org/10.1016/j.earscirev.2012.03.008, 2012.
Breien, H., De Blasio, F. V., Elverhøi, A., and Høeg, K.: Erosion and morphology of a debris flow caused by a glacial lake outburst flood, Western Norway, Landslides, 5, 271–280, https://doi.org/10.1007/s10346-008-0118-3, 2008.
Bolch, T., Peters, J., Yerogov, A., Pradhan, B., Buchroithner, M., and Blagoveshchensky, V.: Identification of potentially dangerous glacial lakes in the northern Tien Shan, Nat. Hazards, 59, 1691–1714, https://doi.org/10.1007/s11069-011-9860-2, 2011.
Carey, M.: Living and dying with glaciers: people's historical vulnerability to avalanches and outburst floods in Peru, Global Planet. Change, 47, 122–134, https://doi.org/10.1016/j.gloplacha.2004.10.007, 2005.
Carey, M., Huggel, C., Bury, J., Portocarrero, C., and Haeberli, W.: An integrated socio-environmental framework for glacial hazard management and climate change adaptation: lessons from Lake 513, Cordillera Blanca, Peru, Clim. Change, 112, 733–767, https://doi.org/10.1007/s10584-011-0249-8, 2012.
Cenderelli, D. A. and Wohl, E. E.: Peak discharge estimates of glacial-lake outburst floods and "normal" climatic floods in the Mount Everest region, Nepal, Geomorphology, 40, 57–90, https://doi.org/10.1016/S0169-555X(01)00037-X, 2001.
Chen, C., Wang, T., Zhang, Z., and Liu, Z.: Glacial Lake Outburst Floods in Upper Nainchu River Basin, Tibet, J. Cold Reg. Eng., 13, 199–212, https://doi.org/10.1061/(ASCE)0887-381X(1999)13:4(199), 1999.
Clague, J. J. and Evans, S. G.: A review of catastrophic drainage of moraine-dammed lakes in British Columbia, Quaternary Sci. Rev., 19, 1763–1783, https://doi.org/10.1016/S0277-3791(00)00090-1, 2000.
Clague, J. J., Huggel, C., Korup, O., and McGuire, B.: Climate Change and Hazardous Processes in High Mountains, Rev. Asociación Geol. Argentina, 69, 328–338, 2012.
Cochachin, A. R. and Torres, L. A. (Eds.): Memoria anual 2011: Estudio y monitoreo de lagunas, Autoridad nacional del agua, Unidad de glaciología y recursos hídricos, Huaráz, Peru, 150 pp., 2011.
Cochachin, A. R., Gómez, O. D. V., and Torres, L. A. (Eds.): Memoria anual 2010: Estudio y monitoreo de lagunas, Autoridad nacional del agua, Unidad de glaciología y recursos hídricos, Huaráz, Peru, 153 pp., 2010.
Costa, J. E. and Schuster, R. L.: The formation and failure of natural dams, Geol. Soc. Am. Bull., 100, 1054–1068, https://doi.org/10.1130/0016-7606(1988)100<1054:TFAFON>2.3.CO;2, 1988.
Emmer, A. and Cochachin, A.: The causes and mechanisms of moraine-dammed lake failures in the Cordillera Blanca, North American Cordillera, and Himalaya, Acta Universitatis Carolinae, Geographica, 48, 5–15, 2013.
Emmer, A. and Vil\'imek, V.: Review Article: Lake and breach hazard assessment for moraine-dammed lakes: an example from the Cordillera Blanca (Peru), Nat. Hazards Earth Syst. Sci., 13, 1551–1565, https://doi.org/10.5194/nhess-13-1551-2013, 2013.
Emmer, A., Vilímek, V., Klimeš, J., and Cochachin, A.: Glacier Retreat, Lakes Development and Associated Natural Hazards in Cordillera Blanca, Peru, in: Landslides in Cold Regions in the Context of Climate Change, Environmental Science and Engineering, Springer, Switzerland, 231–252, 2014.
Evans, S. G. and Clague, J. J.: Recent climatic change and catastrophic geomorphic processes in mountain environments, Geomorphology, 10, 107–128, https://doi.org/10.1016/0169-555X(94)90011-6, 1994.
Ghiglino, L. and Spann, H.: Ruptura de la laguna Artesoncocha, Hidroelectra, Lima, 5 pp., 1951.
Giardini, D., Grünthal, G., Shedlock, K., and Zhang, P.: Global seismic hazard map, Annali Geofis., 42, 1225–1230, 1999.
Google Earth Digital Globe: version 7.1.2.2041, Google Inc, available online: server kh.google.com, 2014.
Grabs, W. E. and Hanisch, J.: Objectives and prevention methods for glacier lake outburst floods (GLOFs), in: Snow and Glacier Hydrology (Proceedings of the Kathmandu Symposium, November 1992), IAHS, Great Yarmouth, 341–352, 1993.
Gruber, F. E. and Mergili, M.: Regional-scale analysis of high-mountain multi-hazard and risk indicators in the Pamir (Tajikistan) with GRASS GIS, Nat. Hazards Earth Syst. Sci., 13, 2779–2796, https://doi.org/10.5194/nhess-13-2779-2013, 2013.
Hewitt, K.: Natural dams and outburst floods of the Karakoram Himalaya, in: Hydrological Aspects of Alpine and High Mountain Areas, edited by: Glen, J. W., 259–269, 1982.
Hubbard, B., Heald, A., Reynolds, J. M., Quincey, D., Richardson, S. D., Zapata, M. L., Santillán, N. P., and Hambrey, M. J.: Impact of a rock avalanche on a moraine-dammed proglacial lake: Laguna Safuna Alta, Cordillera Blanca, Peru, Earth Surf. Process. Landforms, 30, 1251–1264, https://doi.org/10.1002/esp.1198, 2005.
Huggel, C., Kääb, A., Haeberli, W., Teysseire, P., and Paul, F.: Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps, Can. Geotech. J., 39, 316–330, https://doi.org/10.1139/T01-099, 2002.
Huggel, C., Kääb, A., Haeberli, W., Teysseire, P., and Paul, F.: An assessment procedure for glacial hazards in the Swiss Alps, Can. Geotech. J., 41, 1068–1083, https://doi.org/10.1139/T04-053, 2004.
Iribarren, A. P., Mackintosh, A., and Norton, K. P.: Hazardous processes and events from glacier and permafrost areas: lessons from the Chilean and Argentinean Andes, Earth Surf. Process. Landforms, https://doi.org/10.1002/esp.3524, in press, 2014.
Iturrizaga, L.: New observations on present and prehistorical glacier-dammed lakes in the Shimshal valley (Karakoram Mountains), J. Asian Earth Sci., 25, 545–555, https://doi.org/10.1016/j.jsenes.2004.04.011, 2005.
Ives, J. D., Shrestha, B. R., and Mool, P. K.: Formation of Glacial Lakes in the Hindu Kush-Himalayas and GLOF Risk Assessment, International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, 56 pp., 2010.
Klimeš, J., Benešová, M., Vilímek, V., Bouška, P., and Cochachin, A. R.: The reconstruction of a glacial lake outburst flood using HEC-RAS and its significance for future hazard assessments: an example from Lake 513 in the Cordillera Blanca, Peru, Nat. Hazards, 71, 1617–1638, https://doi.org/10.1007/s11069-013-0968-4, 2014.
Korup, O. and Tweed, F.: Ice, moraine, and landslide dams in mountainous terrain, Quaternary Sci. Rev., 26, 3406–3422, https://doi.org/10.1016/j.quascirev.2007.10.012, 2007.
Lliboutry, L., Morales, B. A., Pautre, A., and Schneider, B.: Glaciological problems set by the control of dangerous lakes in Cordillera Blanca, Peru, I. Historical failures of moranic dams, their causes and prevention, J. Glaciol., 18, 239–254, 1977.
McKillop, R. J. and Clague, J. J.: Statistical, remote sensing-based approach for estimating the probability of catastrophic drainage from moraine-dammed lakes in southwestern British Columbia, Global Planet. Change, 56, 153–171, https://doi.org/10.1016/j.gloplacha.2006.07.004, 2007a.
McKillop, R. J. and Clague, J. J.: A procedure for making objective preliminary assessments of outburst flood hazard from moraine-dammed lakes in southwestern British Columbia, Nat. Hazards, 41, 131–157, https://doi.org/10.1007/s11069-006-9028-7, 2007b.
Mergili, M. and Schneider, J. F.: Regional-scale analysis of lake outburst hazards in the southwestern Pamir, Tajikistan, based on remote sensing and GIS, Nat. Hazards Earth Syst. Sci., 11, 1447–1462, https://doi.org/10.5194/nhess-11-1447-2011, 2011.
O'Connor, J. E., Hardison, J. H., and Costa, J. E.: Debris flows from failures of Neoglacial-age moraine dams in the Three Sisters and Mount Jefferson Wilderness areas, Oregon, U.S., US Geological Survey, Reston (Virginia), 93 pp., 2001.
Oppenheim, V.: Sobre las lagunas de Huaráz, in: Boletin de la sociedad geologica del Peru, Sociedad geologica del Peru, Lima, 68–80, 1946.
Quincey, D. J., Richardson, S. D., Luckman, A., Lucas, R. M., Reynolds, J. M., Hambrey, M. J., and Glasser, N. F.: Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets, Global Planet. Change, 56, 137–152, https://doi.org/10.1016/j.gloplacha.2006.07.013, 2007.
Reynolds, J. M.: Development of glacial hazard and risk minimisation protocols in rural environments: Methods of glacial hazard assessment and management in the Cordillera Blanca, Peru, Reynolds Geo-Sciences Ltd., Flintshire (UK), 72 pp., 2003.
Rhea, S., Hayes, G., Villaseñor, A., Furlong, K. P., Tarr, A. C., and Benz, H. M.: Seismicity of the earth 1900–2007: Nazca Plate and South America (1 : 12 000 000), US Geological Survey Open-File Report 2010–1083-E, 1 sheet., 2010.
Richardson, S. D. and Reynolds, J. M.: An overview of glacial hazards in the Himalayas, Quaternary Int., 65, 31–47, https://doi.org/10.1016/S1040-6182(99)00035-X, 2000a.
Richardson, S. D. and Reynolds, J. M.: Degradation of ice-cored moraine dams: implications for hazard development, in: Debris-covered Glaciers, edited by: Nakawo, M., Raymond, C. F., and Fountain, A., 187–197, 2000b.
Solomina, O., Jomelli, V., Kaser, G., Ames, A., Berger, B., and Pouyaud, B.: Lichenometry in the Cordillera Blanca, Peru: "Little Ice Age" moraine chronology, Global Planet. Change, 59, 225–235, https://doi.org/10.1016/j.gloplacha.2006.11.016, 2007.
Thompson, L., Mosley-Thompson, E., and Henderson, K.: Ice-core palaeoclimate records in tropical South America since the las glacial maximum, J. Quaternary Sci., 15, 377–394, 2000.
Torres, E. and Brottger, A.: Estudio del segundo aluvion del Artesoncocha. Ministerio di fomento, Comision de control lagunas Cordillera Blanca, Huaráz, Peru, 3 pp., 1951.
Vilímek, V., Zapata, M. L., Klimeš, J., Patzelt, Z., and Santillán, N.: Influence of glacial retreat on natural hazards of the Palcacocha Lake area, Peru, Landslides, 2, 107–115, https://doi.org/10.1007/s10346-005-0052-6, 2005.
Wang, W., Yao, T., Gao, Y., Yang, X., and Kattel, D. B.: A First-order Method to Identify Potentially Dangerous Glacial Lakes in a Region of the Southeastern Tibetan Plateau, Mountain Res. Develop., 31, 122–130, https://doi.org/10.1659/MRD-JOURNAL-D-10-00059.1, 2011.
Wang, X., Liu, S., Guo, W., and Xu, J.: Assessment and simulation of glacier lake outburst floods for Longbasaba and Pida lakes, China, Mountain Res. Develop., 28, 310–317, https://doi.org/10.1659/mrd.0894, 2008.
Wang, X., Liu, S., Ding, Y., Guo, W., Jiang, Z., Lin, J., and Han, Y.: An approach for estimating the breach probabilities of moraine-dammed lakes in the Chinese Himalayas using remote-sensing data, Nat. Hazards Earth Syst. Sci., 12, 3109–3122, https://doi.org/10.5194/nhess-12-3109-2012, 2012.
Westoby, M. J., Glasser, N. F., Brasington, J., Hambrey, M. J., Quincey, D. J., and Reynolds, J. M.: Modelling outburst floods from moraine-dammed glacial lakes, Earth-Sci. Rev., 134, 137–159, https://doi.org/10.1016/j.earscirev.2014.03.009, 2014.
Worni, R., Huggel, C., and Stoffel, M.: Glacial lakes in the Indian Himalayas – From an area-wide glacial lake inventory to on-site and modeling based risk assessment of critical glacial lakes, Sci. Total Environ., 468–469, S71–S84, https://doi.org/10.1016/j.scitotenv.2012.11.043, 2013.
Yamada, T.: Glacier lakes and their outburst floods in the Nepal, Himalaya. Water and energy comission secretariat, Kathmandu, 37 pp., 1993.
Zapata, M. L.: La dinamica glaciar en lagunas de la Cordillera Blanca, Acta Montana (ser. A Geodynamics), 19, 37–60, 2002.