Cavazos, T. and Hewitson, B. C.: Performance of NCEP-NCAR reanalysis variables in statistical downscaling of daily precipitation, Clim. Res., 28, 95–107, 2005.
Chen, D., Achberger, C., Räisänen, J., and Hellström, C.: Using statistical downscaling to quantify the GCM-re lated uncertainty in regional climate change scenarios: a case study of Swedish precipitation, Adv. Atmos. Sci., 23, 54–60, 2006.
Cressie, N.: Spatial prediction and ordinary kriging, Math. Geol., 20, 405–421, 1988.
Dell'Aquila, A., Calmanti, S., Ruti, P. M., Struglia, M. V., Pisacane, G., Carillo, A., and Sannino, G.: Impacts of seasonal cycle fluctuations in an A1B scenario over the Euro-Mediterranean, Clim. Res., 52, 135–157, https://doi.org/10.3354/cr01037, in press, 2012.
Déqué, M., Rowell, D. P., Lüthi, D., Giorgi, F., Christensen, J. H., Rockel, B., Jacob, D., Kjellström, E., de Castro, M., and van den Hurk, B.: An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections, Climatic Change, 81, 53–70, 2007.
Déqué, M.: Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values, Global Planet. Change, 57, 16-26, 2007.
Diaz-Nieto, J. and Wilby, R. L.: A comparison of statistical downscaling and climate change factor methods: Impacts on low flows in the River Thames, United Kingdom, Climatic Change, 69, 245–268, 2005.
Díez, E., Primo, C., García-Moya, J. A., Guttiérez, J. M., and Orfila, B.: Statistical and dynamical downscaling of precipitation over Spain from DEMETER seasonal forecasts, Tellus A, 57, 409–423, 2005.
Dibike, Y. B. and Coulibaly, P.: Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models, J. Hydrol., 307, 145–163, 2005.
Dubois, C., Somot, S., Calmanti, S., Carillo, A., Déqué, M., Dell'Aquilla, A., Elizalde, A., Gualdi, S., Jacob, D., and L'Hévéder, B.: Future projections of the surface heat and water budgets of the Mediterranean Sea in an ensemble of coupled atmosphere–ocean regional climate models, Clim. Dynam., 39, 1859–1884,https://doi.org/10.1007/s00382-011-1261-4, 2011.
Fan, L., Fu, C., and Chen, D.: An atmosphere-ocean regional climate model for the Mediterranean area: assessment of a present climate simulation, Acta. Meteorol. Sin., 25, 327–339, https://doi.org/10.1007/s13351-011-0308-0, 2011.
Frìas, M. D., Zorita, E., Fernàndez, J., and Rodrìguez-Puebla, C.: Testing statistical downscaling methods in simulated climates, Geophys. Res. Lett., 33, L19807, https://doi.org/10.1029/2006GL027453, 2006.
Gualdi, S., Somot, S., Li, L., Artale, V., Adani, M., Bellucci, A., Braun, A., Calmanti, S., Carillo, A., Dell'Aquila, A., Déqué, M., Dubois, C., Elizalde, A., Harzallah, A., Jacob, D., L'Hévéder, B., May, W., Oddo, P., Ruti, P., Sanna, A., Sannino, G., Scoccimarro, E., Sevault, F., and Navarra, A.: The CIRCE simulations: a new set of regional climate change projections performed with a realistic representation of the Mediterranean Sea, B. Am. Meteorol. Soc., 94, 65-81, https://doi.org/10.1175/BAMS-D-11-00136.1, 2012.
Hawkins, D. M., Basak, S. C., and Mills, D.: Assessing Model Fit by Cross-Validation, J. Chem. Inf. Comput. Sci., 43, 579–586, https://doi.org/10.1021/ci025626i, 2003.
Hayhoe, K. A.: A standardized framework for evaluating the skill of regional climate downscaling techniques, Thesis (Ph.D.), University of Illinois at Urbana-Champaign, Publication Number: AAT 3430975, Dissertation Abstracts International, Volume: 71-12, Sect. B, p. 158, 2010.
Haylock, M. R., Cawley, G. C., Harpham, C., Wilby, R. L., and Goodess, C. M.: Downscaling heavy precipitation over the United Kingdom: a comparison of dynamical and statistical methods and their future scenarios, Int. J. Climatol., 26, 1397–1415, 2006.
Hellström, C. and Chen, D.: Statistical downscaling based on dynamically downscaled predictors: application to monthly precipitation in Sweden, Adv. Atmos. Sci., 20, 951–958, 2003.
Hellström, C., Chen, D., Achberger, C., and Räisänen, J.: Comparison of climate change scenarios for Sweden based on statistical and dynamical downscaling of monthly precipitation, Clim. Res., 19, 45–55, 2001.
Hewitson, B. C. and Crane R. G.: Consensus between GCM climate change projections with empirical downscaling: precipitation downscaling over South Africa, Int. J. Climatol., 26, 1315–1337, 2006.
Kidson, J. W. and Thompson, C. S.: A comparison of statistical and model-based downscaling techniques for estimating local climate variations, J. Climate, 11, 735–753, https://doi.org/10.1175/1520-0442(1998)011<0735:ACOSAM>2.0.CO;2, 1998.
Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection, Proc. IJCAI-95, Montreal, Quebec, 1137–1143, 1995.
Makkonen, L.: Bringing Closure to the Plotting Position Controversy, Commun. Stat. Theor. Meth., 37, 460–467, https://doi.org/10.1080/03610920701653094, 2008.
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259, 1945.
Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Theme{ß}l, M., Venema, V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and Thiele-Eich, I.: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user, Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314, 2010.
Marsland, S. J., Haak, H., Jungclaus, J. H., Latif, M., and Röske, F.: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates, Ocean Model., 5, 91–127, https://doi.org/10.1016/S1463-5003(02)00015-X, 2002.
Mearns, L. O., Giorgi, F., Whetton, P. H., Pabon, D., Hulme, M., and Lai, M.: Guidelines for Use of Climate Scenarios Developed from Regional Climate Model Experiments, Data Distribution Center of the Intergovernmental Panel on Climate Change, http://www.ipcc-data.org/guidelines/dgm_no1_v1_10-2003.pdf (last access: February 2013), 2003.
Meehl, G. A., Stocker, T. F., Collins, W., Friedlingstein, P., Gaye, A., Gregory, J., Kitoh, A., Knutti, R., Murphy, J. M., and Noda, A.: Global climate projections, Climate Change 2007: The Physical Science Basis, in: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, 747–846, 2007.
Murphy, J.: An evaluation of statistical and dynamical downscaling techniques for downscaling local climate, J. Climate, 12, 2256–2284, 1999.
Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., and Hanson, C. E.: Climate Change 2007: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, 2007.
Portoghese, I., Bruno, E., Dumas, P., Guyennon, N., Hallegatte, S., Hourcade, J. H., Nassopoulos, H., Pisacane, G., Struglia, M. V., and Vurro, M.: Chapter 2.2 Impacts of climate change on fresh water bodies: quantitative aspects, in: RACCM, Regional Assessment on Climate Change in the Mediterranean, edited by: CIRCE Consortium, Springer, 2013.
Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., and Manzini, E.: The atmospheric general circulation model ECHAM 5, PART I: model description, MPI-Report 349, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 2003.
Schär, C., Lüthi, D., Beyerle, U., and Heise, E.: The Soil-Precipitation Feedback: A Process Study with a Regional Climate Model, J. Climate, 12, 722–741, 1999.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau, Am. Statist. Assoc. J., 63, 1379–1389, 1986.
Vrac, M., Drobinski, P., Merlo, A., Herrmann, M., Lavaysse, C., Li, L., and Somot, S.: Dynamical and statistical downscaling of the French Mediterranean climate: uncertainty assessment, Nat. Hazards Earth Syst. Sci., 12, 2769–2784, https://doi.org/10.5194/nhess-12-2769-2012, 2012.
Weibull, W.: The Statistical Theory of the Strength of Materials, IVA Handlingar, No. 151, Royal Swedish Academy of Engineering Sciences, Generalstabens litografiska anstalts förlag, 1939.
Wilby, R. L., Hay, L. E., Gutowski, W. J. J., Arritt, R. W., Takle, E. S., Pan, Z., Leavesley, G. H., and Clark, M. P.: Hydrological responses to dynamically and statistically downscaled climate model output, Geophys. Res. Lett., 27, 1199–1202, 2000.
Wilby, R. L., Charles, S. P., Zorita, E., Timbal, B., Whetton, P., and Mearns, L. O.: The guidelines for use of climate scenarios developed from statistical downscaling methods, Supporting material of the Intergovernmental Panel on Climate Change (IPCC), prepared on behalf of Task Group on Data and Scenario Support for Impacts and Climate Analysis (TGICA), http://www.ipcc-data.org/guidelines/dgm_no2_v1_09_2004.pdf (last access: February 2013), 2004.
Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P.: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs, Climatic Change, 62, 189–216, 2004.
Xu, C. Y.: From GCMs to river flow: a review of downscaling methods and hydrologic modelling approaches, Prog. Phys. Geogr., 23, 229–249, 1999.
Yoon, J. H., Ruby Leung, L., and Correia Jr., J.: Comparison of dynamically and statistically downscaled seasonal climate forecasts for the cold season over the United States, J. Geophys. Res., 117, D21109, https://doi.org/10.1029/2012JD017650, 2012.