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Abstract. Various downscaling techniques have been devel-
oped to bridge the scale gap between global climate models
(GCMs) and finer scales required to assess hydrological im-
pacts of climate change. Such techniques may be grouped
into two downscaling approaches: the deterministic dynam-
ical downscaling (DD) and the statistical downscaling (SD).
Although SD has been traditionally seen as an alternative to
DD, recent works on statistical downscaling have aimed to
combine the benefits of these two approaches. The overall
objective of this study is to assess whether a DD process-
ing performed before the SD permits to obtain more suit-
able climate scenarios for basin scale hydrological applica-
tions starting from GCM simulations. The case study pre-
sented here focuses on the Apulia region (South East of Italy,
surface area about 20 000 km2), characterised by a typical
Mediterranean climate; the monthly cumulated precipitation
and monthly mean of daily minimum and maximum tem-
perature distribution were examined for the period 1953–
2000. The fifth-generation ECHAM model from the Max-
Planck-Institute for Meteorology was adopted as GCM. The
DD was carried out with the Protheus system (ENEA), while
the SD was performed through a monthly quantile-quantile
correction. The SD resulted efficient in reducing the mean
bias in the spatial distribution at both annual and seasonal
scales, but it was not able to correct the miss-modelled non-
stationary components of the GCM dynamics. The DD pro-
vided a partial correction by enhancing the spatial hetero-
geneity of trends and the long-term time evolution predicted
by the GCM. The best results were obtained through the
combination of both DD and SD approaches.

1 Introduction

Global climate models (GCMs) are the primary tool for un-
derstanding how global climate may change in the future.
However, they currently do not provide reliable informa-
tion on scales below about 200 km (Meehl et al., 2007). Hy-
drological processes typically occur at finer scales (Parry et
al., 2007). Consequently, basin-scale assessments of climate
change impacts usually produce large biases in the simu-
lated hydrological processes whenever the raw output vari-
ables from a GCM are adopted (Mearns et al., 2003; Dibike
and Coulibaly, 2007). Hence, to reliably assess hydrological
impacts of climate change, higher resolution scenarios are
required.

Various downscaling techniques have been developed to
bridge this scale gap, and a number of papers have previ-
ously reviewed the downscaling concept (e.g., Hewitson and
Crane, 1996; Wilby and Wigley, 1997; Xu, 1999; Fowler et
al., 2007; Maraun et al., 2010). Two approaches to downscal-
ing exist. Dynamical Downscaling (DD) nests a regional cli-
mate model (RCM) into a GCM to represent the atmospheric
physics with a higher grid box resolution within a limited
area of interest. Statistical Downscaling (SD) establishes sta-
tistical links between larger and local observed scale weather
(Fr̀ıas et al., 2006). Traditionally, SD has been seen as an
alternative to DD. With the increasing reliability and avail-
ability of RCM scenarios, recent works on statistical down-
scaling have aimed to combine the benefits of these two ap-
proaches (e.g., Wilby et al., 2004; Yoon et al., 2012; Vrac et
al., 2012).
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Most of these studies have compared the performance of
the two downscaling methods, but the use of different spatial
domains, predictor variables and assessment criteria makes
direct comparison of the relative performance difficult to
achieve (Fowler et al., 2007). Moreover, studies that inves-
tigate more than one variable are rare (Dibike and Coulaby,
2005; Diaz-Nieto and Wilby, 2005; Khan et al., 2006) and
few studies compare relative performances of DD and SD
(Kidson and Thompson, 1998; Murphy, 1999; Hellström et
al., 2001; Wilby et al., 2000; Haylock et al., 2006) or the per-
formance of SD directly applied to GCM relative to the use of
an intermediate DD (Hellström and Chen, 2003; Wood et al.,
2004; D́ıez et al., 2005). According to these studies, the ad-
vantages of using a combined approach DD-SD are limited,
although Wood et al. (2004) stress that an SD is mandatory
in order to obtain downscaled scenarios useful for hydrologic
simulation. More recently Vrac et al. (2012) highlight that
each method brings independent benefits.

The main goal of the present study is to further investi-
gate the advantages and limitations of using a DD as a pre-
processing before SD to obtain monthly scenarios of tem-
perature and precipitation. The adopted case-study concerns
the Apulia region (SE of Italy) chosen for the availability of
well-distributed long-term (collected from the middle of the
past century) temperature and precipitation time series. The
fifth-generation ECHAM model (Roeckner et al., 2003) and
the Protheus system (Artale et al., 2010) have been selected
as a state of the art GCM and DD, respectively. The widely
used quantile mapping technique (Déqúe, 2007) has been ap-
plied as SD (Hayhoe, 2010).

The performances of the complete GCM-DD-SD pro-
cessing chain have been evaluated versus the performances
of GCM-DD and GCM-SD alone using mainly correlation
coefficients, distance measures such as root-mean-squared-
error (RMSE), or explained variance (Fowler et al., 2007),
although Busuioc et al. (2001) suggested that for climate
change applications the more suitable downscaling model
needs to be able to reproduce the low frequency variabil-
ity. In this respect, the degree of non-stationarity between
predictand and predictor has been considered by Hewitson
and Crane (2006), while Benestad et al. (2007) and Fan
et al. (2011) highlighted the difficulties in capturing long-
term trends through downscaling when the GCM fails in this
attempt.

In this context, we propose a methodology to evaluate the
relative performance of the selected GCM, DD, SD and their
combinations not only in terms of bias, but also in terms of
time-variability, considering both the trend analysis and the
non-stationarity.

Fig. 1. Methodological framework representing the adopted meth-
ods of data processing. The arrows indicate the data fluxes, while
models (GCM and relevant downscaling) and land observations
are shown with ellipses. The Statistical Interpolation (SI) is rep-
resented by a dashed rectangle. Data processing resulting from
the data flux are referred as: (1) GCM; (2) DD applied to GCM;
(3) SD applied directly to the GCM; (4) SD applied to the DD of
the GCM; (ref) land observations. The spatial scale associated with
each model is reported on the left.

2 Data and methods

2.1 Processing methods

In order to evaluate the relative performances of the DD and
SD downscaling methods, the following four methods of data
processing were compared with land observations: (1) direct
output from the GCM control scenario (GCM); (2) DD ap-
plied to the GCM scenario (GCM-DD); (3) SD applied di-
rectly to the GCM scenario (GCM-SD); (4) SD applied to
the DD of the GCM scenario (GCM-DD-SD). A spatial ho-
mogenisation through a Statistical Interpolation (SI) was per-
formed before each comparison, as described below. Thus,
data processing (1) to (4) refer to the SI performed on each
processing output. Analogously, (ref) refers to the SI per-
formed on the observations dataset. Data fluxes are schema-
tised in Fig. 1.

2.1.1 Global circulation model

The global model simulations considered for this study are
those produced by the ECHAM5/MPI-OM and included in
the CMIP3 database (Roeckner et al., 2003; Marsland et al.,
2002). In particular, the atmospheric component (ECHAM5)
is run at spectral resolution T63, corresponding to approxi-
mately 200 km at mid-latitudes with 32 vertical levels. Many
important topographic features are missing in the global
model. For example, Dell’Aquila et al. (2012) show that the
Mediterranean area land-sea mask is an extremely approx-
imated one and that the shape of the Italian peninsula can-
not be conveniently captured at the adopted resolution. For
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ECHAM5 the maximum elevation over the Alps is 890 m at
13.370◦ E, 47.560◦ N (Eastern Alps), the maximum elevation
over the Apennines is 155 m at 13.120◦ E, 40.100◦ N (Cen-
tral Italy).

From the global model, we considered daily time series
for rainfall, minimum and maximum temperature from the
control simulation for the period 1950–2000. The data were
then cumulated on a monthly basis for precipitation, whereas
daily minimum and maximum temperature were averaged
over the same time scale.

2.1.2 Dynamical downscaling

The dynamical downscaling was performed with the
PROTHEUS system, an atmosphere-ocean regional climate
model composed of the RegCM3 atmospheric regional
model and the MITgcm ocean model. A detailed description
of the coupled system is provided by Artale et al. (2010).
The relevant aspects for the present study are that the atmo-
spheric component RegCM3 is a 3-D,σ -coordinate, primi-
tive equation, hydrostatic model. The dynamical downscal-
ing was performed over an area ranging from 20◦ N to 60◦ N
over the entire Mediterranean basin and produced adopt-
ing a uniform horizontal grid of 30 km horizontal resolu-
tion and 18σ -levels. For PROTHEUS the maximum eleva-
tion over the Alps is 2107 m at 10.516◦ E, 46.773◦ N (Eastern
Alps), the maximum elevation over the Apennines is 930 m
at 13.495◦ E, 42.100◦ N (Central Italy).

The dynamical downscaling of the ECHAM5/MPI-OM
global scenarios considered in the present study was previ-
ously evaluated in Dell’Aquila et al. (2012), who emphasised
the ability of the model in simulating critical aspects of the
local climate. The fundamental improvements obtained with
this modelling strategy are a partial reduction of the sea sur-
face temperature bias produced in the driving global simula-
tion and a better representation of the corresponding patterns.
The dynamical downscaling tends to amplify the fluctuations
of the sea-surface temperature seasonal cycle already present
in the global driver, and to increase the frequency of large
temperature anomalies (both warm and cold events). In par-
ticular, a more accurate description of complex orography
surrounding the Mediterranean Sea, as well as of land surface
processes, produces more organised patterns in the tendency
of key impact indicators, such as the aridity index. Instead,
the global driver produces extremely noisy results, difficult
to interpret in the context of impact studies.

From the PROTHEUS simulations, we considered the cu-
mulated rainfall and instantaneous temperature every six
hours for the time period 1950–2000. The data were then cu-
mulated on a monthly basis for precipitation, whereas daily
minimum and maximum temperatures were averaged over
the same time scale.

2.1.3 Statistical downscaling

According to Fowler et al. (2007), despite the multiplica-
tion of more sophisticated SD methods (as weather typ-
ing schemes or weather generators), simple statistical down-
scaling methods (regression models) seem to show similar
performances in reproducing the mean climatological fea-
tures, when compared with the more complex ones. The SD
adopted in this study, is the quantile-quantile mapping cor-
rection technique method (Déqúe, 2007); it has been selected
as it is easy to implement, has a low computational cost and
is, therefore, widely used for impact studies independently
from the variables of interest. Over the monthly time series
the quantile-quantile mapping performed at each station re-
sults in a global transfer function able to introduce down-
scaled patterns at the density scale of the land control net-
work. Furthermore, the adopted SD by intrinsically assimi-
lating the observations is able to reproduce the climatology
with a small residual bias that can be interpreted as the in-
trinsic limit of the quantile mapping in projecting a modelled
variable onto the distribution of the reference dataset.

The monthly dataset derived from GCM simulations and
DD results were statistically downscaled versus the land sta-
tions. Each station was compared with the nearest model
node. Quantiles were computed both for observations (pre-
dictor) and associated simulations (predictand) using a com-
mon uniform plotting position (Weibull, 1939; Makkonen,
2008). All values ranging between predictand quantiles cor-
responding to the plotting positionp and p + 1 were then
replaced by the predictor quantiles atp + 1. Predictand val-
ues lower and higher than the minimum and maximum ob-
served quantiles were replaced by the minimum and maxi-
mum observed quantiles, respectively. In order to maximise
the data samples’ availability for the monthly quantile map-
ping, as well as the period of analysis, the same period was
used for calibration and validation. An Anova test performed
on the results from a 4-fold cross validation (Kohavi, 1995)
and from the full calibration period confirms the null hy-
pothesis that the quantile mapping performance is not sig-
nificantly affected by the overlapping of calibration and val-
idation periods.

2.1.4 Statistical interpolation

An ordinary kriging (Cressie, 1988), based on the covariance
of the land observation data, was applied as SI (10 km grid)
to the four data processing and to the land observations. The
use of SI was motivated by the need to compare datasets
having different spatial resolutions, including land observa-
tions. Monthly spatial covariances were estimated through
the experimental semi-variogram of each month of the year.
A cross-validation was performed through a leave-one-out
cross-validation (LOOCV) (Hawkins et al., 2003) over the
interpolated land observation data, in order to estimate the
uncertainty introduced by the SI. The LOOCV was carried
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out using a single observation from the original sample as
validation datum, and the remaining observations as training
data. This procedure was repeated for each observation point.
At each run, mean over time of the residues, defined as the
difference between the SI estimation and the removed valida-
tion data, were computed. The obtained spatial mean values
of the cross-validation residues were 0.187 mm, 0.019 and
0.023◦C for monthly precipitation, minimum and maximum
temperature, respectively.

2.2 Indicators of performance

The following indicators of performance were used to evalu-
ate the ability of each data processing in reproducing the land
observed temperature and precipitation patterns. Hydrolo-
gists generally need the simulated data maintain features of
the observed ones in terms of statistical moments. In view
of the evaluation of climate change impacts, we consider
importance key issues to evaluate the performances of the
applied downscaling techniques in relation to the following
objectives: (1) reducing the mean bias, (2) reproducing the
observed non-stationarity and (3) reproducing the observed
spatial heterogeneity of trends.

The measures adopted to evaluate the predictive per-
formance are reported in the following sub-sections from
Sects. 2.2.1 to 2.2.3. In these sections, the monthly time se-
ries resulting from the SI of each data processingp and the
land observation (ref), at each noden are referred to asSI

p
n

andSI ref
n , respectively.

2.2.1 Mean bias analysis

The mean bias is defined in each noden as:

M
p
n = SI

p
n − SI ref

n (1)

where the overbar stands for the mean over time, at a
monthly scale. The spatial variability of mean bias values
obtained from the four data processing methods was com-
pared through the 5th, 25th, 50th, 75th and 95th percentile of
the cumulative probability distribution over the 102 km2 grid
nodes resulting from the SI. The same elaboration was car-
ried out after splitting residues into four seasonal sub dataset:
winter (December, January, February), spring (March, April,
May), summer (June, July, August) and autumn (September,
October, November).

2.2.2 Non-stationarity analysis

The GCM adopted in this study cannot be considered a fore-
cast product because it is not initialised with the observed
state of the climate system at any given time. Therefore,
an investigation of the time correlation between the model
output and the observations reference is not viable. Instead,
we require that the selected data processing is able to pro-
vide a sufficient description of the statistics of local climate,

including the possible non-stationarity in the probability dis-
tribution of climate variables. We chose to analyse the non-
stationarity in the distribution of climate variables by consid-
ering the evolution of quantiles of the corresponding proba-
bility distribution. The use of quantiles avoids assumptions
on the shape of the probability distributions resulting from
each processing method, thereby providing a more accurate
detection of any possible change in the probability distribu-
tion of the variables of interest. Quantiles of each data pro-
cessing were computed adopting the uniform plotting po-
sition suggested by Weibull (1939), recently confirmed by
Makkonen (2008). The quantiles were computed for each
data processingp, seasons at each noden using a sliding
time window centred on the yeary and referred asQp

n,s,y .
The Q

p
n,s,y were then compared with quantiles of the same

node computed over the whole periodQ
p
n,s . TheQ

p
n,s were

computed using the same plotting position as for the as-
sociatedQp

n,s,y . The non-stationarity in the climate is then
revealed by the time variation of the residues between the
quantileQ

p
n,s,y and the quantileQp

n,s . Similarly we defined
the quantiles of the reference asQref

n,s,y andQref
n,s . The abil-

ity of each data processing to reproduce the observed non-
stationarity is revealed by the comparison with the analogue
time variation of the residues computed for the reference
datasetQref

n,s − Qref
n,s,y .

The overall variability in the quantiles residues can be ex-
pressed through the mean-squared-error (MSE) which is in-
tended here as a measure of the distribution variability for
moving time windows:

Qmsepn,s,y =
1

L

L∑
k=1

[
Q

p
n,s,y(k) − Q

p
n,s(k)

]2
(2)

whereL is the total number of plotting points.
The MSE can be disaggregated into the sum of the squared

mean bias and the variance:

Qmsepn,s,y =
[
Qmbp

n,s,y

]2
+ Qvarpn,s,y . (3)

The seasonal time variation of theMean of Quantileswas
then computed for a given moving window centred at timey

as:

Qmbp
n,s,y =

1

L

L∑
k=1

[
Q

p
n,s,y(k) − Q

p
n,s(k)

]
. (4)

Here, the mean is referred to as the average performed over
the L plotting points. The seasonal time variation of the
quantiles variance was then computed as:

Qvarpn,s,y =
1

L

L∑
k=1

[(
Q

p
n,s,y(k) − Q

p
n,s(k)

)
− Qmbp

n,s,y

]2
. (5)

The statistical meaning of the performance indicator defined
by Eq. (2) is illustrated by the scheme in Fig. 2, where two
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Fig. 2. Decomposition of non-stationarity in the quantile-quantile plots. Full black line indicates quantile-quantile plot. Dot black arrow
indicates associated mean bias and the grey full line the unbiased quantile-quantile plot. The remaining variance is indicated by the grey
surface.

quantile-quantile (q-q) plots betweenQp
n,s,y andQ

p
n,s at dif-

ferent timesy andy + 1 are reported (black full line). The
black dashed line in the q-q plot indicates the perfect station-
arity, when theQp

n,s,y andQ
p
n,s have the same distribution.

The mean bias in the quantile residues is indicated in Fig. 2
by a black dotted arrow. The grey full line schematises the
q-q plot after removing the mean bias. The remaining error,
expressed by the variance, is indicated on the plot by a grey-
shaded area. In the following, we will present the standard
deviation Qstdpn,s,y in spite of the variance as it can be more
intuitively expressed in the unit of the considered variable.

The seasonal time variation of the Standard Deviation of
Quantiles were then computed as:

Qstdpn,s,y =

√
Qvarpn,s,y . (6)

The mean of quantiles Qmbp
n,s,y and the standard devia-

tion of quantiles Qstdpn,s,y were further averaged over then
grid nodes of the SI and indicated as Qmbp

s,y and Qstdps,y ,
respectively.

Reporting the time variation of the quantiles mean and
the standard deviations enables us to separately quantify
the mean and the unbiased non-stationarity, i.e., the non-
stationarity in the frequency of the events.

2.2.3 Trend analysis

In the case of spatial heterogeneity in the observed trends, cli-
mate simulations either with or without downscaling should
be able to resolve such a spatial variation. In order to quan-
tify this ability, the annual Sen’s slope (Sen, 1986) and the
associated significance, through the Mann Kendall coeffi-
cients (Mann, 1945; Kendall, 1975) were computed over the
whole study period at each node of the SIp

n grid on the annual
variables and referred as SSp

n . The SSpn spatial distribution

variance of each data processing was computed as an indica-
tor of the spatial heterogeneity of the trend amplitude:

Varp =

∑
n

(SSp
n −

∑
n

SSp
n

)2
 . (7)

2.3 Case study

The proposed methodology was applied to a meaningful
case study located in Southern Italy, the Apulia Region, in
which the climate and landscape features, including the wa-
ter exploitation policy, represent a serious threat for water
resources availability in the near future. The regional terri-
tory, with a total extension of 19 500 km2, is, in fact, mainly
devoted to agriculture with more than 70 % of the total area
occupied by cropped land which brought to a fast growing
trend towards irrigation farming over the last four decades
with a massive exploitation of groundwater resources. On
the other hand, climate variables (rainfall in particular) ex-
hibit a marked inter-annual variability, which makes water
availability a worrying issue to the economic development
and ecosystem conservation of the region (Portoghese et al.,
2013).

Monthly observations from 77 temperature stations and
111 rainfall gauge stations covering the period 1950–2000
were used as land measurements. From the original dataset
provided by the Apulia Hydrographic Service, only stations
with less than 20 % of missing data were selected. Figure 3
shows the location of the temperature and precipitation sta-
tions, whose spatial density is about 1 per 2.76× 102 km2

and 1 per 1.91× 102 km2, respectively. In the following,
we will refer to the cumulated precipitation on a yearly
and monthly basis as annual and monthly precipitation, re-
spectively; the daily minimum temperature averaged over
one year (one month) will be referred as annual (monthly)

www.hydrol-earth-syst-sci.net/17/705/2013/ Hydrol. Earth Syst. Sci., 17, 705–720, 2013
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Fig. 3. Location of Apulia region. The hydrological domain area
is delimited by a grey full line. Locations of the temperature and
precipitation sampling stations are shown with grey and black full
circle, respectively. GCM nodes are shown with black stars and DD
nodes are shown with black crosses. The grid boxes associated with
GCM and DD nodes are delimited by black full line.

minimum temperature; similar definitions are adopted for an-
nual and monthly maximum temperature.

The case study is covered by 6 GCM nodes (Fig. 3)
extracted from the ECHAM5 model region (density:
3.27× 104 km−2), while the 41 DD nodes were drawn from
the Protheus system (density: 9.60× 10−2 km−2). The SI
was performed over a 10 km grid mesh (density: 10−2 km−2),
slightly higher than the land control density.

Figure 4 shows the spatial distribution over the case study
region through the associated spatial quantiles (5th, 25th,
50th, 75th and 95th quantiles) of the five time series resulting
from the four data processing methods and the land observa-
tion (ref), for annual precipitation, minimum and maximum
temperature. This gives an overview of the GCM mismatch
in space and time, and the impacts of subsequent downscal-
ing processes.

3 Results

In the next sections, the performances of the adopted down-
scaling methods and their combination are compared through
the indicators presented in Sect. 2.2.

3.1 Mean bias

The spatial variability of themean biasMp
n (Eq. 1) com-

puted between (ref) and each of the data processing results
is shown, in terms of percentiles (25th, 75th, 5th and 95th),
in Fig. 5, while the numerical results are reported in Ta-
ble 1. Figure 5 can be read as follows: the closer themean
bias to zero, the higher the ability of the data processing
to reproduce the spatial mean condition for each variable;
the narrower the distribution, the higher the ability of the
data processing to reproduce the spatial heterogeneity of each
variable.

The mean biasanalysis highlights the poor ability of the
adopted GCM to reproduce the spatial mean behaviour of
precipitation in relation to the different seasons: a large over-
estimation is evident during winter and a large underestima-
tion during summer (+15.4 and−20.5 mm, respectively) re-
sulting in the low mean bias at annual scale (−2.3 mm). Dur-
ing spring and autumn, the GCM shows intermediate perfor-
mances. Moreover the GCM’smean biasis associated with a
large spatial heterogeneity, except in spring and summer. The
application of the DD allows to reduce the mean bias in win-
ter (−0.1 mm) and summer (+7.5 mm), but its performance
degrades significantly in spring (+24.2 mm). The DD in gen-
eral slightly reduces the spatial heterogeneity, while the SD
is successful in reducing (by at least one order of magnitude)
themean biasand its variance, independently from the sea-
son. Finally, the combined DD-SD presents further improve-
ments in reducing themean biasand variance (0.14 mm). The
Anova test carried out on the mean bias resulting from the
data processing (3) and (4) confirms the significance of DD-
SD improvement versus the SD alone in the spring, autumn
and summer.

The GCM performance for minimum and maximum tem-
perature is similar to those reported for precipitation. An
overallmean biasis found for both variables (typically about
± 2◦C, respectively). The minimum temperature is system-
atically overestimated, while the maximum temperature is
underestimated. The DD significantly reduces themean bias
for both variables (∼ 1◦C), except for the winter maximum
temperature, but keeps almost unchanged the spatial hetero-
geneity. The SD reduces the annual and seasonalmean bias
and its spatial heterogeneity by at least one order of magni-
tude (∼ 0.1◦C). Finally, also for temperature the combined
DD-SD presents the best results (Table 1) with a further re-
duction in all the percentiles (0.07 and 0.08◦C for minimum
and maximum temperature, respectively). Also in this case,
the Anova test applied to themean biashighlights the signif-
icance of DD-SD improvement versus the single SD for the

Hydrol. Earth Syst. Sci., 17, 705–720, 2013 www.hydrol-earth-syst-sci.net/17/705/2013/
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Fig. 4. Spatial average of annual precipitation, minimum and maximum temperature (black line) and associated quantiles (25th and 75th,
5th and 95th plotted as dark and light grey areas, respectively) for land observations (ref), GCM (1), GCM-DD (2), GCM-SD (3) and
GCM-DD-SD (4) (see Fig. 2).

annual, spring and summer minimum temperature, and for
the annual and seasonal maxima.

3.2 Non-stationarity

3.2.1 Mean of quantiles

The analysis of the time evolution of quantiles provides clear
information about the non-stationarity of local climate. Fig-
ure 6 shows the time variation of themean of quantiles
Qmbp

s,y (Eq. 4). The absolute value of Qmbp
s,y indicates how

much the quantile of each year (considering a 21 yr window)
differs from the mean of quantiles computed over the whole
period. In general, a flat signal (centred on 0 by construction)

indicates that the considered variable is stationary along the
analysed period. On the contrary, the non-stationarity could
be detected by the presence of trends. The amplitude of the
trend is directly expressed by the amplitude of the Qmbp

s,y

variation in the unit of the considered variable. To support
these results, the p-value associated with a Mann Kendall test
is computed over the whole period for each data processing
method and for the (ref) dataset (Table 2).

The observed precipitation presents a negative trend in
winter and spring, while summer and autumn are charac-
terised by an initial increase in precipitation, followed by
a negative trend and by a stationary period. In the case of
model data, only in winter and at annual scale the negative
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Fig. 5.Annual and seasonalmean biasfor precipitation, minimum and maximum temperature computed for land observations (ref), GCM (1),
GCM-DD (2), GCM-SD (3), and GCM-DD-SD (4).

trend results significant over the whole period (Table 2). The
GCM correctly reproduces the annual behaviour, but under-
estimates the negative winter and spring trends, which result
not significant for the Mann Kendall test (Table 2). Further-
more, the model does not reproduce the stationarity in the
autumn observed during the 1990s. The SD has a negligi-
ble impact when combined with the climate model output. In
the case of DD the global driver is expected to play a lead-
ing role in determining long-term tendencies (Dequé et al.,
2007). However, the DD modulates the GCM output at the
local scale, leading to a better representation of the observa-
tions in most of the cases (annual, winter and spring).

The observed minimum temperature presents positive
trends in winter and spring, and a relative stationarity during

the first half of the considered period, followed by a positive
trend during the second half in summer and autumn. The ob-
served annual time series of the minimum temperature is sta-
tionary until late 1970s, followed by a positive trend. All the
observed trends, except in autumn, are significant over the
whole period (Table 2). The GCM underestimates the posi-
tive trend and the associated significance. Benefits from the
different downscaling methods are similar to those discussed
for precipitation.

The observed maximum temperature is stationary in win-
ter, whereas a negative trend is observed in spring, sum-
mer and autumn during the first half of the considered pe-
riod; the second half is characterised by a positive trend. The
GCM fails in reproducing both the annual and the seasonal
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Fig. 6. Annual and seasonalmean of quantilesvariation between the quantiles computed on a 21 yr window and on the whole period.
Precipitation, minimum and maximum temperature analysis for land observations (ref), GCM (1), GCM-DD (2), GCM-SD (3) and GCM-
DD-SD (4). Grey rectangles represent values computed with less than 21 yr.

non-stationarity, overestimating the positive trends and un-
derestimating the negative ones. As for precipitation and
minimum temperature, the DD properly modulates the GCM
outcome, mainly enhancing the positive trends when it is al-
ready present in the GCM, and generating positive trends
when the raw GCM output has stationary behaviour. Like-
wise, the SD has a negligible impact when combined with
the DD.

3.2.2 Standard deviation of quantiles

The analysis of the time evolution of the variance of quan-
tiles, hereinafter referred to asunbiased non-stationarity, de-
scribes the non-stationarity in the frequency of events of
given intensity. Figure 7 shows the unbiased non-stationarity
Qstdps,y (Eq. 6) used to describe the evolution of the standard
deviation between the quantiles computed on a moving 21 yr
window and those computed over the whole period. The ab-
solute value of Qstdps,y indicates how much the quantiles dis-
tribution of each 21-yr window differs from the full period,
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Fig. 7. Annual and seasonalstandard deviation of quantilesbetween the quantiles computed on a 21 yr window and on the whole period.
Precipitation, minimum and maximum temperature analysis for land observations (ref), GCM (1), GCM-DD (2), GCM-SD (3) and GCM-
DD-SD (4). Grey rectangles represent values computed with less than 21 yr.

once the mean bias is removed. A flat signal indicates that
the probability distribution of a variable is basically station-
ary throughout the analysed period and a different quantile
distribution during each of the 21-yr window is a side ef-
fect of the subsampling. For example, this is the case for the
GCM summer rainfall. The non-stationarity observed during
the 1950s and during the 1990s may be affected by the vari-
able size of the time windows shorter than 21 yr (grey rect-
angles), and will not be discussed.

The observed precipitation presents non-stationarity from
the half to the late 1980s in autumn and at the annual scale.

Instead, the GCM reproduces correctly the observed pattern
of theunbiased non-stationarityat the annual scale, in win-
ter and autumn, whereas it slightly underestimates the re-
sults in spring. The DD enhances the non-stationarity sim-
ulated by the GCM in spring and summer and slightly re-
duces it in winter and autumn. This results in a better rep-
resentation of the observed unbiased non-stationarity at an-
nual scale, in spring and autumn. In particular, the results
obtained for the summer unbiased non-stationarity suggest a
key role for local processes at a spatial scale which is not
well captured by the GCM. The SD has a low impact on
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Table 1.Annual and seasonal spatial distribution percentiles of the mean bias.

Cumulated precipitation Daily minimum temperature Daily maximum temperature

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

Annual

5th −16.04 −4.56 −0.70 −0.36 1.88 −1.27 −0.03 −0.06 −3.02 −1.70 0.05 −0.02
25th −8.18 1.51 −0.32 −0.02 2.14 −1.02 0.06 0.04 −2.73 −1.28 0.14 0.05
50th −2.26 6.47 −0.13 0.14 2.29 −0.86 0.10 0.07 −2.50 −0.93 0.18 0.08
75th 2.22 9.70 0.06 0.35 2.50 −0.56 0.13 0.10 −2.16 −0.63 0.21 0.11
95th 5.18 12.58 0.91 0.65 2.89 −0.13 0.20 0.16 −1.64 −0.31 0.26 0.16

Winter

5th −2.91 −15.56 −1.34 −0.35 2.45 −0.71 −0.06 −0.04 −0.98 −1.37 0.02 −0.01
25th 6.00 −7.67 −0.40 0.04 2.77 −0.39 0.03 0.04 −0.75 −1.20 0.06 0.04
50th 15.42 −0.96 0.49 0.49 2.94 −0.22 0.06 0.07 −0.58 −1.08 0.09 0.07
75th 24.41 3.66 1.47 0.88 3.11 0.10 0.10 0.11 −0.31 −0.93 0.13 0.11
95th 29.80 10.46 2.40 1.32 3.48 0.56 0.18 0.17 0.00 −0.58 0.17 0.15

Spring

5th −11.04 16.43 −1.44 −0.23 1.86 −0.91 0.00 −0.03 −3.68 −2.37 0.11 0.00
25th −7.57 21.17 −1.05 0.15 2.05 −0.68 0.08 0.05 −3.31 −1.86 0.17 0.07
50th −3.36 24.22 −0.85 0.39 2.17 −0.53 0.10 0.07 −3.02 −1.51 0.22 0.10
75th −1.21 28.17 −0.64 0.51 2.33 −0.31 0.13 0.10 −2.63 −1.15 0.27 0.12
95th 1.11 34.55 −0.41 0.96 2.67 0.00 0.21 0.15 −2.06 −0.68 0.33 0.17

Summer

5th −29.55 −1.49 −1.92 −0.95 0.75 −1.73 −0.03 −0.11 −5.99 −1.38 0.05 −0.10
25th −22.05 3.48 −1.42 −0.74 0.99 −1.50 0.11 0.02 −5.32 −0.30 0.20 0.04
50th −20.48 7.51 −1.08 −0.40 1.23 −1.25 0.15 0.05 −4.79 0.36 0.28 0.09
75th −19.49 9.26 −0.24 −0.07 1.41 −0.95 0.19 0.09 −4.18 0.98 0.33 0.13
95th −18.33 10.63 0.14 0.23 1.87 −0.52 0.26 0.19 −3.39 1.78 0.44 0.23

Autumn

5th −27.83 −27.45 −0.58 −0.99 2.35 −1.89 −0.07 −0.07 −2.04 −2.33 0.02 −0.02
25th −9.96 −11.97 0.37 −0.28 2.69 −1.61 0.03 0.04 −1.82 −1.86 0.09 0.04
50th 1.20 −5.10 0.77 0.19 2.87 −1.39 0.07 0.07 −1.57 −1.53 0.12 0.06
75th 6.47 −1.55 1.20 0.60 3.12 −0.99 0.12 0.11 −1.30 −1.30 0.15 0.09
95th 11.19 3.60 3.39 1.38 3.61 −0.45 0.19 0.19 −0.92 −1.07 0.21 0.16

The bold values indicate the minimum bias among data processing.

the unbiased non-stationaritywhen it is directly applied to
the GCM, except in summer when the non-stationarity is en-
hanced. Combined with the DD, the SD mostly reduces the
non-stationarity when overestimated (spring and summer)
and systematically lays between the underestimated GCM
and the overestimated DD non-stationarity. In term ofunbi-
ased non-stationarity, the combined DD-SD presents a high
covariance with the DD and a mean value similar to the SD
results when applied directly to the GCM.

In the case of minimum temperature, non-stationarity is
observed from the half of 1960s to the half 1970s in sum-
mer, and from mid 1970s to mid 1980s in winter. The GCM
reproduces correctly the observed pattern ofunbiased non-
stationarityat annual scale in winter and spring, but results

generally underestimated, except in autumn. In terms of rel-
ative impact of the downscaling, both the DD and the SD
modulate theunbiased non-stationarityof the GCM mostly
by increasing the standard deviation of quantiles. As for
precipitation, the combined DD-SD presents a high covari-
ance with the DD and an amplitude similar to the SD re-
sults when applied directly to the GCM. Compared to the
precipitation, minimum temperature presents relatively low
differences among data processing, except in spring after
the 1970s, where the combined DD-SD better represents the
reference.

For maximum temperature, non-stationarity is observed
from early 1970s to early 1980s in summer, and from
mid-1970s to mid-1980s in winter and spring. The GCM
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Table 2.Annual and seasonal Mann Kendall p-value over the period
1953–2000.

Annual Winter Spring Summer Autumn

Precipitation

(ref) 0.01 0.05 0.31 0.94 0.10
(1) 0.67 0.83 0.64 0.67 0.52
(2) 0.29 0.72 0.76 0.23 0.41
(3) 0.48 0.92 0.34 0.64 0.61
(4) 0.29 0.71 0.84 0.14 0.55

Minimum temperature

(ref) 0.00 0.05 0.02 0.00 0.06
(1) 0.02 0.34 0.05 0.05 0.20
(2) 0.00 0.41 0.04 0.03 0.06
(3) 0.01 0.29 0.07 0.07 0.17
(4) 0.00 0.46 0.03 0.03 0.03

Maximum temperature

(ref) 0.52 0.57 0.92 0.51 0.53
(1) 0.05 0.32 0.23 0.11 0.26
(2) 0.02 0.40 0.17 0.14 0.07
(3) 0.07 0.27 0.26 0.10 0.26
(4) 0.03 0.32 0.16 0.14 0.09

The bold values indicate p-value within the 95 % of confidence.

generally fails in reproducing the observed level ofunbi-
ased non-stationaritywhich results systematically underes-
timated. In terms of relative impact of the downscaling both
the DD and the SD strongly modulate the GCM by systemat-
ically increasing theunbiased non-stationarity.In particular
SD only and combined DD-SD lay always between the un-
derestimated GCM and the overestimated DD signals.

3.3 Trends analysis

The spatial distribution of the Sen’s slope SSp
n for the an-

nual precipitation, minimum and maximum temperature are
reported in Fig. 8. The variance of the spatial distribution of
the Sen’s slopes defined as Varp in Eq. (7) is reported in Ta-
ble 3 for each data processing and (ref).

The trend slope in the observed annual precipitation
presents a large spatial heterogeneity, with values ranging
from −1.4 mm yr−1 in the central areas of the case study to
−7.2 mm yr−1 in the North. Most of these trends are signif-
icant, except in the extreme South. Because of its low res-
olution, the GCM almost does not reveal any spatial hetero-
geneity (mean trend of−0.6 mm yr−1). In spite of a relatively
small spatial heterogeneity in temperature, the DD modu-
lates the GCM spatial rainfall trends, generating trends rang-
ing from−1.0 mm yr−1 in the North to−3.3 mm yr−1 in the
South. Thus, the DD is able to reproduce almost half of the
observed variance (0.34 and 0.74 (mm yr−1)2, respectively).
In general, the SD generates lower spatial variance than the

Fig. 8. Spatial distribution of Sen’s slopes resulting from each data
processing for annual cumulated precipitation, minimum tempera-
ture and maximum temperature. Grid boxes marked with stars are
those in which the estimated trend is statistically significant.

DD (0.11 (mm yr−1)2) as indicated by the trend slopes rang-
ing from−0.2 to−2.1 mm yr−1. The resulting covariance is
of the same order of magnitude as the DD (6.5 % of the ob-
served variance), but positive. Finally, the combination DD-
SD presents the highest spatial variance (0.40 (mm yr−1)2)
with trend slopes ranging from−0.3 to−3.5 mm yr−1. Nei-
ther the GCM nor further downscaling processes have shown
significant trends in the annual values.

The observed trend slopes in annual minimum tempera-
ture present a large spatial heterogeneity, with values ranging
from −0.024◦C yr−1 in the central areas of the case study
to +0.045◦C yr−1 in the extreme North and in the extreme
South. In general, significant positive trends are dominant in
most of the study region. On the contrary, the GCM does
not show any spatial heterogeneity, with a mean trend of
+0.010◦C yr−1. The DD does not modulate the spatial trends
of the GCM leading to a mean trend of +0.015◦C yr−1 with
almost no spatial variance (0.1 % of the observed variance),
leading to a negative covariance of−0.3 % of the observed
variance. The SD shows a spatial variance slightly higher
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Table 3.Variance of Annual Sen’s slope spatial distribution.

(ref) (1) (2) (3) (4)

Precipitation (mm yr−1)2 0.77 0.00 0.34 0.11 0.40
Minimum temperature (◦C yr−1)2 × 10−6 106.2 0.0 0.16 2.5 2.0
Maximum temperature (◦C yr−1)2 × 10−6 256.4 0.1 2.0 11.8 2.4

The bold values indicate the maximum variance among data processing.

than the DD (2.4 % of the observed variance) with trends
ranging from +0.012 to +0.024◦C yr−1, which are still far
from a correct representation of the observed spatial het-
erogeneity. Finally, the combination DD-SD presents trend
slopes slightly higher than the other downscaling (ranging
from +0.016 to +0.024◦C yr−1) and the best results in terms
of covariance with the reference (5 % of the observed vari-
ance), but still fails in representing correctly the (ref). In gen-
eral, all the trend slopes resulting from the GCM and further
downscaling are statistically significant.

The observed slope of annual maximum temperature
shows spatial heterogeneity larger than the annual minimum
temperature, with values ranging between−0.040◦C yr−1 in
the South and +0.034◦C yr−1 in the centre and the North-
West, both minimum (at South) and maximum (centre and
North-West) slopes resulting significant. The GCM presents
a mean trend of +0.012◦C yr−1, not significant in the north-
ern and central portions of the region. The DD slightly mod-
ulates the GCM spatial trends with slopes ranging from
+0.017 to +0.025◦C yr−1, though far from the spatial vari-
ance of the (ref) (0.8 % of the observed variance) and gen-
erating a positive spatial covariance of 1.1 % of the observed
variance. The DD also enhances the GCM slopes significance
in the entire region. The SD slightly increases the spatial
variance compared to the DD (4.8 % of the observed vari-
ance) with trends ranging from +0.014 to +0.030◦C yr−1,
though with lower covariance with the reference than the DD
(0.9 % of the observed variance). Finally, the combination
DD-SD shows similar results to the DD, with slopes rang-
ing from +0.016 to +0.025◦C yr−1 and significant in all grid
boxes, but a negative covariance with the reference (−2.9 %
of the observed variance) and, hence, a poor representation
of observations.

The different behaviour of the DD temperature and rain-
fall in terms of their spatial heterogeneity is linked to two
important aspects of the dynamical downscaling process.
First, in DD the local topography can generate rainfall pat-
terns even in the absence of significant temperature inho-
mogeneities at the surface. Second, local feedbacks affecting
rainfall patterns and involving convective instability depend
on soil moisture and, therefore, on the land use characteris-
tics and land-sea contrast which can amplify irregular rainfall
patterns even in the presence of weak temperature gradients
(Scḧar et al., 1999).

4 Discussion

Some considerations on the intrinsic limitations due to the
use of a single case study, a single GCM, a single DD and a
single SD method may help to better contextualise the results
obtained through the proposed indicators of performance.

The uncertainty introduced by the choice of the driving
GCM, as well of the dynamical and/or statistical downscal-
ing technique, was recently evaluated using ensemble run
(Chen et al., 2006; D́eqúe et al., 2007; Fowler et al., 2007).
It has been concluded that the choice of driving-GCM gen-
erally provides the largest source of uncertainty both for the
RCM (Déqúe et al., 2007) and the SD scenarios (Cavazos
and Hewiston, 2005; Wilby and Wigley, 1997; Fowler et al.,
2007).

Within this framework, the presented results are indica-
tive of the relative role of each downscaling processing rather
than of their absolute performances, which depends to a large
degree on the quality of the driving GCM. In the presence of
complex orography and land-sea contrast the DD approach
considered in this study produces physically coherent pat-
terns in the tendency of key impact indicators, which is a de-
sired characteristic for the generation of usable climate sce-
narios (Dell’Aquila et al., 2012). Therefore, although the DD
is certainly not sufficient for improving the quality of climate
scenarios (e.g., the regional climate model may have its own
deficiencies), it does appear to be a necessary pre-condition
for the generation of climate scenarios that are usable for
impact modelling in those cases when local dynamics (e.g.,
the mesoscale, between 100 and 1000 km) and feedbacks
(e.g., interactions in the soil-vegetation-atmosphere system)
are poorly represented in a GCM. This aspect is of particular
relevance for the Mediterranean area, where recent studies
suggest that the DD of global simulations does improve spe-
cific aspects of the modelling of regional climate (Dubois et
al., 2011; Dell’Aquila et al., 2012; Gualdi et al., 2012).

The presented results reveal that by improving aspects of
the local dynamics, the DD modulates the quantile distri-
butions produced by the GCM, thus, improving the GCM
predictive performance (Fig. 6). Although the GCM obvi-
ously plays a major role in reproducing long-term climate
scenarios, the DD, when properly tuned to represent the lo-
cal environmental conditions, is able to deviate significantly
from the GCM behaviour at the interannual scale (Fig. 7).
For example, simplified conceptual models demonstrate that
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the feedbacks between surface hydrology and the local en-
ergy budget support a large variability of the soil-vegetation-
atmosphere system, especially in water-limited areas where
transitions between wet/cool and dry/hot conditions are pos-
sible (Baudena et al., 2008). In particular, past studies per-
formed with the same atmospheric model adopted here
shown that the variability of maximum surface temperature
is sensitive to changes in the land-cover characteristics (e.g.,
Anav et al., 2010). Therefore, a more accurate representation
of land-sea contrast and land cover characteristics adopted
for the DD is expected to produce significant deviations
from the GCM and the amplification of its unbiased non-
stationarity shown in Fig. 7. Downstream SD may then be
employed as a further correction of residual bias: although
the quantile distribution of the SD follows essentially the
background variability of the large-scale driving climate, re-
gardless of its provenance from the GCM or from the RCM
output, SD can be considered as a practical tool for removing
the model’s systematic bias.

The need of using the whole chain processing is confirmed
by the fact that in this study GCM-DD-SD shows always the
lowest mean bias compared to the reference observation net-
work. A direct consequence of the combined benefits of a
DD-SD processing of the GCM scenarios is that spatial het-
erogeneities in long-term climate fluctuations are captured
only when both DD and SD are included in the processing
chain. It is worthy to note that, as the driving control cli-
mate is not initialised with observations, the patterns shown
in Fig. 8 is not expected to closely follow the observed ones.
Nevertheless, especially for the case of temperature, none of
the standalone approaches, either DD or SD, produce signif-
icant spatial heterogeneity, which starts to be detectable only
in the case of the combined processing (corresponding to
about 50 % of the observed heterogeneity for precipitation).

5 Conclusions

The present study aimed to further investigate the advantages
and limitations of using a DD as a pre-processing before SD
to obtain monthly scenarios of temperature and precipitation,
to be used for hydrological simulation at local and/or basin
scale.

Even if the study is limited by the singularity of the case
study and the adopted models (GCM, DD and SD), the re-
sults are of general usefulness for climate impact modelling
at the local and basin scale.

The sizeable effect of the DD on the description of non-
stationarity of local climate, especially in the case of rainfall
and of maximum temperature, highlights the key role of local
processes (including the triggering of convection and the sur-
face energy balance) in characterising the local climate. Our
analysis suggests that SD is a necessary step in the process-
ing of climate simulation for obtaining reliable statistics at
the local scale. For example, the quantile-quantile transform

is confirmed as one of the best SD tools for the removal
model bias from meteorological variables. However, an ex-
plicit modelling of the physical system at a sufficiently high
resolution (hence, the DD) appears a necessary pre-condition
to a skillful SD, especially during the seasons in which lo-
cal processes have a larger control on local fluctuations of
climate. In particular, DD plays a key role in characterising
the spatial distribution of trends. Moreover, only the DD is
able to modulate the inter-annual variability simulated by the
GCM by enhancing the role of local feedbacks, for exam-
ple in the soil-vegetation-atmosphere system. However, it is
worthy to note that for the GCM scenarios considered in this
study, the correction introduced by the DD is not sufficient to
reproduce the observed trends.

The resulting complementarity of the two downscaling
techniques suggests that the combined DD-SD is a suitable
choice for the generation of weather scenarios for impact
modelling. In fact, the combined DD-SD presents the best
results, both in terms of mean bias and spatial distribution
of trends by retaining the improvements obtained by the DD
in terms of climate non-stationarity as well as the intrinsic
assimilation of observation datasets.
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B.: Statistical and dynamical downscaling of precipitation over
Spain from DEMETER seasonal forecasts, Tellus A, 57, 409–
423, 2005.

Dibike, Y. B. and Coulibaly, P.: Hydrologic impact of climate
change in the Saguenay watershed: comparison of downscaling
methods and hydrologic models, J. Hydrol., 307, 145–163, 2005.

Dubois, C., Somot, S., Calmanti, S., Carillo, A., Déqúe, M.,
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Dubois, C., Elizalde, A., Harzallah, A., Jacob, D., L’Hévéder, B.,
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