Articles | Volume 17, issue 8
https://doi.org/10.5194/hess-17-3339-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-17-3339-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment
Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Spain
Invited contribution by G. Bussi, recipient of the EGU Young Scientists Outstanding Poster Paper Award 2012.
X. Rodríguez-Lloveras
Geology Department, National Museum of Natural Sciences – CSIC, Madrid, Spain
F. Francés
Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Spain
G. Benito
Geology Department, National Museum of Natural Sciences – CSIC, Madrid, Spain
Y. Sánchez-Moya
Geoscience Institute, CSIC, UCM, Madrid, Spain
A. Sopeña
Geoscience Institute, CSIC, UCM, Madrid, Spain
Related authors
Benoit P. Guillod, Richard G. Jones, Simon J. Dadson, Gemma Coxon, Gianbattista Bussi, James Freer, Alison L. Kay, Neil R. Massey, Sarah N. Sparrow, David C. H. Wallom, Myles R. Allen, and Jim W. Hall
Hydrol. Earth Syst. Sci., 22, 611–634, https://doi.org/10.5194/hess-22-611-2018, https://doi.org/10.5194/hess-22-611-2018, 2018
Short summary
Short summary
Assessing the potential impacts of extreme events such as drought and flood requires large datasets of such events, especially when looking at the most severe and rare events. Using a state-of-the-art climate modelling infrastructure that is simulating large numbers of weather time series on volunteers' computers, we generate such a large dataset for the United Kingdom. The dataset covers the recent past (1900–2006) as well as two future time periods (2030s and 2080s).
Tamir Grodek and Gerardo Benito
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-171, https://doi.org/10.5194/nhess-2024-171, 2024
Preprint under review for NHESS
Short summary
Short summary
Check dams, terraces, and trees on steep basins serve to retain sediments, thereby protecting urbanized alluvial fan canals and levees from flooding. However, their effectiveness gradually decreases over time due to sedimentation and aging, which may lead to catastrophic breaching floods. To enhance urban resilience, we propose preserving natural mountain basins and allocating 20–30 % of the alluvial fan for channel migration and sediment deposition corridors.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Gerardo Benito, Olegario Castillo, Juan A. Ballesteros-Cánovas, Maria Machado, and Mariano Barriendos
Hydrol. Earth Syst. Sci., 25, 6107–6132, https://doi.org/10.5194/hess-25-6107-2021, https://doi.org/10.5194/hess-25-6107-2021, 2021
Short summary
Short summary
Climate change is expected to increase the intensity of floods, but changes are difficult to project. We compiled historical and modern flood data of the Rio Duero (Spain) to evaluate flood hazards beyond decadal climate cycles. Historical floods were obtained from documentary sources, identifying 69 floods over 1250–1871 CE. Discharges were calculated from reported flood heights. Flood frequency using historical datasets showed the most robust results, guiding climate change adaptation.
Eliisa S. Lotsari, Mikel Calle, Gerardo Benito, Antero Kukko, Harri Kaartinen, Juha Hyyppä, Hannu Hyyppä, and Petteri Alho
Earth Surf. Dynam., 6, 163–185, https://doi.org/10.5194/esurf-6-163-2018, https://doi.org/10.5194/esurf-6-163-2018, 2018
Short summary
Short summary
This paper analyses the timing of topographical changes of a gravel bed ephemeral river channel during consecutive and moderate- and low-magnitude floods by applying a morphodynamic model calibrated with pre- and post-event surveys using RTK-GPS and mobile laser scanning. The channel acted as a braided river during lower flows but as a meandering river during higher flows. The channel changes can be greater during the long-lasting receding phase than during the rising phase of the floods.
Benoit P. Guillod, Richard G. Jones, Simon J. Dadson, Gemma Coxon, Gianbattista Bussi, James Freer, Alison L. Kay, Neil R. Massey, Sarah N. Sparrow, David C. H. Wallom, Myles R. Allen, and Jim W. Hall
Hydrol. Earth Syst. Sci., 22, 611–634, https://doi.org/10.5194/hess-22-611-2018, https://doi.org/10.5194/hess-22-611-2018, 2018
Short summary
Short summary
Assessing the potential impacts of extreme events such as drought and flood requires large datasets of such events, especially when looking at the most severe and rare events. Using a state-of-the-art climate modelling infrastructure that is simulating large numbers of weather time series on volunteers' computers, we generate such a large dataset for the United Kingdom. The dataset covers the recent past (1900–2006) as well as two future time periods (2030s and 2080s).
Guiomar Ruiz-Pérez, Julian Koch, Salvatore Manfreda, Kelly Caylor, and Félix Francés
Hydrol. Earth Syst. Sci., 21, 6235–6251, https://doi.org/10.5194/hess-21-6235-2017, https://doi.org/10.5194/hess-21-6235-2017, 2017
Short summary
Short summary
Plants are shaping the landscape and controlling the hydrological cycle, particularly in arid and semi-arid ecosystems. Remote sensing data appears as an appealing source of information for vegetation monitoring, in particular in areas with a limited amount of available field data. Here, we present an example of how remote sensing data can be exploited in a data-scarce basin. We propose a mathematical methodology that can be used as a springboard for future applications.
Mario R. Hernández-López and Félix Francés
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-9, https://doi.org/10.5194/hess-2017-9, 2017
Manuscript not accepted for further review
Short summary
Short summary
The main idea which supports this research is considering that a joint parameter inference with an appropriate error model is necessary in hydrological modeling. In this framework, the main finding of this paper is that a joint inference, to be statistically correct, must take into account the joint probability distribution of the state variable to be predicted and its deviation from the observations. This is a necessary condition which can be taken into account by the Total Laws.
G. Benito, R. Brázdil, J. Herget, and M. J. Machado
Hydrol. Earth Syst. Sci., 19, 3517–3539, https://doi.org/10.5194/hess-19-3517-2015, https://doi.org/10.5194/hess-19-3517-2015, 2015
Short summary
Short summary
Historical hydrology combines documentary data with hydrological methods to lengthen flow records to the past centuries. We describe the methodological evolution of historical hydrology under the influence of developments in hydraulics and statistics. Analysis of 45 case studies in Europe show that present flood magnitudes are not unusual in the context of the past, whereas flood frequency has decreased, although some rivers show a reactivation of rare floods over the last two decades.
M. J. Machado, B. A. Botero, J. López, F. Francés, A. Díez-Herrero, and G. Benito
Hydrol. Earth Syst. Sci., 19, 2561–2576, https://doi.org/10.5194/hess-19-2561-2015, https://doi.org/10.5194/hess-19-2561-2015, 2015
Short summary
Short summary
A flood frequency analysis using a 400-year historical flood record was carried out using a stationary model (based on maximum likelihood estimators) and a non-stationary model that incorporates external covariates (climatic and environmental). The stationary model was successful in providing an average discharge around which value flood quantiles estimated by non-stationary models fluctuate through time.
J. López and F. Francés
Hydrol. Earth Syst. Sci., 17, 3189–3203, https://doi.org/10.5194/hess-17-3189-2013, https://doi.org/10.5194/hess-17-3189-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Simulation-based inference for parameter estimation of complex watershed simulators
Multi-scale soil moisture data and process-based modeling reveal the importance of lateral groundwater flow in a subarctic catchment
Catchment response to climatic variability: implications for root zone storage and streamflow predictions
Hybrid hydrological modeling for large alpine basins: a semi-distributed approach
Karst aquifer discharge response to rainfall interpreted as anomalous transport
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Large-sample hydrology – a few camels or a whole caravan?
Comment on “Are soils overrated in hydrology?” by Gao et al. (2023)
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Projected future changes in the cryosphere and hydrology of a mountainous catchment in the upper Heihe River, China
On the importance of plant phenology in the evaporative process of a semi-arid woodland: could it be why satellite-based evaporation estimates in the miombo differ?
Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil
Evolution of river regimes in the Mekong River basin over 8 decades and the role of dams in recent hydrological extremes
Skill of seasonal flow forecasts at catchment scale: an assessment across South Korea
To what extent do flood-inducing storm events change future flood hazards?
When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling
Assessing the impact of climate change on high return levels of peak flows in Bavaria applying the CRCM5 large ensemble
Impacts of climate and land surface change on catchment evapotranspiration and runoff from 1951 to 2020 in Saxony, Germany
Quantifying and reducing flood forecast uncertainty by the CHUP-BMA method
Developing a tile drainage module for the Cold Regions Hydrological Model: lessons from a farm in southern Ontario, Canada
To bucket or not to bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization
Widespread flooding dynamics under climate change: characterising floods using grid-based hydrological modelling and regional climate projections
HESS Opinions: The sword of Damocles of the impossible flood
Metamorphic testing of machine learning and conceptual hydrologic models
The influence of human activities on streamflow reductions during the megadrought in central Chile
Elevational control of isotopic composition and application in understanding hydrologic processes in the mid Merced River catchment, Sierra Nevada, California, USA
Lack of robustness of hydrological models: A large-sample diagnosis and an attempt to identify the hydrological and climatic drivers
The Significance of the Leaf-Area-Index on the Evapotranspiration Estimation in SWAT-T for Characteristic Land Cover Types of Western Africa
Enhancing long short-term memory (LSTM)-based streamflow prediction with a spatially distributed approach
Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain
Impacts of spatiotemporal resolutions of precipitation on flood event simulation based on multimodel structures – a case study over the Xiang River basin in China
A network approach for multiscale catchment classification using traits
Multi-model approach in a variable spatial framework for streamflow simulation
Advancing understanding of lake–watershed hydrology: a fully coupled numerical model illustrated by Qinghai Lake
Technical note: Testing the connection between hillslope-scale runoff fluctuations and streamflow hydrographs at the outlet of large river basins
Empirical stream thermal sensitivity cluster on the landscape according to geology and climate
Deep learning for monthly rainfall–runoff modelling: a large-sample comparison with conceptual models across Australia
A large-sample modelling approach towards integrating streamflow and evaporation data for the Spanish catchments
On optimization of calibrations of a distributed hydrological model with spatially distributed information on snow
Toward interpretable LSTM-based modeling of hydrological systems
Flow intermittence prediction using a hybrid hydrological modelling approach: influence of observed intermittence data on the training of a random forest model
What controls the tail behaviour of flood series: rainfall or runoff generation?
Learning Landscape Features from Streamflow with Autoencoders
Seasonal prediction of end-of-dry-season watershed behavior in a highly interconnected alluvial watershed in northern California
Glaciers determine the sensitivity of hydrological processes to perturbed climate in a large mountainous basin on the Tibetan Plateau
Leveraging gauge networks and strategic discharge measurements to aid the development of continuous streamflow records
On the need for physical constraints in deep learning rainfall–runoff projections under climate change: a sensitivity analysis to warming and shifts in potential evapotranspiration
Evaluation of hydrological models on small mountainous catchments: impact of the meteorological forcings
Projecting sediment export from two highly glacierized alpine catchments under climate change: exploring non-parametric regression as an analysis tool
Spatio-temporal patterns and trends of streamflow in water-scarce Mediterranean basins
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024, https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Short summary
Large-scale hydrologic simulators are a needed tool to explore complex watershed processes and how they may evolve with a changing climate. However, calibrating them can be difficult because they are costly to run and have many unknown parameters. We implement a state-of-the-art approach to model calibration using neural networks with a set of experiments based on streamflow in the upper Colorado River basin.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024, https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary
Short summary
This study explores the impact of climatic variability on root zone water storage capacities and, thus, on hydrological predictions. Analysing data from 286 areas in Europe and the US, we found that, despite some variations in root zone storage capacity due to changing climatic conditions over multiple decades, these changes are generally minor and have a limited effect on water storage and river flow predictions.
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024, https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
Short summary
This paper developed hybrid semi-distributed hydrological models by employing a process-based model as the backbone and utilizing deep learning to parameterize and replace internal modules. The main contribution is to provide a high-performance tool enriched with explicit hydrological knowledge for hydrological prediction and to improve understanding about the hydrological sensitivities to climate change in large alpine basins.
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024, https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
Short summary
A continuous time random walk framework was developed to allow modeling of a karst aquifer discharge response to measured rainfall. The application of the numerical model yielded robust fits between modeled and measured discharge values, especially for the distinctive long tails found during recession times. The findings shed light on the interplay of slow and fast flow in the karst system and establish the application of the model for simulating flow and transport in such systems.
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary
Short summary
Recently, a special type of neural-network architecture became increasingly popular in hydrology literature. However, in most applications, this model was applied as a one-to-one replacement for hydrology models without adapting or rethinking the experimental setup. In this opinion paper, we show how this is almost always a bad decision and how using these kinds of models requires the use of large-sample hydrology data sets.
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024, https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Short summary
We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data.
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024, https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Short summary
Gao et al. (2023) question the importance of soil in hydrology, sparking debate. We acknowledge some valid points but critique their broad, unsubstantiated views on soil's role. Our response highlights three key areas: (1) the false divide between ecosystem-centric and soil-centric approaches, (2) the vital yet varied impact of soil properties, and (3) the call for a scale-aware framework. We aim to unify these perspectives, enhancing hydrology's comprehensive understanding.
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024, https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Short summary
Root zone storage capacity (Sumax) changes significantly over multiple decades, reflecting vegetation adaptation to climatic variability. However, this temporal evolution of Sumax cannot explain long-term fluctuations in the partitioning of water fluxes as expressed by deviations ΔIE from the parametric Budyko curve over time with different climatic conditions, and it does not have any significant effects on shorter-term hydrological response characteristics of the upper Neckar catchment.
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emílio Graciliano Ferreira Mercuri, and Steffen Manfred Noe
Hydrol. Earth Syst. Sci., 28, 3367–3390, https://doi.org/10.5194/hess-28-3367-2024, https://doi.org/10.5194/hess-28-3367-2024, 2024
Short summary
Short summary
The authors compared regionalization methods for river flow prediction in 126 catchments from the south of Brazil, a region with humid subtropical and hot temperate climate. The regionalization method based on physiographic–climatic similarity had the best performance for predicting daily and Q95 reference flow. We showed that basins without flow monitoring can have a good approximation of streamflow using machine learning and physiographic–climatic information as inputs.
Huy Dang and Yadu Pokhrel
Hydrol. Earth Syst. Sci., 28, 3347–3365, https://doi.org/10.5194/hess-28-3347-2024, https://doi.org/10.5194/hess-28-3347-2024, 2024
Short summary
Short summary
By examining basin-wide simulations of a river regime over 83 years with and without dams, we present evidence that climate variation was a key driver of hydrologic variabilities in the Mekong River basin (MRB) over the long term; however, dams have largely altered the seasonality of the Mekong’s flow regime and annual flooding patterns in major downstream areas in recent years. These findings could help us rethink the planning of future dams and water resource management in the MRB.
Yongshin Lee, Francesca Pianosi, Andres Peñuela, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 28, 3261–3279, https://doi.org/10.5194/hess-28-3261-2024, https://doi.org/10.5194/hess-28-3261-2024, 2024
Short summary
Short summary
Following recent advancements in weather prediction technology, we explored how seasonal weather forecasts (1 or more months ahead) could benefit practical water management in South Korea. Our findings highlight that using seasonal weather forecasts for predicting flow patterns 1 to 3 months ahead is effective, especially during dry years. This suggest that seasonal weather forecasts can be helpful in improving the management of water resources.
Mariam Khanam, Giulia Sofia, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 28, 3161–3190, https://doi.org/10.5194/hess-28-3161-2024, https://doi.org/10.5194/hess-28-3161-2024, 2024
Short summary
Short summary
Flooding worsens due to climate change, with river dynamics being a key in local flood control. Predicting post-storm geomorphic changes is challenging. Using self-organizing maps and machine learning, this study forecasts post-storm alterations in stage–discharge relationships across 3101 US stream gages. The provided framework can aid in updating hazard assessments by identifying rivers prone to change, integrating channel adjustments into flood hazard assessment.
Yalan Song, Wouter J. M. Knoben, Martyn P. Clark, Dapeng Feng, Kathryn Lawson, Kamlesh Sawadekar, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 3051–3077, https://doi.org/10.5194/hess-28-3051-2024, https://doi.org/10.5194/hess-28-3051-2024, 2024
Short summary
Short summary
Differentiable models (DMs) integrate neural networks and physical equations for accuracy, interpretability, and knowledge discovery. We developed an adjoint-based DM for ordinary differential equations (ODEs) for hydrological modeling, reducing distorted fluxes and physical parameters from errors in models that use explicit and operation-splitting schemes. With a better numerical scheme and improved structure, the adjoint-based DM matches or surpasses long short-term memory (LSTM) performance.
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024, https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary
Short summary
Severe flood events pose a threat to riverine areas, yet robust estimates of the dynamics of these events in the future due to climate change are rarely available. Hence, this study uses data from a regional climate model, SMILE, to drive a high-resolution hydrological model for 98 catchments of hydrological Bavaria and exploits the large database to derive robust values for the 100-year flood events. Results indicate an increase in frequency and intensity for most catchments in the future.
Maik Renner and Corina Hauffe
Hydrol. Earth Syst. Sci., 28, 2849–2869, https://doi.org/10.5194/hess-28-2849-2024, https://doi.org/10.5194/hess-28-2849-2024, 2024
Short summary
Short summary
Climate and land surface changes influence the partitioning of water balance components decisively. Their impact is quantified for 71 catchments in Saxony. Germany. Distinct signatures in the joint water and energy budgets are found: (i) past forest dieback caused a decrease in and subsequent recovery of evapotranspiration in the affected regions, and (ii) the recent shift towards higher aridity imposed a large decline in runoff that has not been seen in the observation records before.
Zhen Cui, Shenglian Guo, Hua Chen, Dedi Liu, Yanlai Zhou, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 28, 2809–2829, https://doi.org/10.5194/hess-28-2809-2024, https://doi.org/10.5194/hess-28-2809-2024, 2024
Short summary
Short summary
Ensemble forecasting facilitates reliable flood forecasting and warning. This study couples the copula-based hydrologic uncertainty processor (CHUP) with Bayesian model averaging (BMA) and proposes the novel CHUP-BMA method of reducing inflow forecasting uncertainty of the Three Gorges Reservoir. The CHUP-BMA avoids the normal distribution assumption in the HUP-BMA and considers the constraint of initial conditions, which can improve the deterministic and probabilistic forecast performance.
Mazda Kompanizare, Diogo Costa, Merrin L. Macrae, John W. Pomeroy, and Richard M. Petrone
Hydrol. Earth Syst. Sci., 28, 2785–2807, https://doi.org/10.5194/hess-28-2785-2024, https://doi.org/10.5194/hess-28-2785-2024, 2024
Short summary
Short summary
A new agricultural tile drainage module was developed in the Cold Region Hydrological Model platform. Tile flow and water levels are simulated by considering the effect of capillary fringe thickness, drainable water and seasonal regional groundwater dynamics. The model was applied to a small well-instrumented farm in southern Ontario, Canada, where there are concerns about the impacts of agricultural drainage into Lake Erie.
Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
Hydrol. Earth Syst. Sci., 28, 2705–2719, https://doi.org/10.5194/hess-28-2705-2024, https://doi.org/10.5194/hess-28-2705-2024, 2024
Short summary
Short summary
Hydrological hybrid models promise to merge the performance of deep learning methods with the interpretability of process-based models. One hybrid approach is the dynamic parameterization of conceptual models using long short-term memory (LSTM) networks. We explored this method to evaluate the effect of the flexibility given by LSTMs on the process-based part.
Adam Griffin, Alison L. Kay, Paul Sayers, Victoria Bell, Elizabeth Stewart, and Sam Carr
Hydrol. Earth Syst. Sci., 28, 2635–2650, https://doi.org/10.5194/hess-28-2635-2024, https://doi.org/10.5194/hess-28-2635-2024, 2024
Short summary
Short summary
Widespread flooding is a major problem in the UK and is greatly affected by climate change and land-use change. To look at how widespread flooding changes in the future, climate model data (UKCP18) were used with a hydrological model (Grid-to-Grid) across the UK, and 14 400 events were identified between two time slices: 1980–2010 and 2050–2080. There was a strong increase in the number of winter events in the future time slice and in the peak return periods.
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024, https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Short summary
Floods often take communities by surprise, as they are often considered virtually
impossibleyet are an ever-present threat similar to the sword suspended over the head of Damocles in the classical Greek anecdote. We discuss four reasons why extremely large floods carry a risk that is often larger than expected. We provide suggestions for managing the risk of megafloods by calling for a creative exploration of hazard scenarios and communicating the unknown corners of the reality of floods.
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024, https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary
Short summary
We compared the predicted change in catchment outlet discharge to precipitation and temperature change for conceptual and machine learning hydrological models. We found that machine learning models, despite providing excellent fit and prediction capabilities, can be unreliable regarding the prediction of the effect of temperature change for low-elevation catchments. This indicates the need for caution when applying them for the prediction of the effect of climate change.
Nicolás Álamos, Camila Alvarez-Garreton, Ariel Muñoz, and Álvaro González-Reyes
Hydrol. Earth Syst. Sci., 28, 2483–2503, https://doi.org/10.5194/hess-28-2483-2024, https://doi.org/10.5194/hess-28-2483-2024, 2024
Short summary
Short summary
In this study, we assess the effects of climate and water use on streamflow reductions and drought intensification during the last 3 decades in central Chile. We address this by contrasting streamflow observations with near-natural streamflow simulations. We conclude that while the lack of precipitation dominates streamflow reductions in the megadrought, water uses have not diminished during this time, causing a worsening of the hydrological drought conditions and maladaptation conditions.
Fengjing Liu, Martha H. Conklin, and Glenn D. Shaw
Hydrol. Earth Syst. Sci., 28, 2239–2258, https://doi.org/10.5194/hess-28-2239-2024, https://doi.org/10.5194/hess-28-2239-2024, 2024
Short summary
Short summary
Mountain snowpack has been declining and more precipitation falls as rain than snow. Using stable isotopes, we found flows and flow duration in Yosemite Creek are most sensitive to climate warming due to strong evaporation of waterfalls, potentially lengthening the dry-up period of waterfalls in summer and negatively affecting tourism. Groundwater recharge in Yosemite Valley is primarily from the upper snow–rain transition (2000–2500 m) and very vulnerable to a reduction in the snow–rain ratio.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-80, https://doi.org/10.5194/hess-2024-80, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This work aims at investigating how hydrological models can be transferred to a period in which climatic conditions are different to the ones of the period in which it was set up. The RAT method, built to detect dependencies between model error and climatic drivers, was applied to 3 different hydrological models on 352 catchments in Denmark, France and Sweden. Potential issues are detected for a significant number of catchments for the 3 models even though these catchments differ for each model.
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-131, https://doi.org/10.5194/hess-2024-131, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
ET is computed from vegetation (plant transpiration) and soil (soil evaporation). In Western Africa, plant transpiration correlates with vegetation growth. Vegetation is often represented with the leaf-area-index (LAI). In this study, we evaluate the importance of LAI for the ET calculation. We take a close look at the LAI-ET interaction and show the relevance to consider both, LAI and ET. Our work contributes to the understanding of the processes of the terrestrial water cycle.
Qiutong Yu, Bryan A. Tolson, Hongren Shen, Ming Han, Juliane Mai, and Jimmy Lin
Hydrol. Earth Syst. Sci., 28, 2107–2122, https://doi.org/10.5194/hess-28-2107-2024, https://doi.org/10.5194/hess-28-2107-2024, 2024
Short summary
Short summary
It is challenging to incorporate input variables' spatial distribution information when implementing long short-term memory (LSTM) models for streamflow prediction. This work presents a novel hybrid modelling approach to predict streamflow while accounting for spatial variability. We evaluated the performance against lumped LSTM predictions in 224 basins across the Great Lakes region in North America. This approach shows promise for predicting streamflow in large, ungauged basin.
Marcus Buechel, Louise Slater, and Simon Dadson
Hydrol. Earth Syst. Sci., 28, 2081–2105, https://doi.org/10.5194/hess-28-2081-2024, https://doi.org/10.5194/hess-28-2081-2024, 2024
Short summary
Short summary
Afforestation has been proposed internationally, but the hydrological implications of such large increases in the spatial extent of woodland are not fully understood. In this study, we use a land surface model to simulate hydrology across Great Britain with realistic afforestation scenarios and potential climate changes. Countrywide afforestation minimally influences hydrology, when compared to climate change, and reduces low streamflow whilst not lowering the highest flows.
Qian Zhu, Xiaodong Qin, Dongyang Zhou, Tiantian Yang, and Xinyi Song
Hydrol. Earth Syst. Sci., 28, 1665–1686, https://doi.org/10.5194/hess-28-1665-2024, https://doi.org/10.5194/hess-28-1665-2024, 2024
Short summary
Short summary
Input data, model and calibration strategy can affect the accuracy of flood event simulation and prediction. Satellite-based precipitation with different spatiotemporal resolutions is an important input source. Data-driven models are sometimes proven to be more accurate than hydrological models. Event-based calibration and conventional strategy are two options adopted for flood simulation. This study targets the three concerns for accurate flood event simulation and prediction.
Fabio Ciulla and Charuleka Varadharajan
Hydrol. Earth Syst. Sci., 28, 1617–1651, https://doi.org/10.5194/hess-28-1617-2024, https://doi.org/10.5194/hess-28-1617-2024, 2024
Short summary
Short summary
We present a new method based on network science for unsupervised classification of large datasets and apply it to classify 9067 US catchments and 274 biophysical traits at multiple scales. We find that our trait-based approach produces catchment classes with distinct streamflow behavior and that spatial patterns emerge amongst pristine and human-impacted catchments. This method can be widely used beyond hydrology to identify patterns, reduce trait redundancy, and select representative sites.
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
Hydrol. Earth Syst. Sci., 28, 1539–1566, https://doi.org/10.5194/hess-28-1539-2024, https://doi.org/10.5194/hess-28-1539-2024, 2024
Short summary
Short summary
Streamflow forecasting is useful for many applications, ranging from population safety (e.g. floods) to water resource management (e.g. agriculture or hydropower). To this end, hydrological models must be optimized. However, a model is inherently wrong. This study aims to analyse the contribution of a multi-model approach within a variable spatial framework to improve streamflow simulations. The underlying idea is to take advantage of the strength of each modelling framework tested.
Lele Shu, Xiaodong Li, Yan Chang, Xianhong Meng, Hao Chen, Yuan Qi, Hongwei Wang, Zhaoguo Li, and Shihua Lyu
Hydrol. Earth Syst. Sci., 28, 1477–1491, https://doi.org/10.5194/hess-28-1477-2024, https://doi.org/10.5194/hess-28-1477-2024, 2024
Short summary
Short summary
We developed a new model to better understand how water moves in a lake basin. Our model improves upon previous methods by accurately capturing the complexity of water movement, both on the surface and subsurface. Our model, tested using data from China's Qinghai Lake, accurately replicates complex water movements and identifies contributing factors of the lake's water balance. The findings provide a robust tool for predicting hydrological processes, aiding water resource planning.
Ricardo Mantilla, Morgan Fonley, and Nicolás Velásquez
Hydrol. Earth Syst. Sci., 28, 1373–1382, https://doi.org/10.5194/hess-28-1373-2024, https://doi.org/10.5194/hess-28-1373-2024, 2024
Short summary
Short summary
Hydrologists strive to “Be right for the right reasons” when modeling the hydrologic cycle; however, the datasets available to validate hydrological models are sparse, and in many cases, they comprise streamflow observations at the outlets of large catchments. In this work, we show that matching streamflow observations at the outlet of a large basin is not a reliable indicator of a correct description of the small-scale runoff processes.
Lillian M. McGill, E. Ashley Steel, and Aimee H. Fullerton
Hydrol. Earth Syst. Sci., 28, 1351–1371, https://doi.org/10.5194/hess-28-1351-2024, https://doi.org/10.5194/hess-28-1351-2024, 2024
Short summary
Short summary
This study examines the relationship between air and river temperatures in Washington's Snoqualmie and Wenatchee basins. We used classification and regression approaches to show that the sensitivity of river temperature to air temperature is variable across basins and controlled largely by geology and snowmelt. Findings can be used to inform strategies for river basin restoration and conservation, such as identifying climate-insensitive areas of the basin that should be preserved and protected.
Stephanie R. Clark, Julien Lerat, Jean-Michel Perraud, and Peter Fitch
Hydrol. Earth Syst. Sci., 28, 1191–1213, https://doi.org/10.5194/hess-28-1191-2024, https://doi.org/10.5194/hess-28-1191-2024, 2024
Short summary
Short summary
To determine if deep learning models are in general a viable alternative to traditional hydrologic modelling techniques in Australian catchments, a comparison of river–runoff predictions is made between traditional conceptual models and deep learning models in almost 500 catchments spread over the continent. It is found that the deep learning models match or outperform the traditional models in over two-thirds of the river catchments, indicating feasibility in a wide variety of conditions.
Patricio Yeste, Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis, Yolanda Castro-Díez, Axel Bronstert, and María Jesús Esteban-Parra
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-57, https://doi.org/10.5194/hess-2024-57, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Integrating streamflow and evaporation data can help improve the physical realism of hydrologic models. In this work we investigate the capabilities of the Variable Infiltration Capacity (VIC) to reproduce both hydrologic variables for 189 headwater located in Spain. Results from sensitivity analysis indicate that adding two vegetation is enough to improve the representation of evaporation, and the performance of VIC exceeded that of the largest modelling effort currently available in Spain.
Dipti Tiwari, Mélanie Trudel, and Robert Leconte
Hydrol. Earth Syst. Sci., 28, 1127–1146, https://doi.org/10.5194/hess-28-1127-2024, https://doi.org/10.5194/hess-28-1127-2024, 2024
Short summary
Short summary
Calibrating hydrological models with multi-objective functions enhances model robustness. By using spatially distributed snow information in the calibration, the model performance can be enhanced without compromising the outputs. In this study the HYDROTEL model was calibrated in seven different experiments, incorporating the SPAEF (spatial efficiency) metric alongside Nash–Sutcliffe efficiency (NSE) and root-mean-square error (RMSE), with the aim of identifying the optimal calibration strategy.
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura Elizabeth Condon
Hydrol. Earth Syst. Sci., 28, 945–971, https://doi.org/10.5194/hess-28-945-2024, https://doi.org/10.5194/hess-28-945-2024, 2024
Short summary
Short summary
Long short-term memory (LSTM) is a widely used machine-learning model in hydrology, but it is difficult to extract knowledge from it. We propose HydroLSTM, which represents processes like a hydrological reservoir. Models based on HydroLSTM perform similarly to LSTM while requiring fewer cell states. The learned parameters are informative about the dominant hydrology of a catchment. Our results show how parsimony and hydrological knowledge extraction can be achieved by using the new structure.
Louise Mimeau, Annika Künne, Flora Branger, Sven Kralisch, Alexandre Devers, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 28, 851–871, https://doi.org/10.5194/hess-28-851-2024, https://doi.org/10.5194/hess-28-851-2024, 2024
Short summary
Short summary
Modelling flow intermittence is essential for predicting the future evolution of drying in river networks and better understanding the ecological and socio-economic impacts. However, modelling flow intermittence is challenging, and observed data on temporary rivers are scarce. This study presents a new modelling approach for predicting flow intermittence in river networks and shows that combining different sources of observed data reduces the model uncertainty.
Elena Macdonald, Bruno Merz, Björn Guse, Viet Dung Nguyen, Xiaoxiang Guan, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 28, 833–850, https://doi.org/10.5194/hess-28-833-2024, https://doi.org/10.5194/hess-28-833-2024, 2024
Short summary
Short summary
In some rivers, the occurrence of extreme flood events is more likely than in other rivers – they have heavy-tailed distributions. We find that threshold processes in the runoff generation lead to such a relatively high occurrence probability of extremes. Further, we find that beyond a certain return period, i.e. for rare events, rainfall is often the dominant control compared to runoff generation. Our results can help to improve the estimation of the occurrence probability of extreme floods.
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-47, https://doi.org/10.5194/hess-2024-47, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
The goal is to remove the impact of meteorological drivers in order to uncover the unique landscape fingerprints of a catchment from streamflow data. Our results reveal an optimal two-feature summary for most catchments, with a third feature needed for challenging cases, associated with aridity and intermittent flow. Baseflow index, aridity, and soil/vegetation attributes strongly correlate with learned features, indicating their importance for streamflow prediction.
Claire Kouba and Thomas Harter
Hydrol. Earth Syst. Sci., 28, 691–718, https://doi.org/10.5194/hess-28-691-2024, https://doi.org/10.5194/hess-28-691-2024, 2024
Short summary
Short summary
In some watersheds, the severity of the dry season has a large impact on aquatic ecosystems. In this study, we design a way to predict, 5–6 months in advance, how severe the dry season will be in a rural watershed in northern California. This early warning can support seasonal adaptive management. To predict these two values, we assess data about snow, rain, groundwater, and river flows. We find that maximum snowpack and total wet season rainfall best predict dry season severity.
Yi Nan and Fuqiang Tian
Hydrol. Earth Syst. Sci., 28, 669–689, https://doi.org/10.5194/hess-28-669-2024, https://doi.org/10.5194/hess-28-669-2024, 2024
Short summary
Short summary
This paper utilized a tracer-aided model validated by multiple datasets in a large mountainous basin on the Tibetan Plateau to analyze hydrological sensitivity to climate change. The spatial pattern of the local hydrological sensitivities and the influence factors were analyzed in particular. The main finding of this paper is that the local hydrological sensitivity in mountainous basins is determined by the relationship between the glacier area ratio and the mean annual precipitation.
Michael J. Vlah, Matthew R. V. Ross, Spencer Rhea, and Emily S. Bernhardt
Hydrol. Earth Syst. Sci., 28, 545–573, https://doi.org/10.5194/hess-28-545-2024, https://doi.org/10.5194/hess-28-545-2024, 2024
Short summary
Short summary
Virtual stream gauging enables continuous streamflow estimation where a gauge might be difficult or impractical to install. We reconstructed flow at 27 gauges of the National Ecological Observatory Network (NEON), informing ~199 site-months of missing data in the official record and improving that accuracy of official estimates at 11 sites. This study shows that machine learning, but also routine regression methods, can be used to supplement existing gauge networks and reduce monitoring costs.
Sungwook Wi and Scott Steinschneider
Hydrol. Earth Syst. Sci., 28, 479–503, https://doi.org/10.5194/hess-28-479-2024, https://doi.org/10.5194/hess-28-479-2024, 2024
Short summary
Short summary
We investigate whether deep learning (DL) models can produce physically plausible streamflow projections under climate change. We address this question by focusing on modeled responses to increases in temperature and potential evapotranspiration and by employing three DL and three process-based hydrological models. The results suggest that physical constraints regarding model architecture and input are necessary to promote the physical realism of DL hydrological projections under climate change.
Guillaume Evin, Matthieu Le Lay, Catherine Fouchier, David Penot, Francois Colleoni, Alexandre Mas, Pierre-André Garambois, and Olivier Laurantin
Hydrol. Earth Syst. Sci., 28, 261–281, https://doi.org/10.5194/hess-28-261-2024, https://doi.org/10.5194/hess-28-261-2024, 2024
Short summary
Short summary
Hydrological modelling of mountainous catchments is challenging for many reasons, the main one being the temporal and spatial representation of precipitation forcings. This study presents an evaluation of the hydrological modelling of 55 small mountainous catchments of the northern French Alps, focusing on the influence of the type of precipitation reanalyses used as inputs. These evaluations emphasize the added value of radar measurements, in particular for the reproduction of flood events.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, and Axel Bronstert
Hydrol. Earth Syst. Sci., 28, 139–161, https://doi.org/10.5194/hess-28-139-2024, https://doi.org/10.5194/hess-28-139-2024, 2024
Short summary
Short summary
How suspended sediment export from glacierized high-alpine areas responds to future climate change is hardly assessable as many interacting processes are involved, and appropriate physical models are lacking. We present the first study, to our knowledge, exploring machine learning to project sediment export until 2100 in two high-alpine catchments. We find that uncertainties due to methodological limitations are small until 2070. Negative trends imply that peak sediment may have already passed.
Laia Estrada, Xavier Garcia, Joan Saló, Rafael Marcé, Antoni Munné, and Vicenç Acuña
EGUsphere, https://doi.org/10.5194/egusphere-2023-3007, https://doi.org/10.5194/egusphere-2023-3007, 2024
Short summary
Short summary
Hydrological modelling is a powerful tool to support decision-making. We assessed spatio-temporal patterns and trends of streamflow for 2001–2022 with a hydrological modelling integrating stakeholder expert knowledge on management operations. The results provide insight into how climate change and anthropogenic pressures affect water resources availability in regions vulnerable to water scarcity, thus raising the need for sustainable management practices and integrated hydrological modelling.
Cited articles
Ackermann, W. C. and Corinth, R. L.: An empirical equation for reservoir sedimentation, in Symposium of Bari (Italy), International Association of Hydrological Sciences Publication 59, 359–366, Bari (Italy), 1962.
Alatorre, L. C., Beguería, S., and García-Ruiz, J. M.: Regional scale modeling of hillslope sediment delivery: A case study in the Barasona Reservoir watershed (Spain) using WATEM/SEDEM, J. Hydrol., 391, 109-123, https://doi.org/10.1016/j.jhydrol.2010.07.010, 2010.
Alatorre, L. C., Beguer\'ia, S., Lana-Renault, N., Navas, A., and Garc\'ia-Ruiz, J. M.: Soil erosion and sediment delivery in a mountain catchment under scenarios of land use change using a spatially distributed numerical model, Hydrol. Earth Syst. Sci., 16, 1321–1334, https://doi.org/10.5194/hess-16-1321-2012, 2012.
Andrés-Doménech, I., Múnera, J. C., Francés, F., and Marco, J. B.: Coupling urban event-based and catchment continuous modelling for combined sewer overflow river impact assessment, Hydrol. Earth Syst. Sci., 14, 2057–2072, https://doi.org/10.5194/hess-14-2057-2010, 2010.
Andreu, V., Imeson, A. C., and Rubio, J. L.: Temporal changes in soil aggregates and water erosion after a wildfire in a Mediterranean pine forest, Catena, 44, 69–84, https://doi.org/10.1016/S0341-8162(00)00177-6, 2001.
Antolín, C.: El suelo como recurso natural en la Comunitat Valenciana, Consellería de Territorio y Vivienda, Generalitat Valenciana, Valencia (Spain), 1998.
Avendaño Salas, C., Cobo Rayán, R., Gómez Montaña, J., and Sanz Montero, M.: Procedimiento para evaluar la degradación específica (erosión) de cuencas de embalses a partir de los sedimientos acumulados en los mismos. Aplicación al estudio de embalses españoles, Ingeniería Civil, 99, 51–58, 1995.
Avendaño Salas, N., Sanz Montero, M., Cobo Rayán, R., and Gómez Montaña, J.: Sediment yield at Spanish reservoirs and its relationship with the drainage basin area, Proceedings of the 19th Symposium of Large Dams, Florence, ICOLD (International Committee on Large Dams), Florence, 863–874, 1997.
Baeza, M. J., Valdecantos, A., Alloza, J. A., and Vallejo, V. R.: Human disturbance and environmental factors as drivers of long-term post-fire regeneration patterns in Mediterranean forests, J. Veg. Sci., 18,, 243–252, https://doi.org/10.1111/j.1654-1103.2007.tb02535.x, 2007.
Baker, V.: Paleoflood hydrology: Origin, progress, prospects, Geomorphology, 101, 1–13, https://doi.org/10.1016/j.geomorph.2008.05.016, 2008.
Bangqi Hu, Zuosheng Yang, Houjie Wang, Xiaoxia Sun, Naishuang Bi, and Guogang Li: Sedimentation in the Three Gorges Dam and the future trend of Changjiang (Yangtze River) sediment flux to the sea, Hydrol. Earth Syst. Sci., 13, 2253–2264, https://doi.org/10.5194/hess-13-2253-2009, 2009.
Bellin, N., Vanacker, V., Van Wesemael, B., Solé-Benet, A., and Bakker, M.: Natural and anthropogenic controls on soil erosion in the Internal Betic Cordillera (southeast Spain), Catena, 87, 190–200, https://doi.org/10.1016/j.catena.2011.05.022, 2011.
Benito, G., Rico, M., Sánchez-Moya, Y., Sopeña, A., Thorndycraft, V. R., and Barriendos M.: The impact of late Holocene climatic variability and land use change on the flood hydrology of the Guadalentín River, southeast Spain, Global Planet. Change, 70, 53–63, https://doi.org/10.1016/j.gloplacha.2009.11.007, 2010.
Boix-Fayos, C., Martínez-Mena, M., Calvo-Cases, A., Castillo, V., and Albaladejo, J.: Concise review of interrill erosion studies in SE Spain (Alicante and Murcia): erosion rates and progress of knowledge from the 1980s, Land Degrad. Dev., 16, 517–528, https://doi.org/10.1002/ldr.706, 2005.
Boix-Fayos, C., De Vente, J., Martínez-Mena, M., Barberá, G., and Castillo, V.: The impact of land use change and check-dams on catchment sediment yield, Hydrol. Process., 22, 4922–4935, https://doi.org/10.1002/hyp.7115, 2008.
Brown, C: Discussion of sedimentation in reservoir, In: Witzig J. (Ed.), Proceedings of the American Society of Civil Engineers 69, 1493–1500, 1943.
Brune, G. M.: Trap efficiency of reservoirs, Trans. AGU, 34, 407–418, 1953.
Callander, R. A. and Duder, J. N.: Reservoir sedimentation in the Rangitaiki River, New Zealand Engineering, 34, 208–215, 1979.
Camarasa Belmonte, A. M. and Segura Beltrán, F.: Flood events in Mediterranean ephemeral streams (ramblas) in Valencia region, Spain, Catena, 45, 229–249, https://doi.org/10.1016/S0341-8162(01)00146-1, 2001.
Campo, J., Andreu, V., Gimeno-Garcia, E., González, O., and Rubio, J. L.: Occurrence of soil erosion after repeated experimental fires in a Mediterranean environment, Geomorphology, 82, 376–387, https://doi.org/10.1016/j.geomorph.2006.05.014, 2006.
Cerdà, A.: Seasonal changes of the infiltration rates in a Mediterranean scrubland on limestone, J. Hydrol., 198, 209–225, https://doi.org/10.1016/S0022-1694(96)03295-7, 1997.
Cerdà, A.: Soil aggregate stability under different Mediterranean vegetation types, Catena, 32, 73–86, https://doi.org/10.1016/S0341-8162(98)00041-1, 1998a.
Cerdà, A.: Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland, Hydrol. Process., 12, 1031–1042, https://doi.org/10.1002/(SICI)1099-1085(19980615)12:7<1031::AID-HYP636> 3.0.CO;2-V, 1998b
Cerdà, A.: Post-fire dynamics of erosional processes under Mediterranean climatic conditions, Z. Geomorphologie, 42, 373–398, 1998c.
Cerdà, A. and Doerr, S. H.: The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period, Catena, 74, 256–263, https://doi.org/10.1016/j.catena.2008.03.010, 2008.
Cerdà, A. and Lasanta, T.: Long-term erosional responses after fire in the Central Spanish Pyrenees, Catena, 60, 59–80, https://doi.org/10.1016/j.catena.2004.09.006, 2005.
Chen, C.: Design of sediment retention basins, in Proceedings, National Symposium on Urban Hydrology and Sediment Control, 285–298, University of Kentucky, Lexington, KY, 1975.
Cheng, Y.: Sediment discharge from a storm-water retention pond, J. Irrig. Drain. Eng., 134, 606–612, https://doi.org/10.1061/(ASCE)0733-9437(2008)134:5(606), 2008.
Coulthard, T. J., Kirkby, M. J., and Macklin, M.G.: Non-linearity and spatial resolution in a cellular automaton model of a small upland basin, Hydrol. Earth. Syst. Sci., 2, 257-264, 1998.
De Vente, J., Poesen, J., and Verstraeten, G.: The application of semi-quantitative methods and reservoir sedimentation rates for the prediction of basin sediment yield in Spain, J. Hydrol., 305, 63–86, https://doi.org/10.1016/j.jhydrol.2004.08.030, 2005.
De Vente, J., Poesen, J., Verstraeten, G., Van Rompaey, A., and Govers, G.: Spatially distributed modelling of soil erosion and sediment yield at regional scales in Spain, Global Planet. Change, 60, 393–415, https://doi.org/10.1016/j.gloplacha.2007.05.002, 2008.
Dissmeyer, G. E. and Foster, G. R.: A guide for predicting sheet and rill erosion on forest land, USDA, Forest Service, Southern Region, Atlanta, Ga. (USA), 1984.
Duan, Q., Sorooshian, S., and Gupta, V.: Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resour. Res., 28, 1015–1031, https://doi.org/10.1029/91WR02985, 1992.
Duan, Q., Sorooshian, S., and Gupta, V.: Optimal use of the SCE-UA global optimization method for calibrating watershed models, J. Hydrol., 158, 265–284, https://doi.org/10.1016/0022-1694(94)90057-4, 1994.
Duck, R. and McManus, J.: Sedimentation in natural and artificial Impoundments: an indicator of evolving climate, land use and dynamic conditions, in: Geomorphology and Sedimentology of Lakes and Reservoirs, edited by: McManus J. and Duck R., Wiley, 1993.
Engelund, F. and Hansen, E.: A monograph on sediment transport in alluvial streams, Monogr, Denmark Tech Univ., Hydraul Lab, 1967.
Farnham, C. W., Beer, C. E., and Heinemann, H.: Evaluation of factors affecting reservoir sediment deposition, in Symposium of Garda (Italy): Hydrology of Lakes and Reservoirs, International Association of Hydrological Sciences Publication, 747–758, Garda (Italy), 1966.
Foster, I.: Lakes and Reservoirs in the Sediment Delivery System: Reconstructing Sediment Yields, in: Soil erosion and sediment redistribution in river catchments. Measurement, Modelling and Management, edited by: Owens P. and Collins A., Biddles Ltd, King's Lynn, p. 328, https://doi.org/10.1079/9780851990507.0128, 2006.
Foster, I. and Walling, D.: Using reservoir deposits to reconstruct changing sediment yields and sources in the catchment of the Old Mill Reservoir, South Devon, UK, over the past 50 years, Hydrolog. Sci. J., 39, 347–368, https://doi.org/10.1080/02626669409492755, 1994.
Francés, F., Vélez, J. J., Vélez, J. I., and Puricelli, M.: Distributed modelling of large basins for a real time flood forecasting system in Spain, Proceedings Second Federal Interagency Hydrologic Modelling Conference, Gan, TY and Biftu, Las Vegas, 3513–3524, 2002.
Francés, F., Vélez, J. I., and Vélez J. J.: Split-parameter structure for the automatic calibration of distributed hydrological models, J. Hydrol., 332, 226–240, https://doi.org/10.1016/j.jhydrol.2006.06.032, 2007.
Francés, F., García-Bartual, R., and Bussi, G.: High return period annual maximum reservoir water level quantiles estimation using synthetic generated flood events, in Risk Analysis, Dam Safety, Dam Security and Critical Infrastructure Management, 185–190, Taylor & Francis Group, London, 2011.
Gallart, F., Balasch, C., Regüés, D., Soler, M., and Castelltort, X.: Catchment dynamics in a Mediterranean mountain environment: the Vallcebre research basins (South Eastern Pyrenees), II Erosion and sediment dynamics, Catchment dynamics and river processes: latest research with examples from the Mediterranean climate regions, Elsevier, 17–29, 2005.
Geiger, A. F.: Sediment yields from small watersheds in the United States, 11th General Assembly of the International Union of Geodesy and Geophysics, Vol. 1, 269–276, Toronto (Canada), 1957.
González-Hidalgo, J. C., Peña-Monné, J. L., and De Luis, M.: A review of daily soil erosion in Western Mediterranean areas, Catena, 71, 193–199, https://doi.org/10.1016/j.catena.2007.03.005, 2007.
Grauso, S., Fattoruso, G., Crocetti, G., and Montanari, A.: Estimating the suspended sediment yield in a river network by means of geomorphic parameters and regression relationships, Hydrol. Earth. Syst. Sci., 12, 177–191, https://doi.org/10.5194/hess-13-1937-2009, 2008.
Johnson, B. E., Julien, P. Y., Molnar, D. K., and Watson, C. C.: The two-dimensional upland erosion model CASC2D-SED, J. Am. Water Resour. As., 36, 31–42, https://doi.org/10.1111/j.1752-1688.2000.tb04246.x, 2000.
Julien, P. Y.: Erosion and sedimentation, second edition, Cambridge University Press, 2010.
Julien, P. and Simons, D. B.: Sediment transport capacity of overland flow, Transactions of the ASAE, 1985.
Jolly, J.: A proposed method for accurately calculating sediment yields from reservoir deposition volumes, Proceedings of the Exeter Symposium, IAHS Publ. No 37, 1982.
Kilinc, M. and Richardson, E. V.: Mechanics of soil erosion from overland flow generated by simulated rainfall, Colorado State University, Hydrology Papers, 1973.
Kirkby, M., Irvine, B., Jones, R., and Govers G.: The PESERA coarse scale erosion model for Europe. I. Model rationale and implementation, Eur. J. Soil Sci., 59, 1293–1306, https://doi.org/10.1111/j.1365-2389.2008.01072.x, 2008.
Kochel, R. and Baker, V.: Paleoflood Hydrology, Science, 215, 353–361, https://doi.org/10.1126/science.215.4531.353, 1982.
Kosmas, C., Danalatos, N. G., Cammeraat, L. H., Chabart, M., Diamantopoulos, J., Farand, R., Gutierrez, L., Jacob, A., Marques, H., Martinez-Fernandez, J., Mizara, A., Moustakas, N., Nicolau, J. M., Oliveros, C., Pinna, G., Puddu, R., Puigdefabregas, J., Roxo, M., Simao, A., Stamou, G., Tomasi, N., Usai, D., and Vacca, A.: The effect of land use on runoff and soil erosion rates under Mediterranean conditions, Catena, 29, 45–59, 1997.
Lane, E. and Koelzer, V.: Density of sediments deposited in reservoirs, Rep. No. 9 of a Study of Methods Used in Measurement and Analysis of Sediment Loads in Streams, 1943.
Le Roux, J. and Roos, Z.: The rate of soil erosion in the Wuras Dam catchment calculated from sediments trapped in the dam, Z. Geomorphol, Suppl. 26, 315–329, 1982.
Machado, M. J., Benito, G., Barriendos, M., and Rodrigo, F. S.: 500 years of rainfall variability and extreme hydrological events in southeastern Spain drylands, J. Arid Environ., 75, 1244–1253, https://doi.org/10.1016/j.jaridenv.2011.02.002, 2011.
McManus, J. and Duck, R: Sediment yield estimated from reservoir siltation in the Ochil Hills, Scotland, Earth Surf. Proc. Land, 10, 193–200, https://doi.org/10.1002/esp.3290100211, 1985.
Montoya, J. J.: Desarrollo de un modelo conceptual de producción, transporte y depósito de sedimentos, Phd Thesis. Universitat Politècnica de València (Spain), 2008.
Morales de la Cruz M. and Francés, F.: Hydrological modelling of the "Sierra de las Minas" in Guatemala, by using a conceptual distributed model and considering the lack of data, WITpress, 97–108, 2008.
Moriasi, D., Arnold, J., Van Liew, M. W., Bingner, R., Harme, R., and Veith, T.: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, T. ASAE, 50, 885–900, 2007.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models – Part 1 – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Nehyba, S., Nývlt., D., Schkade, U., Kirchner, G., and Francu, E.: Depositional rates and dating techniques of modern deposits in the Brno reservoir (Czech Republic) during the last 70 years, J. Paleolimnol., 45, 41–55, https://doi.org/10.1007/s10933-010-9478-5, 2011.
Neil, D. and Mazari, R.: Sediment yield mapping using small dam sedimentation surveys, Southern Tablelands, New South Wales, Catena, 20, 13–25, https://doi.org/10.1016/0341-8162(93)90026-L, 1993.
Ogden, F. L. and Heilig, A.: Two-dimensional watershed-scale erosion modeling with CASC2D, Landscape Erosion and Evolution Modeling, (RS Harmon and WW Doe III, eds.), Kluwer Academic Publishers, New York, ISBN 0-306-4618-6, 2001.
Phillips, C. J. and Nelson, C. S.: Sedimentation in an artifical lake – Lake Matahina, Bay of Plenty, New Zeal. J. Mar. Fresh, 15, 459–473, https://doi.org/10.1080/00288330.1981.9515938, 1981.
Piest, R. F., Bradford, J. M., and Wyatt, G. M.: Soil erosion and sediment transport from gullies, J. Hydr. Eng. Div-ASCE, 101, 65–80, 1975.
Prosser, I. P. and Rustomji, P.: Sediment transport capacity relations for overland flow, Prog. Phys. Geogr., 24, 179–193, https://doi.org/10.1177/030913330002400202, 2000.
Prosser, I. and Williams, L.: The effect of wildfire on runoff and erosion in native Eucalyptus forest, Hydrol. Process., 12, 251–265, https://doi.org/10.1002/(SICI)1099-1085(199802)12:2< 251::AID-HYP574>3.0.CO;2-4, 1998.
Rey-Benayas, J. M., Martins, A., Nicolau, J. M., and Schulz, J.: Abandonment of agricultural land: an overview of drivers and consequences, CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2, 057, https://doi.org/10.1079/PAVSNNR20072057, 2007.
Roering, J. J., Kirchner, J. W., and Dietrich, W. E.: Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology, Water Resour. Res., 35, 853–870, https://doi.org/10.1029/1998WR900090, 1999.
Rohel, J. W.: Sediment source areas, delivery ratios, and influencing morphological factors, in Symposium of Bari (Italy), International Association of Hydrological Sciences Publication 59, 202–213, Bari (Italy), 1962.
Rojas, R.: GIS-based upland erosion modeling, geovisualization and grid size effects on erosion simulations with CASC2D-SED, PhD Thesis, Colorado State University, 2002.
Romero-Díaz, A., Alonso-Sarriá, F., and Martínez-Lloris, M.: Erosion rates obtained from check-dam sedimentation (SE Spain). A multi-method comparison, Catena, 71, 172–178, https://doi.org/10.1016/j.catena.2006.05.011, 2007.
Rubio, J. L., Sánchez, J., and Forteza, J.: Proyecto LUCDEME. Mapa de suelos de la Comunidad Valenciana, 1995.
Rulli, M., Spada, M., Bozzi, S., Bocchiola, D. and Rosso, R.: Modelling sediment yield in burned areas, in: Sediment budgets: proceedings of the International Symposium on Sediment Budgets: held during the Seventh Scientific Assembly of the International Association of Hydrological Sciences (IAHS), edited by: Horowitz, A. and Walling, D., IAHS Publ. No 292, Foz do Iguaço (Brazil), 162–170, 2005.
Salazar, S., Francés, F., Komma, J., Blume, T., Francke, T., Bronstert, A., and Blöschl, G.: A comparative analysis of the effectiveness of flood management measures based on the concept of "retaining water in the landscape" in different European hydro-climatic regions, Nat. Hazards Earth Syst. Sci., 12, 3287–3306, https://doi.org/10.5194/nhess-12-3287-2012, 2013.
Saxton, K. E. and Rawls, W. J.: Soil water characteristic estimates by texture and organic matter for hydrologic solutions, Soil Sci. Soc. Am. J., 70, 1569–1578, https://doi.org/10.2136/sssaj2005.0117, 2006.
Shakesby, R.: Post-wildfire soil erosion in the Mediterranean: Review and future research directions, Earth-Sci. Rev., 105, 71–100, https://doi.org/10.1016/j.earscirev.2011.01.001, 2011.
Shumm, S. and Lichty, R.: Time, space and causality in geomorphology, Am. J. Sci., 263, 110–119, https://doi.org/10.2475/ajs.263.2.110, 1965.
Sougnez, N., Van Wesemael, B., and Vanacker, V.: Low erosion rates measured for steep, sparsely vegetated catchments in southeast Spain, Catena, 84, 1–11, https://doi.org/10.1016/j.catena.2010.08.010, 2011.
Van den Wall Blake, G.: Siltation and soil erosion survey in Zimbabwe, in: Drainage basin sediment delivery (proceedings of the Albuquerque symposium, August 1986), edited by: Hadley, R., IAHS Publication 159, 69–80, 1986.
Van Rompaey, A., Verstraeten, G., Van Oost, K., Govers, G., and Poesen, J.: Modelling mean annual sediment yield using a distributed approach, Earth Surf. Proc. Land, 26, 1221–1236, https://doi.org/10.1002/esp.275, 2001.
Van Rompaey, A., Vieillefont, V., Jones, R., Montanarella, L., Verstraeten, G., Bazzoffi, P., Dostal, T., Krasa, J., De Vente, J., and Poesen, J.: Validation of soil erosion estimates at European scale, European Soil Bureau Research Report No.13, EUR 20827 EN, Office for Official Publications of the European Communities, Luxembourg, 2003.
Verstraeten, G. and Poesen, J.: Estimating trap efficiency of small reservoirs and ponds: methods and implications for the assessment of sediment yield, Prog. Phys. Geogr., 24, 219–251, https://doi.org/10.1177/030913330002400204, 2000.
Verstraeten, G. and Poesen, J.: Modelling the long-term sediment trap efficiency of small ponds, Hydrol. Process., 15, 2797–2819, https://doi.org/10.1002/hyp.269, 2001.
Verstraeten, G. and Poesen, J.: Using sediment deposits in small ponds to quantify sediment yield from small catchments: possibilities and limitations, Earth Surf. Proc. Land, 27, 1425–1439, https://doi.org/10.1002/esp.439, 2002.
Verstraeten, G., Poesen, J., De Vente, J., and Koninckx, X.: Sediment yield variability in Spain: a quantitative and semiqualitative analysis using reservoir sedimentation rates, Geomorphology, 50, 327–348, https://doi.org/10.1016/S0169-555X(02)00220-9, 2003.
Vélez, J. J., Puricelli, M., López Unzu, F., and Francés, F. : Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework, Hydrol. Earth Syst. Sci., 13, 229–246, https://doi.org/10.5194/hess-13-229-2009, 2009.
White, P., Labadz, J., and Butcher, D.: Sediment yield estimates from reservoir studies: an appraisal of variability in the southern Pennines of the UK, in: Erosion and sediment yield: global and regional perspectives (proceedings of the Exeter symposium, July 1996), edited by: Walling, D. and Webb, B., IAHS Publication 236, Wallingford: IAHS Press, 163–174, 1996.
Wischmeier, W. H. and Mannering, J. V.: Relation of Soil Properties to its Erodibility, Soil Sci. Soc. Am. J., 33, 131–137, 1969.
Wischmeier, W. H. and Smith, D. D.: Predicting rainfall erosion losses-a guide to conservation planning, United States Department of Agriculture (USDA), Washington, DC, USA 58 pp., 1978.