Research article
25 Jun 2013
Research article | 25 Jun 2013
Stochastic modeling of Lake Van water level time series with jumps and multiple trends
H. Aksoy et al.
Related authors
Related subject area
A large sample analysis of European rivers on seasonal river flow correlation and its physical drivers
Theano Iliopoulou, Cristina Aguilar, Berit Arheimer, María Bermúdez, Nejc Bezak, Andrea Ficchì, Demetris Koutsoyiannis, Juraj Parajka, María José Polo, Guillaume Thirel, and Alberto Montanari
Hydrol. Earth Syst. Sci., 23, 73–91, https://doi.org/10.5194/hess-23-73-2019,https://doi.org/10.5194/hess-23-73-2019, 2019
Short summary
Discharge hydrograph estimation at upstream-ungauged sections by coupling a Bayesian methodology and a 2-D GPU shallow water model
Alessia Ferrari, Marco D'Oria, Renato Vacondio, Alessandro Dal Palù, Paolo Mignosa, and Maria Giovanna Tanda
Hydrol. Earth Syst. Sci., 22, 5299–5316, https://doi.org/10.5194/hess-22-5299-2018,https://doi.org/10.5194/hess-22-5299-2018, 2018
Short summary
Large-scale hydrological model river storage and discharge correction using a satellite altimetry-based discharge product
Charlotte Marie Emery, Adrien Paris, Sylvain Biancamaria, Aaron Boone, Stéphane Calmant, Pierre-André Garambois, and Joecila Santos da Silva
Hydrol. Earth Syst. Sci., 22, 2135–2162, https://doi.org/10.5194/hess-22-2135-2018,https://doi.org/10.5194/hess-22-2135-2018, 2018
Short summary
Influence of solar forcing, climate variability and modes of low-frequency atmospheric variability on summer floods in Switzerland
J. C. Peña, L. Schulte, A. Badoux, M. Barriendos, and A. Barrera-Escoda
Hydrol. Earth Syst. Sci., 19, 3807–3827, https://doi.org/10.5194/hess-19-3807-2015,https://doi.org/10.5194/hess-19-3807-2015, 2015
Short summary
The importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filter
D. A. Plaza, R. De Keyser, G. J. M. De Lannoy, L. Giustarini, P. Matgen, and V. R. N. Pauwels
Hydrol. Earth Syst. Sci., 16, 375–390, https://doi.org/10.5194/hess-16-375-2012,https://doi.org/10.5194/hess-16-375-2012, 2012
Cited articles
Acreman, M. C., Meigh, J. R., and Sene, K. J.: Modelling the decline in water level of Lake Toba, Indonesia, Adv. Water Resour., 16, 207–222, 1993.
Aksoy, H., Gedikli, A., Unal, N. E., and Kehagias, A.: Fast segmentation algorithms for long hydrometeorological time series, Hydrol. Process., 28, 1047–1060, 2008.
Altunkaynak, A., Özger, M., and Sen, Z.: Triple diagram model of level fluctuations in Lake Van, Turkey, Hydrol. Earth Syst. Sci., 7, 235–244, https://doi.org/10.5194/hess-7-235-2003, 2003.
Batur, E., Kadioglu, M., Ozkaya, M., Saban M., Akin, I., and Kaya, Y.: Water level of Lake Van and estimation of extreme levels, Proceedings of Lake Van Hydrology of Pollution Conference, 12–28, Van, Turkey, 2008 (in Turkish).
Bayazit, M.: Hydrology, Istanbul Technical University, Istanbul, Turkey, 1999.
Cimen, M. and Kisi, O.: Comparison of two different data-driven techniques in modeling lake level fluctuations in Turkey, J. Hydrol., 378, 253–262, 2009.
Eimanifar, A. and Mohebbi, F.: Urmia Lake (Northwestern Iran): a brief review, Saline Syst., 3, 1–8, https://doi.org/10.1186/1746-1448-3-5, 2007.
Gedikli, A., Aksoy, H., Unal, N. E., and Kehagias, A.: Modified dynamic programming approach for offline segmentation of long hydrometeorological time series, Stoch. Env. Res. Risk A., 24, 547–557, 2010b.
Gencsoy, I.: Relation of Lake Van water level fluctuations with hydrometeorological parameters, M.Sc. Thesis, Institute of Science and Technology, Istanbul technical University, 1997 (in Turkish).
Guldal, V. and Tongal, H.: Comparison of recurrent neural network, adaptive neuro-fuzzy inference system and stochastic models in Eğirdir Lake level forecasting, Water Resour. Manag, 24, 105–128, 2010.
Kaden, H., Peeters, A., Lorke, A., Kipfer, R., Tomonaga, Y., and Karabiyikoglu, M.: Impact of lake level change on deep-water renewal and oxic conditions in deep saline Lake Van, Turkey, Water Resour. Res., 46, W11508, https://doi.org/10.1029/2009WR008555, 2010.
Landmann, G., Reimer, A., and Kempe, S.: Climatically induced lake level changes at Lake Van, Turkey, during the Pleistocene/Holocene transition, Global Biochem. Cy., 10, 797–808, 1996.
Micklin, P.: The Aral Sea disaster, Annu. Rev. Earth Planet. Sci., 35, 47–72, 2007.
Rodinov, S. N.: Global and Regional Climate Interaction: The Caspian Sea Experience, Kluwer Academic Publisher, Dordrecht, The Netherlands, 1994.
Salas, J. D., Delleur, J. W., Yevjevich, V., and Lane, W. L.: Applied Modeling of Hydrologic Time Series, Water Resources Pub., Littleton, Colo., 1980.
Small, E. E., Sloan, L. C., Hostetler, S., and Giorgi, F.: Simulating the water balance of the Aral Sea with a coupled regional climate-lake model, J. Geophys. Res., 104, 6583–6602, 1999.
Talebizadeh, M. and Moridnejad, A.: Uncertainty analysis for the forecast of lake level fluctuations using ensembles of ANN and ANFIS models, Expert Syst. Appl., 38, 4126–4135, 2011.
Teltik, I.: Stochastic modeling of Lake Van water level, M.Sc. Thesis, Institute of Science and Technology, Istanbul Technical University, 2008 (in Turkish).
Thiel, V., Jenish, A., Landmann, G., Reimer, A., and Michaelis, W.: Unusual distributions of long-chain alkenones and tetrahymanol from the highly alkaline Lake Van, Turkey, Geochim. Cosmochim. Ac., 61, 2053–2064, 1997.
Vaziri, M.: Predicting Caspian Sea surface water level by ANN and ARIMA models, J. Waterw. Port C.-ASCE, 123, 158–162, 1997.
Velpuri, N. M., Senay, G. B., and Asante, K. O.: A multi-source satellite data approach for modelling Lake Turkana water level: calibration and validation using satellite altimetry data, Hydrol. Earth Syst. Sci., 16, 1–18, https://doi.org/10.5194/hess-16-1-2012, 2012.
Yevjevich, V.: Probability and Statistics in Hydrology, Water Resources Pub., Colorado, 1972.