Articles | Volume 16, issue 10
https://doi.org/10.5194/hess-16-3499-2012
https://doi.org/10.5194/hess-16-3499-2012
Research article
 | 
04 Oct 2012
Research article |  | 04 Oct 2012

The impact of model and rainfall forcing errors on characterizing soil moisture uncertainty in land surface modeling

V. Maggioni, E. N. Anagnostou, and R. H. Reichle

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Uncertainty analysis
On the visual detection of non-natural records in streamflow time series: challenges and impacts
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023,https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Historical rainfall data in northern Italy predict larger meteorological drought hazard than climate projections
Rui Guo and Alberto Montanari
Hydrol. Earth Syst. Sci., 27, 2847–2863, https://doi.org/10.5194/hess-27-2847-2023,https://doi.org/10.5194/hess-27-2847-2023, 2023
Short summary
Daytime-only mean data enhance understanding of land–atmosphere coupling
Zun Yin, Kirsten L. Findell, Paul Dirmeyer, Elena Shevliakova, Sergey Malyshev, Khaled Ghannam, Nina Raoult, and Zhihong Tan
Hydrol. Earth Syst. Sci., 27, 861–872, https://doi.org/10.5194/hess-27-861-2023,https://doi.org/10.5194/hess-27-861-2023, 2023
Short summary
Quantifying the uncertainty of precipitation forecasting using probabilistic deep learning
Lei Xu, Nengcheng Chen, Chao Yang, Hongchu Yu, and Zeqiang Chen
Hydrol. Earth Syst. Sci., 26, 2923–2938, https://doi.org/10.5194/hess-26-2923-2022,https://doi.org/10.5194/hess-26-2923-2022, 2022
Short summary
Unraveling the contribution of potential evaporation formulation to uncertainty under climate change
Thibault Lemaitre-Basset, Ludovic Oudin, Guillaume Thirel, and Lila Collet
Hydrol. Earth Syst. Sci., 26, 2147–2159, https://doi.org/10.5194/hess-26-2147-2022,https://doi.org/10.5194/hess-26-2147-2022, 2022
Short summary

Cited articles

Beven, K. J. and Binley, A. M.: The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, 1992.
Beven, K. J. and Kirkby, M. J: A physically-based variable contributing area model of basin hydrology, Hydrolog. Sci. J., 24, 43–69, 1979.
Bloom, S., da Silva, A., Dee, D., Bosilovich, M., Chern, J. D., Pawson, S., Schubert, S., Sienkiewicz, M., Stajner, I., Tan, W. W., and Wu, M. L.: Documentation and Validation of the Goddard Earth Observing System (GEOS) Data Assimilation System: Version 4, Tech. Rep. Ser. Global Model. Data Assimil. 104606, Global Modeling and Assimilation Office NASA Goddard Space Flight Center, Greenbelt, MD, 26, 187 pp., 2005.
Borga, M., Degli Esposti, S., and Norbiato N.: Influence of errors in radar rainfall estimates on hydrological modeling prediction uncertainty, Water Resour. Res., 42, W08409, https://doi.org/10.1029/2005WR004559, 2006.
Download