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Abstract. The contribution of rainfall forcing errors rela-
tive to model (structural and parameter) uncertainty in the
prediction of soil moisture is investigated by integrating
the NASA Catchment Land Surface Model (CLSM), forced
with hydro-meteorological data, in the Oklahoma region.
Rainfall-forcing uncertainty is introduced using a stochas-
tic error model that generates ensemble rainfall fields from
satellite rainfall products. The ensemble satellite rain fields
are propagated through CLSM to produce soil moisture en-
sembles. Errors in CLSM are modeled with two different
approaches: either by perturbing model parameters (repre-
senting model parameter uncertainty) or by adding randomly
generated noise (representing model structure and parameter
uncertainty) to the model prognostic variables. Our findings
highlight that the method currently used in the NASA GEOS-
5 Land Data Assimilation System to perturb CLSM variables
poorly describes the uncertainty in the predicted soil mois-
ture, even when combined with rainfall model perturbations.
On the other hand, by adding model parameter perturbations
to rainfall forcing perturbations, a better characterization of
uncertainty in soil moisture simulations is observed. Specifi-
cally, an analysis of the rank histograms shows that the most
consistent ensemble of soil moisture is obtained by combin-
ing rainfall and model parameter perturbations. When rain-
fall forcing and model prognostic perturbations are added,
the rank histogram shows a U-shape at the domain average
scale, which corresponds to a lack of variability in the fore-
cast ensemble. The more accurate estimation of the soil mois-
ture prediction uncertainty obtained by combining rainfall
and parameter perturbations is encouraging for the applica-
tion of this approach in ensemble data assimilation systems.

1 Introduction

Soil moisture is a key variable of the land surface water bud-
get. It has an impact on water, energy and biogeochemical
cycles; thus, it plays a major role in many research fields,
such as hydrology, agriculture and ecology. As the availabil-
ity of in-situ measurements is scarce, global soil moisture
data rely on satellite retrievals (e.g., Njoku et al., 2003; Kerr
et al., 2010; Entekhabi et al., 2010a) and land surface model
(LSM) simulations (e.g., Wood et al., 1992; Koster et al.,
2000). LSM soil moisture predictions can be enhanced by
assimilating near-surface satellite soil moisture observations
through a land data assimilation system (LDAS). Often, such
systems utilize ensemble-based techniques to update LSM
soil moisture predictions in response to satellite observations
of near-surface soil moisture (e.g., Reichle and Koster, 2005).
Proper characterization of the uncertainty in the LSM soil
moisture predictions is crucial for the optimal assimilation
of the observed near-surface soil moisture data. Specifically,
the quality of soil moisture assimilation estimates highly de-
pends on the accuracy of observational and model error es-
timates (Crow and Van Loon, 2006; Reichle et al., 2008).
However, the way model errors are handled in standard land
data assimilation systems could be improved.

A common technique to introduce model uncertainty in
land data assimilation systems is by directly adding ran-
domly generated noise to the model prognostic variables,
representing errors in model structure and parameters (in ad-
dition to perturbing model forcings; Reichle et al., 2007).
The present study investigates the ability of this approach to
exhaustively describe uncertainty in the soil moisture fields
predicted by the LSM, and proposes an alternative method to
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introduce model uncertainty, i.e., by applying perturbations
directly to the model parameters. This alternative approach
defines deviations from an optimal parameter set that pro-
vides comparable model performance in terms of simulated
surface and root zone soil moisture.

Rainfall is the dominant meteorological forcing input
to the land surface model for soil moisture simulations.
Therefore, uncertainty in the input rainfall products can
have an important impact on the predicted soil moisture
fields and their associated uncertainty. Hossain and Anagnos-
tou (2006a) have proposed a stochastic error model (named
SREM2D) to generate ground truth rainfall ensembles from
satellite rainfall products. Hossain and Anagnostou (2006c),
and recently Maggioni et al. (2011), have investigated the
implication of using SREM2D in representing temporal and
spatial uncertainty of soil moisture prediction in a land sur-
face model forced with satellite rainfall data. They showed
that soil moisture ensembles from land surface models forced
with SREM2D-generated rainfall adequately capture the soil
moisture error characteristics at different spatial scales.

In addition to satellite rainfall-only uncertainty, Hossain
and Anagnostou (2005) have explored the combined effect
of model parameter and rainfall forcing uncertainty on the
simulation of soil moisture. They showed that rainfall uncer-
tainty alone can explain only part (between 20 % and 60 %)
of the uncertainty in soil moisture prediction. This demon-
strates the need for further investigation of the interaction be-
tween rainfall and model errors to optimize the use of satel-
lite rainfall products in land data assimilation systems.

This study aims at investigating the impact of model and
rainfall forcing uncertainty on soil moisture fields simulated
by the NASA Catchment Land Surface Model (hereinafter
CLSM, or Catchment model; Koster et al., 2000; Ducharne
et al., 2000). Specifically, it builds upon the recent study by
Maggioni et al. (2011) that investigated soil moisture pre-
diction uncertainty associated with errors in rainfall forc-
ing alone. We refer to model uncertainty to describe model
structural errors, model calibration errors and parametric er-
rors (i.e., uncertainties related to the model itself). On the
other hand, we define prediction uncertainty as the combina-
tion of model uncertainty and input forcing data uncertainty.
The present study introduces several novelties that address
some of the limitations of the earlier work by Hossain and
Anagnostou (2005). First, two different model uncertainty
frameworks are compared: the direct perturbation of model
parameters versus the direct perturbation of model prognos-
tic variables, which is typically used in LDAS. Second, re-
sults are presented in terms of both surface and root zone
soil moisture. Third, our study uses spatially distributed data
and a spatial error model, while the study by Hossain and
Anagnostou (2005) was limited to a one-dimensional simu-
lation that used single point data, thus neglecting spatial er-
ror characteristics. Finally, we use a different land surface
model (i.e., CLSM), which is part of the quasi-operational
NASA Goddard Earth Observing System Model, Version 5

(GEOS-5) system (Rienecker et al., 2008) developed at the
NASA Global Modeling and Assimilation Office (GMAO).

This work is presented from the perspective of data assim-
ilation and investigates whether the method that is currently
used in the NASA GEOS-5 LDAS (Reichle et al., 2009) to
perturb model variables of the Catchment model is able to ad-
equately describe the uncertainty in the predicted soil mois-
ture. The manuscript is structured as follows. Section 2 pro-
vides a description of the study area and datasets. Section 3
describes the approach followed to study how uncertainty
in simulated soil moisture is affected by (a) model uncer-
tainty alone, (b) rainfall forcing uncertainty alone, and (c) the
combination of the two sources (prediction uncertainty). Sec-
tion 4 provides a discussion of results, and Sect. 5 summa-
rizes the major findings.

2 Study area and data

The study area is the Oklahoma region in the United States.
Specifically, we use a 25 km Cartesian modeling grid rang-
ing between 100◦ W and 94.5◦ W in Longitude and 34.5◦ N
and 37◦ N in Latitude (Fig. 1). The study period includes
three continuous years from 1 January 2004 to 31 Decem-
ber 2006. The Oklahoma region offers a good coverage by
the Weather Surveillance Radar 88 Doppler (WSR-88D) net-
work (Maddox et al., 2002), multi-year satellite rainfall prod-
ucts and a dense network of hydro-meteorological stations
from the Oklahoma Mesonet (Brock et al., 1995). The Ok-
lahoma Mesonet provides observations with high temporal
frequency from 115 automated observing stations that record
several meteorological parameters (rainfall, wind, radiation,
etc.) and soil moisture at depths of 5, 25, 60, and 75 cm
(available every 30 min). For the 3-yr study period, soil mois-
ture observations of sufficient quantity and quality at all four
measurement depths were available only at 21 Mesonet sta-
tions as shown in Fig. 1. We refer the reader to Maggioni et
al. (2011) for further details about the study domain.

Two rainfall products – the rain gauge-calibrated WSR-
88D radar rainfall and the NOAA CMORPH satellite rain-
fall – are employed in this study and interpolated to the 25-
km Cartesian grid shown in Fig. 1. Along with supplemental
surface meteorological forcing data, these radar and satellite
precipitation products force the land surface model at the 25-
km grid resolution to generate soil moisture fields. The radar
rainfall product is from the Stage IV WSR-88D precipitation
estimation algorithm, which consists of a national mosaic of
precipitation estimates based on observations from all WSR-
88D radars across the continental US (Fulton et al., 1998).
Stage IV data represent the best quality WSR-88D rainfall
product available at hourly/4-km resolution and include cor-
rections for ground clutter and anomalous propagation, ver-
tical reflectivity profile effects and systematic variations of
the reflectivity–rainfall relationship on the basis of bias es-
timates through comparisons with rain gauge observations

Hydrol. Earth Syst. Sci., 16, 3499–3515, 2012 www.hydrol-earth-syst-sci.net/16/3499/2012/



V. Maggioni et al.: Model and rainfall forcing errors on characterizing soil moisture uncertainty 3501

 39 

Figures 779 

 780 

 781 

Figure 1 Map of 3-year (2004-2006) average rainfall, overlaid by a 25 km grid covering the 782 

experiment domain and locations of OK Mesonet stations (black dots). The triangular symbols 783 

represent Mesonet stations where sufficient soil moisture observations are available at four 784 

different depths during the study period. Black circles highlight two locations for which soil 785 

moisture time series are shown in Section 4. This figure corrects for a mistake in Figure 1b of 786 

Maggioni et al. (2011). 787 

Fig. 1. Map of 3-yr (2004–2006) average rainfall, overlaid by a 25 km grid covering the experiment domain and locations of OK Mesonet
stations (black dots). The triangular symbols represent Mesonet stations where sufficient soil moisture observations are available at four
different depths during the study period. Black circles highlight two locations for which soil moisture time series are shown in Sect. 4. This
figure corrects for a mistake in Fig. 1b of Maggioni et al. (2011).

(Fulton et al., 1998; Lin et al., 2005). The satellite product is
the NOAA-climate prediction center morphing (CMORPH)
product, which is based on a unique combination of passive
microwave (PMW) retrievals and infrared (IR) data (Joyce
et al., 2004). In particular, CMORPH uses motion vectors
from half-hourly interval IR images to propagate precipita-
tion estimates derived from PMW data. The spatio-temporal
resolution of CMORPH is 8 km/half-hour. As stated above
both radar and satellite precipitation datasets are gridded to
the 25-km grid and aggregated to a 3-h time step to ensure
common spatial and temporal scales.

3 Methodology

3.1 The Catchment land surface model

The NASA CLSM (Koster et al., 2000; Ducharne et al.,
2000) constitutes the modeling scheme to simulate surface
and root zone soil moisture in this study. The model uses
the hydrological catchment as a fundamental land surface
element with boundaries defined by topography, abandon-
ing the traditional approach of quasi-rectangular model units
with boundaries defined by the overlying atmospheric grid.
Consequently, catchments lying below the same atmospheric
grid cell can differ in terms of the topographical parame-
ters and vegetation type, extracted from high-resolution veg-
etation data sets. Within each catchment, a redistribution of
soil water content according to topography is combined with
more traditional vegetation and evaporation parameteriza-
tions from the Mosaic LSM (Koster and Suarez, 1992, 1996),
a three-layer snow model (Lynch-Stieglitz, 1994), and a lin-
ear soil-heat diffusion scheme.

The Catchment model framework is based on the
well-established TOPMODEL, developed by Beven and
Kirkby (1979). Forced with surface meteorological data,

CLSM predicts the soil moisture distribution from the catch-
ment morphology and from three bulk soil moisture prognos-
tic variables, representing equilibrium conditions associated
with water table distribution and non-equilibrium conditions
near the surface. The first of these three prognostic variables
is the catchment deficit, which measures the average amount
of water, per unit area, needed to bring all of the soil in the
basin to saturation, assuming that the unsaturated zone is ini-
tially at equilibrium. The second prognostic variable is the
root zone excess, defined as the amount by which the mois-
ture in the top 100 cm of the soil exceeds (or is less than) the
moisture estimated by the local equilibrium profile. The third
prognostic variable, the surface excess, measures how far the
water in the 2 cm ground surface layer is from the equilib-
rium with the root zone soil moisture.

The horizontal distribution of soil moisture in response to
topographical information allows the separation of the catch-
ment into three different hydrological regimes that respond
dynamically to changes in the three soil moisture prognos-
tic variables: the (area) fraction over which the ground sur-
face is saturated, the fraction over which the ground surface
is not saturated but transpiration proceeds, and the fraction
over which no transpiration proceeds as the soil moisture is
below the wilting point. Within each of the three regimes,
different physical processes control runoff and evaporation.
At each time step the model computes surface water and en-
ergy fluxes for each fraction, and then combines them into a
single catchment flux.

CLSM is forced with several surface meteorological vari-
ables, such as precipitation, humidity, air temperature and
radiation and with prescribed, climatological vegetation pa-
rameters (leaf area index and greenness from satellite ob-
servations). Precipitation data in this study are from the
aforementioned WSR-88D (Stage IV) and CMORPH prod-
ucts. The remaining surface meteorological forcing data (air
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Figure 2 Experimental setup showing the methodology used to investigate model uncertainty alone (left column), rainfall-forcing 790 

uncertainty alone (middle column), and rainfall-forcing uncertainty combined with model uncertainty (right column). 791 
Fig. 2. Experimental setup showing the methodology used to investigate model uncertainty alone (left column), rainfall-forcing uncertainty
alone (middle column), and rainfall-forcing uncertainty combined with model uncertainty (right column).

temperature and humidity, radiation, wind, and surface pres-
sure) are extracted from the Global Land Data Assimilation
Systems (GLDAS) project (Rodell et al., 2003;http://ldas.
gsfc.nasa.gov), based on output from the global atmospheric
data assimilation system at the NASA GMAO (Bloom et al.,
2005). CLSM simulations were initialized from a spin-up in-
tegration by forcing the model with the WSR-88D (Stage IV)
rainfall fields and by looping three times through the 3-yr
time series of forcing data (2004–2006).

The Catchment model was demonstrated in several past
studies to realistically describe soil moisture dynamics (e.g.,
Bowling et al., 2003; Nijssen et al., 2003; Boone et al., 2004).
In a recent study, Maggioni et al. (2011) showed consistency
and high correlations between soil moisture anomaly time
series from the OK Mesonet station observations and corre-
sponding simulations from the Catchment model forced with
WSR-88D (Stage IV) rainfall.

In this study CLSM is first forced with the WSR-88D
(Stage IV) precipitation data to generate the reference
soil moisture fields (Fig. 2). Then, CLSM simulations are
performed to investigate the contributions of model and
rainfall-forcing error in soil moisture prediction uncertainty:
(i) model uncertainty alone through parameter perturbations
(case M1); (ii) model uncertainty alone through prognos-
tic perturbations (case M2); (iii) rainfall forcing uncertainty

alone (case F); (iv) combination of rainfall forcing and model
(through parameter perturbation) uncertainty (case M1F);
and (v) combination of rainfall forcing and model (perturbing
prognostics) uncertainty (case M2F). The uncertainty anal-
ysis is carried out in terms of both surface and root zone
soil moisture values. Surface soil moisture henceforth refers
to the (0–2) cm soil moisture output from CLSM and to
the OK Mesonet soil moisture observations at 5 cm depth,
whereas ”root zone” soil moisture is defined as the (0–
100) cm soil moisture CLSM output and the corresponding
depth-weighted average over the 5 cm, 25 cm, 60 cm and
75 cm OK Mesonet measurements.

Details about the different experiments are described next.
Specifically, Sect. 3.2 describes the methodology used to
study the model uncertainty alone (left column of Fig. 2),
Sect. 3.3 presents the setup to study rainfall forcing uncer-
tainty alone (middle column of Fig. 2), and Sect. 3.4 illus-
trates the method used to analyze the combined rainfall and
model uncertainty (right column of Fig. 2).

3.2 Model uncertainty

The first framework to characterize the model error (case M1
in Fig. 2) is based on model parameter perturbations. Firstly,
an analysis is conducted to identify a small subset of
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Figure 3 Efficiency score (a, b, c) and relative bias (d, e, f) as a function of model parameter value deviations (presented in %). The 794 

Clapp-Hornberger parameter (a, d), the soil wilting point wetness (b, e), and the matric potential at saturation (c, f) parameters are 795 

shown. Scales differ for each panel. 796 
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Fig. 3. Efficiency score(a, b, c)and relative bias(d, e, f) as a function of model parameter value deviations (presented in %). The Clapp-
Hornberger parameter(a, d), the soil wilting point wetness(b, e), and the matric potential at saturation(c, f) parameters are shown. Scales
differ for each panel.

parameters for which CLSM exhibits sensitivity in terms
of simulated soil moisture effects. This was computed with
respect to the reference soil moisture, obtained by forcing
the model with radar rainfall and with the originally cali-
brated set of parameters, currently used as part of the GEOS-
5 LDAS. Each parameter was independently scaled by mul-
tiplicative coefficients ranging from 25 % to 400 % of their
standard values. Only one parameter at a time was perturbed
with the same scaling factor for all grid cells, while keeping
the other parameters constant; the scaled parameter was held
constant for the entire 3-yr integration.

Surface and root zone soil moisture fields generated from
CLSM based on each value of the parameter-scaling factor
are evaluated in terms of two performance metrics: efficiency
score (ES) and mean relative error (RelativeBias), defined as
follows:

ES = 1 −

N∑
i=1

(
ϑ̂i − ϑi

)2

var(ϑ)
(1)

Relative Bias=

N∑
i=1

(
ϑ̂i − ϑi

)
N∑
i=1

(ϑi)

, (2)

whereϑ̂ is soil moisture obtained from the perturbed simu-
lation,ϑ is the reference soil moisture andN is the length of
the time series.

Because the number of parameters that we choose affects
the number of ensemble members that we will need to use
in the combined uncertainty simulation (Sect. 3.4), the sub-
set of perturbed model parameters should be kept as small as
possible. Therefore, although the analysis was performed on
several model parameters, we only represent model uncer-
tainty with the two parameters to which modeled soil mois-
ture showed significant sensitivity: the Clapp-Hornberger pa-
rameter (b) and the soil wilting point wetness (wpwet). Fig-
ure 3 shows the above performance metrics (ES and Rela-
tive Bias) versus the parameter scaling factor (presented in
%) for these two parameters. The figure also shows the met-
rics for the matric potential at saturation (ψ), which is re-
ported as an example of a parameter to which the model did
not show considerable sensitivity. Metrics are computed for
each grid cell and shown as boxplots, where the central mark
is the median, and the edges of the box are the 25th and
75th percentiles. Results are presented here only for the sur-
face soil moisture, but are very similar for the root zone sim-
ulations. Efficiency scores range between 0.88 and 1 forb

and from negative values to 1 for wpwet, while the relative
bias varies between−0.3 and 0.1 forb, and between−0.3
and 0.6 for wpwet. It is worth noting that in this study we are
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Table 1. Combinations of parameters with efficiency score higher
than 80 % for surface and 70 % for root zone soil moisture. Com-
binations along the anti-diagonal (marked with superscript “+”) are
used in the combined uncertainty experiments (Sect. 3.4).

b/wpwet 0.80 0.90 1.05 1.15

0.50 O O O+

0.80 O O+ O
1.25 O O+ O O
2.00 O+ O O

only looking at the impact of different parameter combina-
tions on surface and root zone soil moisture model estimates.
The sensitivity of the parameters might change if different
model output variables are considered (Rudiger et al., 2010).

Combinations of these two parameters (b and wpwet) are
then used to produce model simulations of soil moisture
fields. Each set of perturbed parameter values is assigned a
likelihood value; in this study it was chosen to be the ef-
ficiency score (Eq. 1), which indicates the correspondence
between the model predictions and the reference integra-
tion. For example, the parameter combination whereb is
perturbed with a multiplicative factor of 80 % of its origi-
nal calibrated value and wpwet of 90 % of its original value
is assigned an efficiency score of 0.94 (0.88) for surface (root
zone) soil moisture (Fig. 4). The total sample of simula-
tions is then split into behavioral and non-behavioral param-
eter combinations, according to the equifinality assumption
(Beven and Binley, 1992). In other words, we want to iden-
tify the model parameter values that give similar error met-
rics in terms of simulated soil moisture. In fact, we assume
that the existing parameter set for the Catchment model (de-
fined in previous studies) is the most appropriate, and then
use the equifinality concept to determine the range of param-
eter variations around that parameter set that give comparable
model performance (relative to model simulations using the
optimal parameter set) according to a pre-defined criterion.

This criterion is based on a breaking point in the effi-
ciency score metric, sorted from high to low values (Fig. 4).
The slope of the tangent to the curve drops from−0.012
to −0.031 (i.e., by about 3 times) when the efficiency score
drops below 0.8 for surface soil moisture (units of the tan-
gent slope are change in ES per experiment after ranking the
experiments by ES). A very similar behavior is observed for
root zone soil moisture, where the tangent slope drops from
a value of−0.020 to a value of−0.056 when the efficiency
score falls below 0.7. The combinations of perturbed param-
eter values that show efficiency scores higher than the ES val-
ues corresponding with the two breaking points are selected
as behavioral parameter sets. This results in thirteen sets of
parameter values, listed in Table 1, which are then used for
case M1. (Experiment “b200w115” exceeds the ES thresh-
old only for surface soil moisture and is therefore excluded).
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Fig. 4. Efficiency score for different combinations of the Clapp-
Hornberger (b) and the soil wilting point wetness (w) parameter
values for surface soil moisture(a) and root zone soil moisture(b).
For example, the tag “b080w105” on the x-axis corresponds to the
combination that applies deviations of 80 % and 105 % tob andw,
respectively. The dashed line shows the cutoff threshold of accept-
able efficiency scores.

For each simulation, the same parameter set is used for all
grid cells in the domain and kept constant during the 3-yr
integration period.

Alternatively, model uncertainty can be represented by di-
rectly perturbing model prognostic variables (case M2 in
Fig. 2). The three bulk soil moisture prognostic variables of
CLSM are surface excess, root zone excess, and catchment
deficit (Sect. 3.1). However, Reichle et al. (2007) observed
that perturbations in the root zone excess might lead to biases
between the ensemble mean and the unperturbed reference
integration. Therefore, perturbations are limited to the sur-
face excess and the catchment deficit. Each ensemble mem-
ber is subject to randomly generated noise that is added to
the model prognostic variables to represent errors in model
structure and parameters. Specifically, normally distributed
additive perturbations are applied; ensemble means are con-
strained to zero, and time series correlations are imposed via
a first-order autoregressive model. The perturbation param-
eter values are identical to the ones listed in Table 2 of Liu
et al. (2011), and shown here in Table 2 for completeness.
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Table 2. Parameters for perturbations to the CLSM prognostic
variables.

Model prognostic Type Standard AR(1) time series
perturbation deviation correlation scale

Catchment deficit Additive 0.05 mm 3 h
Surface excess Additive 0.02 mm 3 h

For consistency with case M1, thirteen simulations are run
by perturbing the two model prognostic variables.

It is worth noting that while case M1 only addresses uncer-
tainty in the model parameters, approach M2 technically ad-
dresses both model structural and parameter uncertainty. In
addition, M2 requires independent observations to properly
characterize the parameter values of the statistical perturba-
tion model, as it makes assumptions about the model error
characteristics (i.e., standard deviation, space-time correla-
tion, Gaussian error), which cannot be known a priori. More-
over, the character of the ensembles generated by M1 and
M2 is very different. In the first case, each ensemble mem-
ber will be biased against the reference in terms of long-term
mean soil moisture at a given grid cell, whereas in case M2
each ensemble member is generally unbiased with respect to
the ensemble mean (or reference).

In Sect. 4, soil moisture estimates obtained from model
simulations using the two methods will be compared to stan-
dard normal deviates of Mesonet soil moisture observations
to study how the model uncertainty captures the ground
measurements.

3.3 Rainfall forcing uncertainty

The SREM2D rainfall error model (Hossain and Anagnos-
tou, 2006a) is employed here to determine the error propa-
gation from rainfall forcing to the soil moisture prediction.
SREM2D models the multi-dimensional error structure of
satellite retrievals with space-time stochastic formulations.
The important aspect of SREM2D is its ability to model
not only the spatial variability of rain rate estimation error,
but also the spatial structure of the successful delineation of
rainy and non-rainy areas. As real sensor data actually exhibit
spatial clusters of false rain and no-rain area delineations,
this characteristic makes SREM2D capable of capturing the
magnitude of the satellite rainfall error and variability across
scales (Hossain and Anagnostou, 2006b). The input parame-
ters for the satellite rainfall error model are shown in Table 3.
In the study of Maggioni et al. (2011) it was shown that,
compared to a simpler rainfall error model, SREM2D en-
sembles provide better encapsulation of the reference (WSR-
88D) precipitation.

In this study, CMORPH satellite rainfall is perturbed by
SREM2D to produce an ensemble of twenty-four equiprob-
able reference-like rainfall realizations. This ensemble is
used to force CLSM to obtain an ensemble of soil moisture

fields that represent the rainfall forcing uncertainty (case F
in Fig. 2). In the case of rainfall uncertainty alone, CLSM
parameters are set to their original values.

3.4 Combined uncertainty

The combined uncertainty is studied by merging the rain-
fall forcing uncertainty with the model uncertainty, estimated
with the two different approaches described above, which
results into two experiments: M1F, where model parame-
ter perturbations are added to rainfall forcing perturbations,
and M2F, where model prognostic perturbations are added
to rainfall forcing perturbations (right column of Fig. 2). In
both experiments, CMORPH precipitation forcing has been
perturbed through the SREM2D error model. Details about
the two experiments are provided next.

Firstly, four parameter sets out of the thirteen behavioral
parameter combinations were chosen to represent the model
parameter uncertainty in the combined uncertainty experi-
ment. These are the experiments on the anti-diagonal of Ta-
ble 1 (0.50, 1.15), (0.80, 1.05), (1.25, 0.90), and (2.00, 0.80)
for b and wpwet parameters, respectively. The chosen ex-
periments provide a possible combination of perturbations
that assures a balanced representation of the range of val-
ues of both parameters in the behavioral parameter sets. To
some extent, this also addresses the issue of potentially cor-
related parameters: by selecting the experiments along the
anti-diagonal in Table 1, we give a slight preference to anti-
correlated over correlated model parameters. However, fu-
ture studies should evaluate the correlation among model pa-
rameters and eliminate potential parameter dependences. For
each of those four sets of parameters, six ensemble members
were integrated with perturbed CMORPH precipitation in-
puts (using the SREM2D rainfall error model), for a total of
24 soil moisture ensemble members (case M1F in Fig. 2).

Secondly, another 24-member ensemble of CLSM was in-
tegrated by perturbing both precipitation (using SREM2D)
and prognostic variables at the same time. Specifically, nor-
mally distributed additive perturbations were added to the
same prognostic variables as in case M2, i.e., surface excess
and catchment deficit. The output from these runs is a soil
moisture ensemble carrying rainfall forcing and model un-
certainty (case M2F).

The combined uncertainty (rainfall forcing + model er-
ror) obtained with the two different methods (cases M1F
and M2F) is then compared to the uncertainty introduced
by only perturbing rainfall forcing (case F). To investigate
the uncertainty associated with each experiment, rank his-
tograms, exceedance ratios and uncertainty ratios (defined
below) are presented for both surface and root zone soil
moisture. Results are described in the next section.

www.hydrol-earth-syst-sci.net/16/3499/2012/ Hydrol. Earth Syst. Sci., 16, 3499–3515, 2012



3506 V. Maggioni et al.: Model and rainfall forcing errors on characterizing soil moisture uncertainty

Table 3.SREM2D parameters.

Units Value

Mean of log-normal multiplicative error dimensionless 1.00
Standard deviation of log-normal multiplicative error dimensionless 0.20
False alarm mean rain rate mm h−1 0.24
No-rain probability of detection dimensionless 0.96
Correlation length for multiplicative error km 90
Correlation length for successful rain detection km 190
Correlation length for successful no-rain detection km 70
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 805 

Figure 5 Standard-normal deviate time series for a representative Mesonet station located in the 806 

eastern region of the study area (94.845W – 36.889N, see Figure 1) and for the corresponding 807 

25km grid cell. Panels a) and b) illustrate model simulations in which parameters are perturbed, 808 

while panels c and d illustrate model simulations in which model prognostic variables are 809 

perturbed. Surface (a and c) and root zone (b and d) soil moisture time series are shown. 810 

  811 

Fig. 5. Standard-normal deviate time series for a representative Mesonet station located in the eastern region of the study area (94.845◦ W–
36.889◦ N, see Fig. 1) and for the corresponding 25 km grid cell. Panels(a) and(b) illustrate model simulations in which parameters are
perturbed, while panels(c) and(d) illustrate model simulations in which model prognostic variables are perturbed. Surface(a, c) and root
zone(b, d) soil moisture time series are shown.

4 Discussion of results

We first investigate how the model uncertainty determined by
the two techniques encapsulates in-situ measurements from
Mesonet. Next, we compare the forcing rainfall uncertainty
alone to the combined model and rainfall forcing uncertainty
(or prediction uncertainty) through soil moisture time series
plots and performance metrics.

4.1 Model uncertainty analysis

To compare the two model uncertainty approaches (M1 and
M2), we focus on anomaly time series, specifically stan-
dard normal deviate time series and associated anomaly

correlation coefficients, which capture the correspondence
in phase between model estimates and ground observations,
disregarding potential bias or differences in the variance (En-
tekhabi et al., 2010b). Standard-normal deviates are com-
puted at the daily scale as differences between the actual
values and the monthly climatological average values of the
3-yr time series, normalized by the corresponding standard
deviation. Anomaly correlation coefficients are chosen as a
performance metric due to our focus on data assimilation ap-
plications, which requires unbiased errors.

Figures 5 and 6 show standard-normal deviate daily time
series of CLSM surface and root zone soil moisture ensemble
members, and corresponding Mesonet measurements during
the three years of 2004, 2005 and 2006 and for both model
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 812 

Figure 6 Same as in Figure 5 but for a location in the western region of the study area (99.641W 813 

– 36.831N, see Figure 1). 814 

 815 

Fig. 6.Same as in Fig. 5 but for a location in the western region of the study area (99.641◦ W, 36.831◦ N, see Fig. 1).

error approaches. Specifically, Figs. 5 and 6 show standard-
normal deviate time series at two representative Mesonet sta-
tions, located, respectively, in the eastern (wetter) and west-
ern (drier) region of the study area and at the corresponding
25 km grid cells indicated in Fig. 1.

Figures 5 and 6 show that variations in the model pre-
dicted soil moisture values are consistent with the Mesonet
measurements as well as the associated rainfall forcing vari-
ations. Furthermore, the standard-normal deviate time se-
ries are consistent between surface and root zone soil mois-
ture. The domain-average anomaly correlation coefficients
between simulated (ensemble mean) soil moisture and the
Mesonet observations are 0.78 (0.64) for the surface soil
moisture (root zone soil moisture) for both M1 and M2 model
uncertainty approaches. At the western station (drier condi-
tions), correlation is slightly higher than the eastern pixel
case (wetter conditions). Specifically, at the eastern loca-
tion, the anomaly correlation coefficient is 0.53 (0.56) when
model uncertainty is introduced by directly perturbing pa-
rameters, and 0.54 (0.56) when model uncertainty is assessed
by perturbing model prognostic variables for surface (root
zone) soil moisture. On the other hand, at the western loca-
tion the anomaly correlation coefficient is 0.58 for the sur-
face soil moisture, and it increases to 0.81 for root zone soil
moisture, for both model uncertainty approaches. We note
that correlation coefficients are comparable between M1 and
M2 for surface and root zone soil moisture and for both rain-
fall climatological conditions.

From the anomaly time series and correlation coefficients
analysis, we can conclude that both model uncertainty ap-
proaches capture equally well the measurement variability
from Mesonet stations at both soil moisture depths. These
considerations give us confidence about the viability of the
two approaches to introduce model uncertainty in this study.

4.2 Model and rainfall forcing uncertainty analysis

In this section, the rainfall forcing uncertainty alone is com-
pared to the combined model and rainfall uncertainty through
time series plots and performance metrics. Figures 7 and 8
show time series of surface and root zone soil moisture en-
sembles during the warm season of 2005 (June to Septem-
ber) for the following three experiments: case F where only
rainfall forcing uncertainty is introduced; case M1F which
combines rainfall forcing uncertainty with model uncertainty
by perturbing model parameters; and case M2F which in-
cludes rainfall forcing uncertainty and model uncertainty by
perturbing prognostics. Figures 7 and 8 also include time se-
ries of reference model soil moisture, which is defined as
the output from CLSM forced with unperturbed WSR-88D
rainfall fields. In particular, these figures show time series
for the same representative grid cells as in Figs. 5 and 6,
one located in the wetter eastern region of the study area
(Fig. 7) and one in the drier western part (Fig. 8). Figures 7
and 8 show that for both soil moisture depths, the ensemble
envelope is wider when considering the combined rainfall
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 816 

Figure 7 Surface (a, b, c) and root zone soil moisture (d, e, f) time series during the warm season of 2005 (June to September) for the 817 

grid cell shown in Figure 5, located in the eastern region of the study area. Panels a and d show the experiment where only rainfall 818 

forcing uncertainty is introduced; panels b and e show the experiment that combines rainfall forcing uncertainty with model 819 

uncertainty by perturbing model parameters; and panels c and f show the experiment that combines rainfall forcing uncertainty with 820 

model uncertainty by perturbing prognostics. Time series of rainfall are also shown on the second axis of each panel.  821 

Fig. 7.Surface(a, b, c)and root zone soil moisture(d, e, f) time series during the warm season of 2005 (June to September) for the grid cell
shown in Fig. 5, located in the eastern region of the study area. Panels(a) and(d) show the experiment where only rainfall forcing uncertainty
is introduced; panels(b) and(e)show the experiment that combines rainfall forcing uncertainty with model uncertainty by perturbing model
parameters; and panels(c) and (f) show the experiment that combines rainfall forcing uncertainty with model uncertainty by perturbing
prognostics. Time series of rainfall are also shown on the second axis of each panel.

forcing and model uncertainty through parameter perturba-
tions (case M1F) compared to the other two cases. Moreover,
soil moisture time series show slightly wider ensemble en-
velopes for the combined rainfall forcing and prognostic per-
turbations compared to the rainfall forcing alone uncertainty
experiment. By comparing the two pixel time series, it can
be inferred that more variability is observed in wetter rain-
fall conditions for both surface and root zone soil moisture,
which is expected as soil water content variability correlates
to rainfall variability and consequently exhibits stronger de-
pendence on rainfall forcing error.

As discussed earlier, wider ensemble envelopes derived
from the combined rainfall and model uncertainty will in-
crease the probability of encapsulating the reference soil
moisture simulations. Two metrics are introduced to quan-
tify this effect. Specifically, we use the exceedance ratio (ER)
metric to evaluate the ability of the ensemble integrations to
encapsulate the reference predictions and the uncertainty ra-
tio (UR) metric to evaluate the accuracy of the ensemble en-
velope width. These metrics are presented for the three exper-
iments with respect to the reference modeled soil moisture.
The exceedance ratio is defined as

ER =
Nexceedance

Nt
, (3)

whereNexceedanceis the number of times and locations for
which the reference soil moisture falls outside the ensemble
envelope andNt is the total number of times and locations.
If ER is equal to 1, it means there is a 100 % probability
that the reference will not fall between the lower an upper
bounds of the ensemble envelope, whereas if ER is close to 0,
there is a low probability that the reference exceeds those
bounds, or, in other words, there is a perfect encapsulation of
the reference inside the ensemble envelope.

The uncertainty ratio, on the other hand, represents the ra-
tio of the aggregate width in the simulated uncertainty rel-
ative to the corresponding average actual uncertainty (with
respect to the reference soil moisture):

UR =

N∑
1

(
θ̂ iupper− θ̂ ilower

)
2 ×

N∑
1

∣∣∣θ̂ iensmean− θ̂ iopt

∣∣∣ , (4)

whereθ̂ iupperandθ̂ ilower are, respectively, the upper and lower

bounds of the simulated ensemble,θ̂ iensmean corresponds to
the ensemble mean, and̂θ iopt represents the reference soil
moisture obtained by forcing the model with unperturbed
WSR-88D rainfall fields. A perfect ensemble spread has UR

Hydrol. Earth Syst. Sci., 16, 3499–3515, 2012 www.hydrol-earth-syst-sci.net/16/3499/2012/



V. Maggioni et al.: Model and rainfall forcing errors on characterizing soil moisture uncertainty 3509

 46 

 822 

Figure 8 Same as in Figure 7 but for the representative 25km grid cell shown in Figure 6, located in the western region of the study 823 

area. 824 

  825 

Fig. 8.Same as in Fig. 7 but for the representative 25 km grid cell shown in Fig. 6, located in the western region of the study area.

values equal to 1. If UR is less (greater) than 1 the ensem-
ble is underestimating (overestimating) the model prediction
error spread, which can translate into insufficient (excessive)
weights given to observations in an ensemble-based data as-
similation system.

Exceedance and uncertainty ratios have been demon-
strated to be viable metrics to evaluate ensemble prediction
performance in several studies (Hossain et al., 2004; Hossain
and Anagnostou, 2005; Borga et al., 2006; Moradkhani et al.,
2006 among others). In particular, the combination of these
two statistics allows to assess two contrasting issues: if the
uncertainty limits are too narrow (that is, ER is high), the
comparison with the reference fields suggests that prediction
uncertainty is underestimated; on the other hand, if the limits
are too wide (that is, UR is high), the model may overesti-
mate the reference uncertainty, which translates into a poor
predictive capability.

ER and UR statistics are computed for each grid cell of
the domain. Figure 9 shows frequency histograms of ER
and UR metrics for the surface and root zone soil mois-
ture. The corresponding mean values of these metrics are re-
ported in Table 4. Consistent with the time series discussed
above, the lowest ER is observed for the experiment that
combines rainfall forcing and model parameter uncertain-
ties (M1F). Histograms for M1F are shifted towards sig-
nificantly lower ER values where the average for surface
(root zone) soil moisture is 0.39 (0.35). The complement
to 1 of the exceedance ratio can also be interpreted as the

Table 4. Mean exceedance and uncertainty ratios for surface soil
moisture (in regular style) and root zone soil moisture (in italics).

Mean ER Mean UR
(SSM/RZSM) (SSM/RZSM)

Case F 0.61/0.64 0.58/0.45
Case M1F 0.39/0.35 1.02/1.08
Case M2F 0.54/0.59 0.65/0.53

ensemble ability of encapsulating the reference. Namely, the
simulated ensemble has a probability of 61 % (65 %) on av-
erage of encapsulating the reference ground measurements
in the case of surface (root zone) soil moisture. In compar-
ison, the experiment that combines rainfall-forcing uncer-
tainties with model prognostic perturbations (M2F) exhibits
only slightly reduced ER values when compared to the rain-
fall forcing uncertainty experiment (F). Specifically, the av-
erage exceedance ratio reduces from 0.61 (0.64) in case F
to 0.54 (0.59) in case M2F for surface (root zone) soil mois-
ture, due to the variability added by the prognostic perturba-
tions. Therefore, by combining forcing and prognostic per-
turbations, we show that we improve the characterization of
uncertainty in the soil moisture ensemble. However, this im-
provement is marginal compared to M1F method that dras-
tically reduces ER (0.39 and 0.35 for surface and root zone
soil moisture, respectively).
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 826 

Figure 9 Frequency histograms of Exceedance Ratios (a, b) and Uncertainty Ratios (c, d) for surface soil moisture (a, c) and root zone 827 

soil moisture (b, d). 828 
Fig. 9. Frequency histograms of exceedance ratios(a, b) and uncertainty ratios(c, d) for surface soil moisture(a, c) and root zone soil
moisture(b, d).

On the other hand, the UR in case M1F exhibits values
that are closer to 1 compared to the other experiments. In
particular, the average UR is equal to 0.58 (0.45) for sur-
face (root zone) soil moisture when perturbations are based
only on the forcing rainfall, which increases to 0.65 (0.53)
and 1.02 (1.08) when adding the model prognostic perturba-
tions and model parameter perturbations, respectively. This
demonstrates that in cases F and M2F, the ensemble signif-
icantly underestimates the average actual soil moisture er-
ror, whereas in case M1F, the ensemble spread is less biased
and statistically closer to the average actual error. Further-
more, we note that root zone soil moisture exhibits slightly
higher UR values in the case of M1F and lower UR values
for cases F and M2F. This is related to the fact that vari-
ability in the forcing rainfall more directly influences the up-
per centimeter soil moisture, whereas variability added to the
model parameters affects the prediction of both surface and
root zone soil moisture variables.

In summary, the ER and UR metrics indicate that by com-
bining model parametric uncertainty with rainfall forcing un-
certainty, variability in soil moisture prediction error can be
well described. Specifically, we showed that this combina-
tion increases the ability of the ensemble envelope of encap-
sulating the reference simulation (lower ER), without over-
estimating the ensemble spread (UR close to 1). On the other
hand, using only rainfall perturbations, or adding prognostic
perturbations to rainfall forcing perturbations, results in an
underestimation of the actual soil moisture errors (UR values

significantly lower than 1) and a lower likelihood of encap-
sulating the reference simulations (higher ER values).

Even though past studies have shown that CLSM could
be run with a small number of ensemble members (Reichle
et al., 2002; Forman et al., 2012), we verify here the viabil-
ity of using twenty-four ensemble members in this particular
case. Specifically, we performed an analysis of the two statis-
tics described above for different ensemble sizes that range
from 4 to 24 (Fig. 10). We observe that both ER and UR
converge at about 16 ensemble members for all the three ex-
periments and for both surface and root zone soil moisture.
This gives us confidence that the 24 ensemble members used
in this study are sufficient to obtain statistically meaningful
results.

Another useful and powerful tool to evaluate ensemble
predictions is represented by the rank histogram. If both
model and perturbations are able to reproduce the forecast
distribution (i.e., the ensemble is statistically consistent), the
ensemble members should be equally likely scenarios for the
reference simulation. Specifically, the number of times that
the reference falls within any two adjacent ensemble mem-
bers should be independent of the position of these members
in the ordered ensemble (Siegert et al., 2012). Therefore, if
the ensemble is consistent, a histogram of the rate at which
the reference falls into each interval (i.e., the rank histogram)
should be flat, up to random variations due to the finiteness
of the number of samples (Talagrand et al., 1997; Hamill
and Colucci, 1997; Hamill, 2001). A lack of variability in
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 829 

Figure 10 Exceedance Ratios (a, b) and Uncertainty Ratios (c, d) as function of the ensemble size for surface soil moisture (a, c) and 830 

root zone soil moisture (b, d).  831 

Fig. 10.Exceedance ratios(a, b) and uncertainty ratios(c, d) as function of the ensemble size for surface soil moisture(a, c)and root zone
soil moisture(b, d).

the predicted ensemble would show up in a U-shaped rank
histogram, whereas consistent biases would translate into a
sloped rank histogram.

Figure 11 shows rank histograms for surface soil moisture,
evaluated for the domain average and for two representative
grid cells, one located in the eastern (and wetter) region of
the study area and the other in the western (and drier) re-
gion. When perturbations are added only to rainfall forcing
(case F), the rank histograms show a U-shape when the do-
main average is evaluated, whereas at the single grid cells a
strong bias is observed. In the case of the eastern (wetter)
pixel, the ensemble appears to underestimate the reference
simulations, as most of the times all the ensemble members
are below the reference (i.e., rank is equal to 24). On the other
hand, at the western (drier) pixel, the prediction shows a con-
sistent overestimation, as most of the ensemble members are
usually above the reference simulation, which corresponds to
low values of the rank.

When perturbations are added to rainfall forcing and prog-
nostics (case M2F), no remarkable difference is observed,
even though at the grid cell scale the bias slightly decreases
compared to case F. However, when perturbations are applied
to forcing and model parameters (case M1F), at the domain
average, the rank histograms show a considerably flatter his-
togram, which demonstrate a better estimation of the forecast
uncertainty. At the single pixel scale, the bias is significantly

reduced, again showing flatter rank histograms when com-
pared to the other two experiments. Very similar results are
obtained for root zone soil moisture (not shown here).

The analysis of the rank histograms confirms what was
shown by the exceedance and uncertainty ratios. In cases F
and M2F, the uncertainty in the forecast ensemble is either
underestimated (at the domain scale) or shows consistent bi-
ases (at the single pixel locations). Specifically, a positive
bias is observed at the drier location, whereas a negative bias
is observed at the wetter location. For case M1F, the com-
bination of rainfall forcing and model parameter perturba-
tions reproduces more accurate forecast uncertainty and gen-
erates a more consistent ensemble of surface and root zone
soil moisture at the domain and grid-cell scales.

5 Conclusions

In this study, we investigated ways to characterize soil mois-
ture prediction uncertainty needed in land data assimilation
systems. Specifically, we focused on the impact of rainfall
forcing error and model uncertainty (separately and in com-
bination) on the prediction of surface and root zone soil mois-
ture using the Catchment land surface model, which is part of
the NASA GEOS-5 LDAS. Firstly, we examined how ensem-
ble prediction uncertainty encapsulates the reference ground
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Figure 11 Rank histograms for cases F (a, d, g), M1F (b, e, h) and M2F (c, f, i) at the domain average scale (a, b, c), at the grid cell 833 

shown in Figure 5, located in the eastern region of the study area (d, e, f), and at the grid cell shown in Figure 6, located in the western 834 

region of the study area (g, h, i). 835 

Fig. 11.Rank histograms for cases F(a, d, g), M1F (b, e, h)and M2F(c, f, i) at the domain average scale(a, b, c), at the grid cell shown in
Fig. 5, located in the eastern region of the study area(d, e, f), and at the grid cell shown in Fig. 6, located in the western region of the study
area(g, h, i).

measurements from Mesonet stations, comparing two model
uncertainty approaches. The first approach uses perturbed
model parameters (M1). The second approach, which is also
the method that is currently adopted in the GEOS-5 LDAS,
adds randomly generated noise to the model prognostic vari-
ables during the land model integration (M2). Both meth-
ods were shown to capture well the soil moisture (temporal)
variations measured at in-situ Mesonet stations. However, the
first technique (M1) contributed more spread in the soil mois-
ture ensemble time series compared to the prognostic random
perturbation method.

Next, we compared soil moisture prediction uncertainty
derived from rainfall forcing uncertainty alone (case F)
against uncertainty derived from combining model with rain-
fall forcing uncertainty, using both model uncertainty ap-
proaches (cases M1F and M2F). Rainfall forcing perturba-
tions alone provided narrower ensemble envelopes of simu-
lated surface and root zone soil moisture time series com-
pared to the ones obtained by combining forcing and model
uncertainties. Prognostic perturbations added only modest

variability to the rainfall forcing uncertainty. On the other
hand, the combined uncertainty employing perturbations of
model parameters (case M1F) was shown to produce the
widest soil moisture ensemble envelopes relative to the other
two cases and for both soil moisture depths. This was ex-
hibited in the exceedance and uncertainty ratio metrics. The
lowest exceedance ratio, a metric that assesses the capabil-
ity of the ensemble integrations to encapsulate the reference,
was observed when combining rainfall forcing and model pa-
rameter uncertainties, while the experiment that combined
rainfall-forcing uncertainty with prognostic perturbations ex-
hibited only slightly reduced ER values relative to the rain-
fall forcing uncertainty alone. Moreover, the uncertainty ra-
tio, which measures the accuracy of the ensemble envelope
width, was shown to be close to 1 when perturbations were
added to the model parameters (case M1F). This demon-
strates that uncertainty in soil moisture was better described
by M1F, with ensemble spread close to the model prediction
uncertainty spread, defined as the difference between the
ensemble mean and the reference model simulation. When
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rainfall forcing perturbations alone (case F) or rainfall forc-
ing and prognostics perturbations (case M2F) were consid-
ered, the uncertainty ratios were significantly lower than 1,
exhibiting an underestimation of the actual errors.

The analysis of the rank histograms corroborated what
the exceedance and uncertainty ratios showed, that is, the
most consistent ensemble of soil moisture was obtained
by combining rainfall and model parameter perturbations
(case M1F). When only the rainfall forcing was perturbed
(case F), the rank histogram showed a U-shape at the do-
main average scale, which corresponds to a lack of variability
in the forecast ensemble. At the grid-cell scale, a consistent
positive (negative) bias was observed at the drier (wetter) lo-
cation. No considerable difference was observed when per-
turbations are added to both rainfall forcing and model prog-
nostics (case M2F) other than a slight decrease of the bias at
the pixel scale. On the other hand, method M1F showed sig-
nificantly flatter rank histograms and results in an ensemble
that is better able to characterize the actual prediction uncer-
tainty.

The accurate estimation of the soil moisture prediction un-
certainty is encouraging for the application of this approach
in ensemble data assimilation systems. In particular, this
study contributes to the development of the NASA GEOS-
5 LDAS, providing valuable insights about the interaction
between rainfall forcing and model uncertainties in case of
satellite rainfall application in land data assimilation. Specif-
ically, it shows that the current method to represent model
and forcing uncertainties poorly describes the actual predic-
tion uncertainty.

Other methods to investigate forecast ensemble uncer-
tainty could be considered in future studies. In particular,
model averaging methods such as BMA (Bayesian Model
Averaging) are computationally affordable and able to pro-
vide sharp predictive uncertainty intervals (Raftery et al.,
2005). Further studies should also investigate potential cor-
relations among the model parameters, as the perturbation of
one soil parameter may affect the others, and how this would
influence the model performance. An extension of this study
will focus on investigating the impact of the herein proposed
combined rainfall and model uncertainty on the assimilation
of satellite-retrieved soil moisture in a land data assimilation
system. Moreover, other land surface models should be con-
sidered. Finally, other regions of the world characterized by
different hydroclimatic regimes need to be analyzed.
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