Articles | Volume 13, issue 9
https://doi.org/10.5194/hess-13-1607-2009
https://doi.org/10.5194/hess-13-1607-2009
10 Sep 2009
 | 10 Sep 2009

River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin

M. K. Akhtar, G. A. Corzo, S. J. van Andel, and A. Jonoski

Related subject area

Subject: Hillslope hydrology | Techniques and Approaches: Theory development
Young and new water fractions in soil and hillslope waters
Marius G. Floriancic, Scott T. Allen, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2024-437,https://doi.org/10.5194/egusphere-2024-437, 2024
Short summary
Energy efficiency in transient surface runoff and sediment fluxes on hillslopes – a concept to quantify the effectiveness of extreme events
Samuel Schroers, Ulrike Scherer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 27, 2535–2557, https://doi.org/10.5194/hess-27-2535-2023,https://doi.org/10.5194/hess-27-2535-2023, 2023
Short summary
Morphological controls on surface runoff: an interpretation of steady-state energy patterns, maximum power states and dissipation regimes within a thermodynamic framework
Samuel Schroers, Olivier Eiff, Axel Kleidon, Ulrike Scherer, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 3125–3150, https://doi.org/10.5194/hess-26-3125-2022,https://doi.org/10.5194/hess-26-3125-2022, 2022
Short summary
Soil moisture: variable in space but redundant in time
Mirko Mälicke, Sibylle K. Hassler, Theresa Blume, Markus Weiler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 2633–2653, https://doi.org/10.5194/hess-24-2633-2020,https://doi.org/10.5194/hess-24-2633-2020, 2020
Short summary
A history of the concept of time of concentration
Keith J. Beven
Hydrol. Earth Syst. Sci., 24, 2655–2670, https://doi.org/10.5194/hess-24-2655-2020,https://doi.org/10.5194/hess-24-2655-2020, 2020
Short summary

Cited articles

Abrahart, R. J. and See, L.: Comparing neural network and autoregressive moving average techniques for the provision of continous river flow forecasts in two contrasting catchments, Hydrol. Process., 14, 2157–2172, 2000.
Abrahart, R. J., Heppenstall, A. J., and See, L. M.: Timing error correction procedure applied to neural network rainfall-runoff modelling, Hydrolog. Sci. J., 52, 414–431, 2007.
Akhtar, M. K.: Flood Forecasting for Bangladesh with satellite Data, Msc Thesis, UNESCO-IHE, Delft, the Netherlands, 134 pp, 2006{}.
ASCE: Task Committee on Application of Artificial Neural Networks in Hydrology, Artificial Neural Networks in Hydrology, II:Hydrologic Application, J. Hydrol. Eng., 5, 124–136, 2000{a}.
ASCE: Task Committee on Application of Artificial Neural Networks in Hydrology, Artificial Neural Networks in Hydrology. I: Preliminary Concepts, J. Hydrol. Eng., 5, 115–123, 2000{b}.
Download