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Abstract. This paper explores the use of flow length and performance deteriorates. The incorporation of remote sens-
travel time as a pre-processing step for incorporating spaing data of spatially distributed precipitation information as
tial precipitation information into Artificial Neural Network pre-processing step showed to be a promising alternative for
(ANN) models used for river flow forecasting. Spatially dis- the setting-up of ANN models for river flow forecasting.
tributed precipitation is commonly required when modelling
large basins, and it is usually incorporated in distributed
physically-based hydrological modelling approaches. How-
ever, these modelling approaches are recognised to be quil]e

complex and expensive, especially due to the data COIIeCM fth fiviti isted with the planni q
tion of multiple inputs and parameters, which vary in space any or the activities associated wi € planning and oper-

and time. On the other hand. ANN models for flow fore- ation of the components of a water system require forecasts

casting are frequently developed only with precipitation andlOlc futture efvents. tTh?ret IS a r]lleed for bgth tshortt-_te_rm ?r? d
discharge as inputs, usually without taking into considera- ontg— erm forecasts ct) S reﬁlﬂm OW, In or ert'o o? imise the
tion the spatial variability of precipitation. Full inclusion of waler resources system. VIoreover, operational river man-

spatially distributed inputs into ANN models still leads to a agement strongly depends on accurate and reliable flow fore-

complex computational process that may not give acceptablgaSts' SL,jCh forecasting Of. rver flow pr(_)wdes warnings of
pproaching floods and assists in regulating reservoir outflow

results. Therefore, here we present an analysis of the flovitPP | er f i t
length and travel time as a basis for pre-processing remotel)qur'ng ow river Tlows for water resources management.

sensed (satellite) rainfall data. This pre-processed rainfall is Next to the widely applied distributed (semi) physically-

used together with local stream flow measurements of previPased based hydrological models, data driven techniques are

ous days as input to ANN models. The case study for thisncreasingly being applied for flow forecasting. In particular,

modelling approach is the Ganges river basin. A compara—ﬂow forecasting with artificial neural network (ANN) models

tive analysis of multiple ANN models with different hydro- has been accepted as a good alternative to forecasting with

logical pre-processing is presented. The ANN showed itshydrological and hydrodynamic model8CE 2000gD).

ability to forecast discharges 3-days ahead with an acceptANN models extract the relationship between the inputs and

able accuracy. Within this forecast horizon, the influence ofOUtPUts of a process, withoutthe physics being explicitly pro-
the pre-processed rainfall is marginal, because of dominanided- These models need only a limited number of input

influence of strongly auto-correlated discharge inputs. Forvarables, such as discharge and rainfall, while, distributed
forecast horizons of 7 to 10 days, the influence of the pre-(S8Mi) physically-based based models need a large number of

processed rainfall is noticeable, although the overall modefdditional parameters to be provided, such as flow resistance,
cross-sections, groundwater flow characteristics, etc. these

parameters are difficult to measure or to estimate, mainly be-
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which makes them very suitable for real-time applications, Input Layer Output Layer
such as flood forecasting and early warning. Their disadvan- precipitation Hidden Laver
tages are related to the interpretation of the ANN structure —v.
(“black box), and on their extrapolation capacitylions Lagged
and Hall 1996. It is important to highlight that the ANN so- PrecipitatiL.i O
lution is obtained through an optimisation process validated \
through trials and errorsAGCE, 20004b; Brath et al, 2002 .H dincharge
Brath and Ross01993. Recently, researchers have been ;aigfhiﬁge /
exploring the use of different pre-processing approaches for — QJ
inclusion of additional hydrological knowledge as input to Hidden nodes
ANN models to improve the hydrological representation and S
generalisation@orzo and Solomatin@007ab; Corzo et al,
2009.
Tf?e ANN models can be setup with limited number of Fig. 1. Multi-layer perceptron (sourcébrahart and See000.
input variables, but comprehensive number of records is

needed. This is required, because data-driven methods hayg, o\ of the ANN and the observed information. A de-

limited capability to provide accurate forecasts of events that__. . :

are outside the range of the data set. On the other hand, Wh;t%”eq dgscrlptlon of ANN modgllmg can be found on the
) . . gubhcatlon made by the ASCE in the year 2000.

excessive numbers of variables are used as input the mo tThe determination of the weights in the ANN models

correlated variables dominate the model and therefore it is(“training” phase), is done by minimising the mean square er-

not p053|b!e 1o use glllthe physical knowledge or MEASUre: - hetween the measured discharge and the forecasted by the
ments available. This is normally solved by pre-processing

techniques aimed at reduction of the input space by selectANN model. In this study the Levenberg-Marquardt (LM)

ing the most sensitive variableBdwden et al. 2005ab). A algorithm is usedl(evenberg1944). This algorithm is an it-

. . . o . ., erative technique that locates the minimum of a multivariate
problem in the implementation of a big river basin is the high q

number of variables that an ANN model should manage anJunction that is expressed as the sum of squares of non-linear
. g€, anQ l-valued functions. The LM algorithm is a blend of gradi-
therefore most of the studies found seem to deal only with

. . : ent decent and Gauss-Newton iteration.
small river basins. However, the recent worklofh et al.

(2008 shows the potential of ANN models when applied to The data sets were divided in training (321 data sets) and
large scale hydrological prediction a validation set (118 data sets). These training and valida-

o . . . _ tion data sets had small variations in the different experi-
The use of distributed rainfall input in ANN models is not ments according to the lags of the variables. In addition to
Ghe previously observed discharge, the spatially distributed
precipitation input was formulated based on the travel time
and flow length information, as described in the following
section. Although there are many variables that seem to be
part of the physics, a selection following the idea8ofvden
et al.(20053 was applied.

Campolo et al(2003 used distributed rainfall measured at
several rain gauges; wherdaawson et al(2006 used a set
of peripheral catchment weather station records. The mod
elling approach presented in this paper follows the principle
of exploring different ways of using and adapting spatial pre-
cipitation in order to analyze the ANN model results in fore-
casting flows.
The pre-processing applied includes different methods of3 Travel time and flow length information
spatial and time integration of the rainfall data, on the basis
of flow path and travel time information. This analysis is The input data to the set of ANN models of the Ganges
done for flood forecasting in the Ganges river basin. river, explored here, consists of discharge and precipitation.
The precipitation data cannot be applied directly, because the
large spatial extent of the Ganges basin introduces great time
2 Artificial Neural Networks (ANNS) lags between the rainfall occurrence and the moment it con-
tributes to the river flow close to the border between India and
This study is based on the application of ANN multi-layer Bangladesh, which is the target location for flow forecasting
perceptron (MLP) networks trained with gradient basedin this work. Pre-processing experiments to introduce these
methods. The basic structure of the ANN model used cartime lags are explained in the following section. This pre-
be seen in Figl, where “neurons” represent linear or non- processing is based on GIS analysis to estimate flow length
linear combinations of the input and weights. The mappingand travel time.
of input output requires to find the right weights in the neu- The flow length describes the distance from any point in
rons structure. The optimization of the weights is done bythe river basin to the basin outlet. Such distance is mea-
minimizing the mean square error of the difference betweersured along the flow paths determined from the topography.
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In GIS, the flow length of an arbitrary pixel is determined by  wheredy ; is the flow distance for pixel, along the basin,
summing the incremental distances from centre-to-centre ofic ; is the flow distance for pixel, along the river channel,
pixel along the flow path from the selected pixel to the outletvy is the overland velocity along the watershed,is the ve-
pixel. The concept of flow length is an important issue to hy- locity along the river channel. If we consider the river basin
drologists. When it rains, a drop of water landing somewhereas a system and its objective it is to drain water as quickly
in the basin must first travel some distance before reachings possible, then the presence of channel pixels with high
the outlet. Assuming constant flow velocities the pixel with travel velocities represents efficiency within the system, as
the greatest flow length to the outlet represents the hydrologindicated by the small travel times associated with these pix-
ically most remote pixel. So, the time of concentration canels.
be obtained through flow length divided by the flow velocity. ~ An important consideration is the expected reduction in
Therefore the time of concentration indicates how much timethe ANN processes to be represented due to the preprocess-
is required for the entire basin to contribute to surface flowing transformation of the input precipitation.
at the outlet, after a certain amount of rainfall. In watershed
hydrology, there are various formulations (Izzard formula,
Kerby formula, Kirpich formula, Bransby Williams equation,
National Resources Conservation Service, Kinematic wave, o
. . 4.1 Study area and problem description
formula and etc.) to calculate time of concentration based on
the nature of flow as well as availability of information and Bangladesh is a low-lying country located at the confluence
scope of work {Vanielista 1996. of three major rivers: the Ganges, the Brahmaputra and the
The general assumption of calculating the travel time isMeghna (Fig. 2). About 92% of the catchment area of these
that a uniform velocity sustains throughout the basin, whichrivers is located outside the countdakobsen and Bhuiyan
can be interpreted as the Instantaneous Unit Hydrograpl2005 and 80% of the annual rainfall occurs in the monsoon
(IUH) function. IUH is defined as the flow response that season from June to SeptembBftirga, 2002. Thus huge
would be observed at the basin outlet if a unit pulse of watercross-border monsoon flows, in addition to discharges from
were instantaneously placed uniformly over the entire riveriocal rainfall are drained through Bangladesh into the Bay of
basin at a given instant. With the travel lengths known and aBengal. In many occasions, the volume of generated runoff
single uniform velocity of flow observed throughout the wa- exceeds the capacity of the rivers, causing serious flooding
tershed, the travel time;() to the outlet for any randomly in Bangladesh.
chosen pixeli, would be given by: The river Ganges originates as the Bhagirathi from the
Gangotri Glacier in the Uttaranchal Himalaya and joins the
Alaknanda near Deoprayang to form the Ganga. From there,
ti =di/v 1) the Ganges flows across the large plains of north India and
empties in to the bay of Bengal after dividing up into many
distributaries (Fig.2). The source of the Ganges is at an

. . . ) elevation of 7010 m. The river has a bed slope of about
exploited by using the Digital Elevation Models (DEMs) to 1:10000 in the stretch between the Allahabad F;\nd the Ba-

discern the f_Iow organisatipn c_)f the watershed and its uniqu‘?1aras. From the Banaras onward to the Calcutta the bed slope
hydrologic signal (IUH) which is dependent on the Watershedchanges from 1:12000 to about 1:20000. Along its great

size, shape, and connectivity. | A
. . - ength, the Ganges passes through Bangladesh, which is
The mentioned equation (E#) neglects the velocity dif- almost everywhere flat. The total length of the river is about

ferer:c;e tk;](_etween ovehrl_and ﬂovvt agn? river ﬂc:cw. A_ntlmgrO\:_e- 2507 km. The Ganges has nine main sub-basins (Chambal,
n;eél_ﬁo Its aﬁprgflc f|s e;;]pece loc&om% :ﬁm Intro L_Jl_ch'.onBetwa, Yamuna, Ramganga, Sone, Karnali, Gandak, Bag-
ot difterent velocilies or the overiand an € rver. 'S mati and Kosi). The total basin area is 9aI0° km?. The

yelocny d|ﬁerences can be conceptually understood as COMfirst five tributaries originate in India and the last four tribu-
ing from differences in the Mannings roughnes$ ¢f the

. ries join th n from N |. Among th nine tribu-
flow-surface encountered on the watershed versus the riv faries join the Ganges fro cepa ong these nine tribu

etraries the Yamuna is the most important one, which drains
channels. Velocity differences could be easily such that the ' P ’

river flow velocities are 10 to 100 times larger then the over about one-third of the entire Ganges basin. The Kosi and
b i i 0 0 i i
land flow velocities Koglen and Maidmen2005. With this Karnali drain about 12% and 9% of the basin, respectively

h dified t P b lied: (Mirza, 1997). In 1987, 1988, 1998 and 2004, several seri-
approach, a modied travel ime can be applied: ous floods occurred in Bangladesh, which are good examples
of the need for a forecasting and warning system as an essen-

dy; dci tial tool to reduce flood damage.
y = 4 20 @ °

4 Case Study: flood forecasting in Bangladesh

Where,d; is the distance fronizi pixel to the watershed
outlet andv is the uniform flow velocity. This concept is
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4.2 Tropical Rainfall Measurement Mission (TRMM)

Inputs to the ANN model are of critical importance. Satel-
lite derived rainfall data of Tropical Rainfall Measurement
Mission (TRMM, NASDA, 2001]) is providing 3 hourly rain-
fall, which is very promising. The reliability of the remotely
sensed data is always facing challenges, but it is found from
various validation projects that precipitation radar of TRMM
is producing error within acceptable range. However the ac-
curacy of such data, when compared with rainfall observed
from ground stations varies from place to place and it has
already been tested over Bangladesh. The study proves that
Fig. 2. Ganges-Brahmaputra-Meghna Basin. the correlation coefficientR) is more than 0.773, which is
sensible to certain exterdkhtar, 2009.

600 Kilometers

4.3 Data preparation
In Bangladesh, there are about 52 forecasting stations

where 24, 48, and 72-h forecasts are made everyRBWC, | this study, ANN is used to predict the river flow at
2007). The lead-time of the model for the Northern part of {154inge Bridge (close to the entry point of the Ganges into
the country is shorter. Improved model performance, in prin-gangladesh, see Fig), utilising (i) the calculated discharge
ciple, can be achieved through regional cooperation amongom water level gauge which is located at the same loca-
the countries that share the river basins in question, particugon (with known rating curve for conversion of water levels
larly for exchanging flood information and data sharing. The i, gischarges) and (i) satellite based rainfall for the entire
actual model in Bangladesh consists of three modules: (a) ichment.

rainfall-runoff modules (NAM), (b) a one-dimensional finitt ¢ gocumentation of satellite-derived rainfall is provided
difference hydrodynamic model (HD) based on St. Venanti, yfman et al. (2007 (ftp://meso-a.gsfc.nasa.gov/pub/
equations, (c) an updating module. The updating modulé;,nqocsy and data from the Tropical Rainfall Measure-
analyses measured and simulated water levels and dlschargfence,nt Mission are available in a regular 0.25 degree lat/long

up to the time of forecasting in order to eliminate amplitude rid (TRMM V6.3B42). The extracted data has resolution of
and phase errors which could influence the forecast result 25x0.25 (approximately: Lat. 27.7 km, Lon. 25.2km)
(Chowdhury 2000. However the developed model can only | i o temporal resolution of three hour, which is accumu-

forecast water level 3-day ahead for the Southern part of th(l’ated to daily data for the period from 2001 to 2005. A data

country. _ o o processing tool has been developed to generate time series
Due to regional limitation on the availability of data the ¢, 640 pixel or areal average rainfall depending on the users

current physical based modelling of the region is more Com'requirement.

plex. The regional initiative of the World meteorologi- A DEM (digital elevation model) has been extracted from

cal Organisation (WMO) and International Centre for Inte- ; e
. . o the website of Shuttle Radar Topography Mission (SRTM,
grated Mountain Development (ICIMOD) is establishing a http://lwww2.jpl.nasa.gov/srtmivith a grid size of 1.0 km.

regional data exchange in the Hindukush Himalayan COUN-rhe extracted DEM is then smoothened with ArcGIS and

ties (Bangladesh, Indlg, Bhut.anz !\lepal_, and Paklstar}). HOWihen modified by FAP-19 (Flood Action Plan) information.
ever, until now there is no significant improvement in data

. . . Sinks (and peaks) are isolated grids with missing or abnor-
shearing, which hampers the expansion of the model bour'dr'nal values that often occur due to the resolution of the data or
ary further upstream .Of the Br_ahr_naputra .‘"‘”d the Gange_s. rounding of elevation to the nearest integer value. Sinks can

Therefore, the major contribution of this case study is togenerate discontinuity on the process of drainage network

explore the possibility for provision of accurate flood fore- derivation. The DEM has also been adjusted with known
casts for the river Ganges, close to its entry point from Ind'ariver lines and catchment boundaries.

into Bangladesh. If ANN models can prov[de suffl'mently ac e years (from 2001 to 2005) of daily river flow data

curate forecasts several days ahead at this location, the lead- . ; ; .

: ! . - Was generated using rating equations based on the continuous

time for flood forecasting and warning within Bangladesh AT .

can be extended. and the subsequent flood emeraenc meobserved water level and validation discharge measurements
' q gency meg Bangladesh Water Development Board (BWDB).

o)
sures can be better planned and executed. The setup of the Both discharge and rainfall data from 2001 to 2003 were
selected for training, the data from 2004 to 2005 were se-

ANN models is done by making use of freely available re-

motel n llite) rainfall nd water level mea- e .
otely sensed (satellite) rainfall data and water leve ealected for verification. Only high flow data were used to re-
surement records.

duce the influence of low flow condition as the study aims

Hydrol. Earth Syst. Sci., 13, 1607618 2009 www.hydrol-earth-syst-sci.net/13/1607/2009/
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[ J42mm8-10day) [ | 19mm (22-24day) [ | 2mm (36-38 day)

I 48mm (10-12 dav) [0 14mm (24-26 dav) 3mm (38-40 dav)

Fig. 3. Example of precipitation cluster-area analysis for 9th of July 2003.

to develop flood forecasting model. It is important to high- o~ N
light that low flow are less dominated by the precipitation act- DEM
ing on previosu days and instead determined by the ground- e — A
water dynamics in the region. Therefore, the selection of O 24y
. .. 04 Bday
data is reduced. The number of samples used for training to ~ mms-sey
321 and 118 for verification. Statistical comparisons of the — A
mean, standard deviation and probability distribution of the Ef‘j;::
data sets has been performed. The results showed a goo s
agreement between the training and verification data sets. iy
In order to take into account the spatiotemporal distribu-
tion of rainfall as an input to the ANN model, a GIS-based
analysis of the satellite rainfall data has been carried out
which resulted in areal clusters of rainfall data time-series,
each with different lag time. The areal clusters have been
defined according to their calculated travel time to the outlet
of the catchment. In conventional approaches to such cluster-
ing usually one average velocity is assumed for both overland
and channel flow. A new method has been applied here that
assumed different velocities for these two flow components
(Sect. 3, Eq2). The velocity along the river channel _
is assumed 1 m/s and the overland velocity along thecowater— In the process of building the best ANN madel, a 10-fold

. . - cross validation is performed. FiguBeshows the training
shed is assumed 40 times smaller; €1/40 m/s), which is o .
within the range indicated byloglen and Maidment2005), and validation data sets, together with one of the 10 fold cross

(10-100 times smaller). validation data sampled. It can be seen that the maximum

Comparison of the areal clusters between the conventionafi‘n?riEL?i'$u;negﬂ:ish?f{: dmittshirf:n;eszgwsdsb (ﬁ;tr;o?g:nzgi i
and the new method that has been applied here is present%jvdﬁh the training data set ' P 9 9
in Fig. 4aand b. The spatial distribution of equal travel time 9 ’

areas is obviously coinciding with the drainage pattern by = SuPsequently to this analysis, a composite of the rainfall
using the new method. time series was also generated by adding all the individ-

ual areal rainfall time series, keeping in mind their lag time

0 8 170 340 Kilometers

ig. 4a. Catchment delineation by travel time: velocity in channel
nd flood plain.
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N Legend
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Fig. 4b. Catchment delineation by travel time: conventional average velocity method.

0.999 ‘ : ‘ : ; 4.4 Modelling
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o £ ®
095 2 § G
5 B2 o°
-

0.9

4.4.1 ANN Setup

ot A number of scripts have been prepared to pre-process and
analyse the models using the ANN toolbox of Matlab. The
optimal structure of the model was analysed by testing the
1 training data set with different hidden nodes, ranging from 1
to 10. Various combinations of input data are tested to com-

0.75-

0.5

Probability

01f F it
0.05 R . 4

g . pare and evaluate the sensitivity of the ANN. Fifteen differ-
o - i ent options were tested in an extensive analysis carried out by
o i ; ‘ ‘ Akhtar (2006). Most of the result that excluded precipitation

1 ’ iocrarge (1%8) ) - had the disadvantage of performance reduction on the high

flow situations. The results found are in accordance with the
Fig. 5. Probability distribution of training, cross validation and val- studies done byoth (2008; Elshorbagy et al2009. In this
idation data sets. paper the options with most important results are discussed
as follows:
(following the calculated travel times). It has been found [A] Only Discharge is used as input data (Only Q). Two
from correlation analysis that composite rainfall derived gischarge time series, one of the present day and one of the

from the new two-velocity travel time approach, demon- gay pefore, are used as input data for the ANN.
strates better correlation with the outlet discharge compared [B] Two discharges and 25 average areal rainfall with

to the conventional one. lagged time as input data (RF+Q). The area-average rainfall

Furthermlorr(]e, n ordler to improve the performance of the;e series are used with their respective lag time along with
ANN model the usual practice is to consider previous dls—tWO discharge (present and 1 day before) time series.

charges, as they contain more information than rainfall for [C] Two discharges, and lagged sum of the rainfall as input
larger basins. Further correlation analysis has been carrieg '

out to select the number of previous discharges, which ata (TRF+Q). All the 25 lagged area-average rainfall time

. . . . series are added to form one, composite rainfall time series.
showed that 1 day previous discharge should be included i gain two discharge (present and 1 day before) time series

the input as it contains 99% information of the present dis are used. The idea behind this reduction of the number of

charge. rainfall time series is to test if ANN may be able to perform
better with fewer input data series.

Hydrol. Earth Syst. Sci., 13, 1607618 2009 www.hydrol-earth-syst-sci.net/13/1607/2009/
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Table 1. Root mean square error of the verification results for dif-

ferent OptiOnS_ 3-day forecasts (Option A} —Rated Q
—Only Q (option A)
50000
Option  Description lday 2day 3day 4day 5day 45000
40000
A Only Q 952 2108 3281 4432 5375 35000
B RF+Q 1117 2578 3730 6211 6244 E 30000
C TRF+Q 968 2223 3250 4322 5290 & 25000
D TRF+Q+Act.ET 968 2176 3390 4543 5427 S 20000
a

15000
10000
5000

[D] Two discharges, actual evapotranspiration and lagged 0
sum of rainfall as input data (TRF+Q+Act.Evp). Actual & \@@@" & & \QC,J@“" & \N&@"
evapotranspiration is used in this option as an input along < =~ & X & & & &

with the other inputs of option [C], to take into account the
evaporation losses. The actual evapotranspiration data were . :

. . . . . 6a.Option A, only disch .
generated by a quasi-physically based model built with the 'g. 6a. Option A, only discharge Q

Soil and Water Assessment Tool (SWAT).

4.4.2 Performance analysis

3-day forecasts (Options B and C) —Rated Q
—RF+Q (Option B)
60000 —TRF+Q (Option C)

Training and verification has been performed for all different

ANN model setups (option A to D). To measure the perfor- 50000
mance of the models, four criteria are selected, which are
Root Mean Square Error (RMSE), Normalised Root Mean
Square Error (NRMSE), Mean Average Error (MAE) and
Correlation coefficient (CoEyash and Sutcliffel970. Adi-
tionally the PERS index, which is a more conventional mea-
sure for time series is included (Ef). Their values are

40000

30000

Discharge (m/s)

20000

10000

supplied in the following tables (Tabldsto 6). The errors 0& . . . . . . N .
calculated numerically are supplemented by visual inspec- @w@ é\r&“ é\w@ Q%\r&“ @w@ @\W@ Q%\r&“ &
tion of the hydrographs (Fig6) based on verification set. S T S .

Root mean square error is calculated as: Time
Fig. 6b. Option B (distributed rainfall and discharge (RF+Q)) and

SSE C (composite rainfall and discharge (TRF+Q)).
RMSE=,/—— ®3)

60000 ——Rated Q

n
SSE= Y (Qestt — Qobst)’ (4) e
=1

50000 ===TRF+Q+Act EVP (Option D)

40000
whereQgpsandQestare the values of the observed and es-

timated discharge, respectively. The total number of samples
is represented by and the SSE is the abbreviation for the
sum of square errors. Equatios) {s used to answer what is
the average magnitude of the forecast errors.

Sometimes it is important to compare two time series us-
ing a reference of statistical properties of measurements. S
Therefore, here we use root relative squared eNdittén I R I G - S S -
and Frank 2000, which compares the root square of the Time
mean of squared errors with the standard deviation of mea-
surement. This means that we can see if the average errofdg. 6c. Option C (composite rainfall and discharge (TRF+Q)) and
are outside of the standard deviation of measurements. Thi8 (discharge and actual evapotranspiration, (TRF+Q+Act. Evp)).
measure is sometimes expressed as percentage, so a value of

30000

Discharge (m/s)

20000

10000 #

www.hydrol-earth-syst-sci.net/13/1607/2009/ Hydrol. Earth Syst. Sci., 13, 1608-2009



1614 M. K. Akhtar et al.: Flow forecasting with ANNs using satellitle observed rainfall

Table 2. Normalised root mean square error of the verification re-
sults for different options.

Option  Description lday 2day 3day 4day 5day % 4 N
A Only Q 8.937 19.76 30.7 414 50.1 § 2
B RF+Q 10.49 24.17 3491 58.01 582 =
C TRF+Q 9.087 20.84 30.41 40.38 49.31 % 00 180 200 250
Time — — — Pradicta
D TRF+Q+Act.ET 9.09 204 3173 4243 50.59 10" Enor betweon targot and prodiciod e
il J
Table 3. Mean abasolute error of the verification results for differ- g
ent options. n WWW i
-1
Option  Description lday 2day 3day 4day 5day . 760 Time 7% 260 250
Only Q 681.4 1602 2592 3398 4288
B RF+Q 847.7 1965 2948 4939 4891 Fig. 7a. Comparison between target and predicted values together
C TRF+Q 688.9 1676 2535 3421 4292  with errors (NRMSE) for Option C in training stage.
D TRF+Q+Act.ET 687.9 1641 2564 3507 4443

100% means that the RMSE is in the bound of the standard o
deviation. If the errors are much higher than these bound
values the root relative squared error will be above 100%. In
this sense the root relative error is a Normalized Root Mean
Square, term used in this thesis (NRMSE, &Y.

Discharge (ms
= m
y/
4
.
%
L
1
"‘\
N
N
\
A
L 1

L L L s L L L L
o 10 20 30 A0 a0 B0 7o 80 a0 100

Time — — — predicted
ot Error between target and predlcled

§E 1 Target
NRMSE= ¥ (5) 08
Oobs F\){\/\/\N\ M/\«/\)h/
Where the value of is the standard deviation of the mea-
-1

sured or observed discharges. o 0 20 30 40 = 100
The persistence index (PERS) focuses on the relationship

of the model performance and the performance of thieena

(“no-change”) model which assumes that the forecast at eac

time step is equal to the current valuéiténidis and Bras

Errar
D

-0.5

ig. 7b. Comparison between target and predicted values together
ith errors (NRMSE) for Option C in cross-validation stage.

1980):
SSE w10t
PERS=1-— —— 6 B
SSE (6) .
E af
= 4/’“(\
= A
" , g 5 j/x\/ \W}\\\%‘
SSE” B ; (QObStH_ - QObSt) (7) DU 2|El AID EID BID 100 120
= Time — — — Predicted

%10 Error between target and predicted
T T T

SSE, is a scaling factor based on the performance of the
nave model; Qestt is the DDM forecast or a process-based 1 §

model simulation of the next time st is the observed £
B el RV N

discharge at time wheret=1, 2, ..., n; L is the lead time
(L=1 for one day ahead foreca_tst); ands the number of ap = = = = = =
steps for which the model error is to be calculated. Time

PERS is a unit that is relative to theima model. It
can range between 1 and minus infinite (i.e. it is degradmgF'g 7c. Comparison between target and predicted values together
the provided information), values above 0 indicate that the™ith errors (NRMSE) for Option C in verification stage.
considered model is better than théweamodel (where the
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12 Table 4. Correlation coefficient of the verification results for differ-
- ent options.
1
o5 Option  Description lday 2day 3day 4day 5day
H A Only Q 0.996 0.98 0.952 0.911 0.866
g 06 B RF+Q 0.995 0971 0.938 0.821 0.817
© C TRF+Q 0.996 0.978 0.953 0.915 0.87
04 D TRF+Q+Act.ET 0.996 0.979 0.948 0.906 0.863
0.2
o Table 5. Mean of the forecast predictions.
0 1 2 3 4 5 6 7 8 9 10 1
Forecast (Days)
Option  Description 1 day 2days 3days 4days 5days
Fig. 8. Comparison of correlation coefficients for Options A (only A Only Q 2.6544 2-663;58 22-%59351 22-67‘;935 élggis
: : RF+Q 2.6536 2.65 : . :
Q) and Option C (TRF+Q) for extended forecast horizon up to 10 c TREAQ 0521 20474 26507 26517 26512
days. D TRF+Q+Act. ET  2.652  2.6523 25773 2.6202 26715

closer to 1 the better), and negative values show less perfoR?alidation stage. However, model performance in the veri-

mance than fche ite model. Lauz_on et al(2009 suggest fication stage is satisfactory, as several peaks show good re-
using PERS in cases when the discharge forecast is made Y& mblance with observation

the basis %f previous valuef.s. giff imulati Moreover, accurate timing is also important and is a crit-

; For eac r?ptllt()nh(A—D)f, ve di ere;cnth5|mu ‘3“??5 arelpder- ical factor in operational management and decision-making
ormed to check the performance of the model for a 1- Y:activities related to high magnitude flood events. Timing er-

2-day, 3-day, 4-day and 5-day forecast horizon. The resultg, (phase lag) of the model results have, however, been
|nd|cate_ that the model performance is showing decrea.s'ngdentified from all the options. This is a common problem
trend with the increase of lead-time. However, from the Sim-j, ye,ra| network rainfall-runoff models and causes are stil

ulated hydrographs and perfo'rmance tables, it is establishegnder investigation by neuro-hydrologists. One approach to
that forecaSt'ng performance is a_cceptable up to 3-days. I?’et’his problem (as suggested Byrahart et al.2007) is to use
yond this period, results are getting worse. To keep the d's'a time-error correction procedure as an integrated part of the

cussion within limits and als_q to.rewew the result; metic- eural network optimisation process. However, at the time
ulously, 3-day forecast (verification) results are d_|scgsse f this writing the full description of this procedure was not
here. The results of the 3-day forecasts are shown in Fig. 6., ~i-1je for testing.

Option [A]’_ with only Q time seri_es as input, ‘?'095 r_10t Note that Fig.7ais not completely continuous in time and
show large differences from the options where rainfall time;, sample 116, 28 October 2001, there is a gap of low flows,

series are ipcluded (Fi@a).. Option [C] exhibits some im- so sample 117 corresponds to 9 July 2002. Figdbeand ¢
provement in the forecasting performances compared 0 Opze ¢ontinous in time for all the time series plot. Their time

tion [B], which can also be seen from the performance Cri-fa e is etween 5 July 2003 till 5 October 2003 and 1 July
teria tables (Table$ to 6). This indicates that large number 5494 till 26 October 2004 respectively.

of input parameters is not suitable to develop an ANN for a

basin area like the Ganges. After inclusion of the actual evaps 4.3 Expanded forecast horizons

otranspiration as a separate time series in Option [D],6€g.

and the performance analysis criteria (Tabl® 6) indicate ~ The similar performance of option [A] to options [B,C,D]

deterioration of model result. This is most likely due to very confirms that for short- to medium-term forecasts and for

high uncertainty of the SWAT model results which were usedlarge rivers, ANN can provide good forecasts based only on

for generating the time series of actual evapotranspirationcurrent and previous discharge measurements. For long-term

Assessment of the values of the performance analysis table®recasts it is expected that this predictability on the basis

indicates that option [C] is most suitable for flood forecasting of real-time discharge measurements decreases. In that case

of Ganges basin with a 3-day forecast horizon. rainfall information and rainfall-runoff modelling would be-
Figure7 has been introduced to visualise the performancecome more important. To investigate whether this applies to

of the model (option C) by comparison plots of training, the Ganges case study, forecasting horizon is increased from

cross-validation and verification as well as errors analysiss days to 10 days for option [A] (only Q), and option [C]

in terms of NRMSE. It shows that there is an excellent (TRF + Q). The correlation performance of the two ANNs

agreement between the observed and simulated data for the presented in Fig8. It shows that for forecast horizons

training phase but the performance deteriorates in the crosfrom 7—10 days the inclusion of the rainfall as an input to
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Comparison of Discharge Hydrograph
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Fig. 9. Hydrograph comparison between SWAT model simulation results and the rated discharge.

Table 6. PERS index of the verification results for different options. 5 Conclusions

An ANN flow forecasting model that makes use of spatial

Option  Description 1 day 2 days 3 days 4 days 5 days o . . .

a only @ 0647 07107 33473 74138 115369 precipitation obtained from pre-processing based on hydro-
B RF+Q 05783 -1.2459 -3.6998 -2.0217 -12.1628 logical concepts of travel time and flow length has been
C TRF+Q 0.6836 —0.6696 —2.5676 —5.3076 —8.4465 . . .

D TRF+Q+Act ET  0.6832 —0.6  —3.23  —5615 —8.9429 developed for the Ganges river basin. This was done by

combining ground station flow measurements with satellite
derived rainfall and DEMSs, and hydrological GIS analyses.

the ANN (option [C]), improves the forecasting performance. A n?.W dme:jhtod tfoorl eisttr:ma;t'lf(')r? ?f travell t|rtr\1,$ hl? s also been
Note that with the increase of forecasting horizon, the pen‘or—app \ed and teste ,W' ar ' icia ne'ura ne ) OrKS. .
mance of the model is getting worse and the performance of From the analysis of various _optlons fqr mput da_ta, It was
the forecast beyond three days is not acceptable, whatevdfvealed that the forecasted discharge is highly influenced
improvement can be seen by including the rainfall. However?Y the p.rewous.dlscharge Input data,-because of their strong
this exercise proves that composite rainfall (which is satelIitecc’”e'a,t'on'II Tlh's was e>_<p|ecte?, p?rt;]cula_lrly becaushg of the
driven) along with previous discharge can help to build better®*ceéptionally large spatial scale of the river. For this rea-
ANN, for longer forecasting lead times. son, different combinations of rainfall input did not influence

Figure9 shows the rated and simulated discharge togeththe model much for the short forecast horizons, For forecast
with total rainfall over the catchment. This simulated dis- horizons of 7 to 10 days inclusion of rainfall information in

charge is the best performed simulation output of our Swarddition to discharge data, improves the ANN model perfor-

model setup. The results presented in this paper were conf@nce. y . _

pared to the Soil Water Assessment Tool (SWAT) model of /Accurate timing is a critical factor in operational manage-
the basin. Although a number of complex optimization algo- Ment and decision-making activities related to high magni-
rithms were tested, the SWAT model results did not achievelude flood events. Timing errors (phase lag), however, have
the performance of the ANN model results presented herdeen identified, which is a common problem in ANN rainfall-
(van Griensven et al2007). The errors for the SWAT model runoff models. Inclusion of a time-error correction proce-
results were a RMSE of 11600. a MAE of 8930 and a Cor-dure as an integral part of the ANN optimisation process can
relation coefficient of 0.359. This is most likely due to the iIMProve the model performance. .

large spatial extension of the basin and lack of information on  The finally selected ANN model shows some disagree-

catchment parameters data, as required for the SWAT modeMent with the observed values, especially during the peak
discharge. The causes may be hidden within the unknown

processes of the catchment, unverified rainfall data and rated
discharge, etc. For further improvement of the model, it
is essential to investigate the target value (rated discharge),
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where discharge is generated from a conventional ratingBowden, G. J., Dandy, G. C., and Maier, H. R.: Input determination

curve. for neural network models in water resources applications. Part
The method that has been used to calculate travel-time and 2. Case study: forecasting salinity in a river, J. Hydrol., 301, 93—

delineate the clustered areas, from which water can reach 107, 2005b. o

the outlet of the basin within a certain range of time, can peBrath, A. and Rosso, R.: Adaptlve calibration of a conceptual model

further improved. In this study only two different velocities ~ [°" flash flood forecasting, Water Resour. Res., 29, 2561-2572,

1993.
were assumed, one for channels and the other for land surfage * .=\ /o o nd Toth. E.- Neural networks and non-

flow, but 'n_ real_'ty the velocity is not the Same_ in all rivers, parametric methods for improving real-time flood forecasting
even velocity differs from reach to reach of a river. Surface-  hrough conceptual hydrological models, Hydrol. Earth Syst.
runoff velocity is also considered constant for all over the sgi. 6, 627-639, 2002,
basin, irrespective of land use and land slope, which is con- http:/iwww.hydrol-earth-syst-sci.net/6/627/2002/
trary of the physical conditions. More detailed velocity esti- Campolo, M., Soldati, A., and Andreussi, P.: Atrtificial neural net-
mates by considering the land use characteristics can help to work approach to flood forecasting in the River Arno/Une ap-
improve the model performance. prochea base deéaseau de neurones artificiels pour lapsion
From the overall analysis it is found that one-day previous des crues du fleuve Arno, Hydrolog. Sci. J., 48, 381-398, 2003.
discharge along with composite rainfall (derived from GIS- Chowdhury, _M.: An assessment of flood forecasting in Bangladesh:
based travel time calculation) gives the best result compared tzhoeogXpe”ence of the 1998 flood, Nat. Hazards, 22, 139-163,
to other options. This shows that remote sensing technique :

dd dri delli b bined full éorzo, G. and Solomatine, D.: Knowledge-based modularization
and data driven modelling can be combined successtully to and global optimization of artificial neural network models in

prepare a spatially distributed ANN for flow forecasting of  yqrological forecasting, Neural Networks, 20, 528-536, 2007a.
large-scale river basins like the Ganges. Corzo, G., Solomatine, D., Hidayat, de Wit, M., Werner, M., Uh-
The study presented is a particular case and the findings lenbrook, S., and Price, R.: Combining semi-distributed process-
here can be tested and extended in further research. This based and data-driven models in flow simulation: a case study of
methodology will be explored and benchmarked together the Meuse river basin, Hydrol. Earth Syst. Sci. Discuss., 6, 729-
with other methodologies reported in literature, specially on 766, 2009,
smaller catchments in order to see the effect of distributed  http://www.hydrol-earth-syst-sci-discuss.net/6/729/2009/
rainfall input more clearly. Corzo, G. A. and §0I_omat|ne, D. P.: Baseflow s_epgranon techniques
for modular artificial neural networks modelling in flow forecast-
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