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Abstract. This paper explores the use of flow length and
travel time as a pre-processing step for incorporating spa-
tial precipitation information into Artificial Neural Network
(ANN) models used for river flow forecasting. Spatially dis-
tributed precipitation is commonly required when modelling
large basins, and it is usually incorporated in distributed
physically-based hydrological modelling approaches. How-
ever, these modelling approaches are recognised to be quite
complex and expensive, especially due to the data collec-
tion of multiple inputs and parameters, which vary in space
and time. On the other hand, ANN models for flow fore-
casting are frequently developed only with precipitation and
discharge as inputs, usually without taking into considera-
tion the spatial variability of precipitation. Full inclusion of
spatially distributed inputs into ANN models still leads to a
complex computational process that may not give acceptable
results. Therefore, here we present an analysis of the flow
length and travel time as a basis for pre-processing remotely
sensed (satellite) rainfall data. This pre-processed rainfall is
used together with local stream flow measurements of previ-
ous days as input to ANN models. The case study for this
modelling approach is the Ganges river basin. A compara-
tive analysis of multiple ANN models with different hydro-
logical pre-processing is presented. The ANN showed its
ability to forecast discharges 3-days ahead with an accept-
able accuracy. Within this forecast horizon, the influence of
the pre-processed rainfall is marginal, because of dominant
influence of strongly auto-correlated discharge inputs. For
forecast horizons of 7 to 10 days, the influence of the pre-
processed rainfall is noticeable, although the overall model
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performance deteriorates. The incorporation of remote sens-
ing data of spatially distributed precipitation information as
pre-processing step showed to be a promising alternative for
the setting-up of ANN models for river flow forecasting.

1 Introduction

Many of the activities associated with the planning and oper-
ation of the components of a water system require forecasts
of future events. There is a need for both short-term and
long-term forecasts of stream flow, in order to optimise the
water resources system. Moreover, operational river man-
agement strongly depends on accurate and reliable flow fore-
casts. Such forecasting of river flow provides warnings of
approaching floods and assists in regulating reservoir outflow
during low river flows for water resources management.

Next to the widely applied distributed (semi) physically-
based based hydrological models, data driven techniques are
increasingly being applied for flow forecasting. In particular,
flow forecasting with artificial neural network (ANN) models
has been accepted as a good alternative to forecasting with
hydrological and hydrodynamic models (ASCE, 2000a,b).
ANN models extract the relationship between the inputs and
outputs of a process, without the physics being explicitly pro-
vided. These models need only a limited number of input
variables, such as discharge and rainfall, while, distributed
(semi) physically-based based models need a large number of
additional parameters to be provided, such as flow resistance,
cross-sections, groundwater flow characteristics, etc. these
parameters are difficult to measure or to estimate, mainly be-
cause of strong spatial and temporal variability. In addition
to this, ANN models are computationally fast and reliable,
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which makes them very suitable for real-time applications,
such as flood forecasting and early warning. Their disadvan-
tages are related to the interpretation of the ANN structure
(“black box”), and on their extrapolation capacity (Minns
and Hall, 1996). It is important to highlight that the ANN so-
lution is obtained through an optimisation process validated
through trials and errors (ASCE, 2000a,b; Brath et al., 2002;
Brath and Rosso, 1993). Recently, researchers have been
exploring the use of different pre-processing approaches for
inclusion of additional hydrological knowledge as input to
ANN models to improve the hydrological representation and
generalisation (Corzo and Solomatine, 2007a,b; Corzo et al.,
2009).

The ANN models can be setup with limited number of
input variables, but comprehensive number of records is
needed. This is required, because data-driven methods have
limited capability to provide accurate forecasts of events that
are outside the range of the data set. On the other hand, when
excessive numbers of variables are used as input the most
correlated variables dominate the model and therefore it is
not possible to use all the physical knowledge or measure-
ments available. This is normally solved by pre-processing
techniques aimed at reduction of the input space by select-
ing the most sensitive variables (Bowden et al., 2005a,b). A
problem in the implementation of a big river basin is the high
number of variables that an ANN model should manage, and
therefore most of the studies found seem to deal only with
small river basins. However, the recent work ofLin et al.
(2006) shows the potential of ANN models when applied to
large scale hydrological prediction.

The use of distributed rainfall input in ANN models is not
new, as demonstrated by several examples from literature.
Campolo et al.(2003) used distributed rainfall measured at
several rain gauges; whereasDawson et al.(2006) used a set
of peripheral catchment weather station records. The mod-
elling approach presented in this paper follows the principle
of exploring different ways of using and adapting spatial pre-
cipitation in order to analyze the ANN model results in fore-
casting flows.

The pre-processing applied includes different methods of
spatial and time integration of the rainfall data, on the basis
of flow path and travel time information. This analysis is
done for flood forecasting in the Ganges river basin.

2 Artificial Neural Networks (ANNs)

This study is based on the application of ANN multi-layer
perceptron (MLP) networks trained with gradient based
methods. The basic structure of the ANN model used can
be seen in Fig.1, where “neurons” represent linear or non-
linear combinations of the input and weights. The mapping
of input output requires to find the right weights in the neu-
rons structure. The optimization of the weights is done by
minimizing the mean square error of the difference between

Fig. 1. Multi-layer perceptron (source:Abrahart and See, 2000).

the results of the ANN and the observed information. A de-
tailed description of ANN modelling can be found on the
publication made by the ASCE in the year 2000.

The determination of the weights in the ANN models
(“training” phase), is done by minimising the mean square er-
ror between the measured discharge and the forecasted by the
ANN model. In this study the Levenberg-Marquardt (LM)
algorithm is used (Levenberg, 1944). This algorithm is an it-
erative technique that locates the minimum of a multivariate
function that is expressed as the sum of squares of non-linear
real-valued functions. The LM algorithm is a blend of gradi-
ent decent and Gauss-Newton iteration.

The data sets were divided in training (321 data sets) and
a validation set (118 data sets). These training and valida-
tion data sets had small variations in the different experi-
ments according to the lags of the variables. In addition to
the previously observed discharge, the spatially distributed
precipitation input was formulated based on the travel time
and flow length information, as described in the following
section. Although there are many variables that seem to be
part of the physics, a selection following the ideas ofBowden
et al.(2005a) was applied.

3 Travel time and flow length information

The input data to the set of ANN models of the Ganges
river, explored here, consists of discharge and precipitation.
The precipitation data cannot be applied directly, because the
large spatial extent of the Ganges basin introduces great time
lags between the rainfall occurrence and the moment it con-
tributes to the river flow close to the border between India and
Bangladesh, which is the target location for flow forecasting
in this work. Pre-processing experiments to introduce these
time lags are explained in the following section. This pre-
processing is based on GIS analysis to estimate flow length
and travel time.

The flow length describes the distance from any point in
the river basin to the basin outlet. Such distance is mea-
sured along the flow paths determined from the topography.
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In GIS, the flow length of an arbitrary pixel is determined by
summing the incremental distances from centre-to-centre of
pixel along the flow path from the selected pixel to the outlet
pixel. The concept of flow length is an important issue to hy-
drologists. When it rains, a drop of water landing somewhere
in the basin must first travel some distance before reaching
the outlet. Assuming constant flow velocities the pixel with
the greatest flow length to the outlet represents the hydrolog-
ically most remote pixel. So, the time of concentration can
be obtained through flow length divided by the flow velocity.
Therefore the time of concentration indicates how much time
is required for the entire basin to contribute to surface flow
at the outlet, after a certain amount of rainfall. In watershed
hydrology, there are various formulations (Izzard formula,
Kerby formula, Kirpich formula, Bransby Williams equation,
National Resources Conservation Service, Kinematic wave
formula and etc.) to calculate time of concentration based on
the nature of flow as well as availability of information and
scope of work (Wanielista, 1996).

The general assumption of calculating the travel time is
that a uniform velocity sustains throughout the basin, which
can be interpreted as the Instantaneous Unit Hydrograph
(IUH) function. IUH is defined as the flow response that
would be observed at the basin outlet if a unit pulse of water
were instantaneously placed uniformly over the entire river
basin at a given instant. With the travel lengths known and a
single uniform velocity of flow observed throughout the wa-
tershed, the travel time (tt i) to the outlet for any randomly
chosen pixel,i, would be given by:

tt i = di/v (1)

Where,di is the distance fromith pixel to the watershed
outlet andv is the uniform flow velocity. This concept is
exploited by using the Digital Elevation Models (DEMs) to
discern the flow organisation of the watershed and its unique
hydrologic signal (IUH) which is dependent on the watershed
size, shape, and connectivity.

The mentioned equation (Eq.1) neglects the velocity dif-
ference between overland flow and river flow. An improve-
ment to this approach is expected to come from introduction
of different velocities for the overland and the river. This
velocity differences can be conceptually understood as com-
ing from differences in the Mannings roughness (n) of the
flow-surface encountered on the watershed versus the river
channels. Velocity differences could be easily such that the
river flow velocities are 10 to 100 times larger then the over-
land flow velocities (Moglen and Maidment, 2005). With this
approach, a modified travel time can be applied:

tt i =
dH,i

vH

+
dC,i

vC

(2)

where,dH,i is the flow distance for pixeli, along the basin,
dC,i is the flow distance for pixeli, along the river channel,
vH is the overland velocity along the watershed,vC is the ve-
locity along the river channel. If we consider the river basin
as a system and its objective it is to drain water as quickly
as possible, then the presence of channel pixels with high
travel velocities represents efficiency within the system, as
indicated by the small travel times associated with these pix-
els.

An important consideration is the expected reduction in
the ANN processes to be represented due to the preprocess-
ing transformation of the input precipitation.

4 Case Study: flood forecasting in Bangladesh

4.1 Study area and problem description

Bangladesh is a low-lying country located at the confluence
of three major rivers: the Ganges, the Brahmaputra and the
Meghna (Fig. 2). About 92% of the catchment area of these
rivers is located outside the country (Jakobsen and Bhuiyan,
2005) and 80% of the annual rainfall occurs in the monsoon
season from June to September (Mirza, 2002). Thus huge
cross-border monsoon flows, in addition to discharges from
local rainfall are drained through Bangladesh into the Bay of
Bengal. In many occasions, the volume of generated runoff
exceeds the capacity of the rivers, causing serious flooding
in Bangladesh.

The river Ganges originates as the Bhagirathi from the
Gangotri Glacier in the Uttaranchal Himalaya and joins the
Alaknanda near Deoprayang to form the Ganga. From there,
the Ganges flows across the large plains of north India and
empties in to the bay of Bengal after dividing up into many
distributaries (Fig.2). The source of the Ganges is at an
elevation of 7010 m. The river has a bed slope of about
1:10 000 in the stretch between the Allahabad and the Ba-
naras. From the Banaras onward to the Calcutta the bed slope
changes from 1:12 000 to about 1:20 000. Along its great
length, the Ganges passes through Bangladesh, which is
almost everywhere flat. The total length of the river is about
2507 km. The Ganges has nine main sub-basins (Chambal,
Betwa, Yamuna, Ramganga, Sone, Karnali, Gandak, Bag-
mati and Kosi). The total basin area is 907×103 km2. The
first five tributaries originate in India and the last four tribu-
taries join the Ganges from Nepal. Among these nine tribu-
taries, the Yamuna is the most important one, which drains
about one–third of the entire Ganges basin. The Kosi and
Karnali drain about 12% and 9% of the basin, respectively
(Mirza, 1997). In 1987, 1988, 1998 and 2004, several seri-
ous floods occurred in Bangladesh, which are good examples
of the need for a forecasting and warning system as an essen-
tial tool to reduce flood damage.
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Fig. 2. Ganges-Brahmaputra-Meghna Basin.

In Bangladesh, there are about 52 forecasting stations
where 24, 48, and 72-h forecasts are made every day (FFWC,
2007). The lead-time of the model for the Northern part of
the country is shorter. Improved model performance, in prin-
ciple, can be achieved through regional cooperation among
the countries that share the river basins in question, particu-
larly for exchanging flood information and data sharing. The
actual model in Bangladesh consists of three modules: (a) a
rainfall-runoff modules (NAM), (b) a one-dimensional finite
difference hydrodynamic model (HD) based on St. Venant
equations, (c) an updating module. The updating module
analyses measured and simulated water levels and discharges
up to the time of forecasting in order to eliminate amplitude
and phase errors which could influence the forecast results
(Chowdhury, 2000). However the developed model can only
forecast water level 3-day ahead for the Southern part of the
country.

Due to regional limitation on the availability of data the
current physical based modelling of the region is more com-
plex. The regional initiative of the World meteorologi-
cal Organisation (WMO) and International Centre for Inte-
grated Mountain Development (ICIMOD) is establishing a
regional data exchange in the Hindukush Himalayan coun-
ties (Bangladesh, India, Bhutan, Nepal, and Pakistan). How-
ever, until now there is no significant improvement in data
shearing, which hampers the expansion of the model bound-
ary further upstream of the Brahmaputra and the Ganges.

Therefore, the major contribution of this case study is to
explore the possibility for provision of accurate flood fore-
casts for the river Ganges, close to its entry point from India
into Bangladesh. If ANN models can provide sufficiently ac-
curate forecasts several days ahead at this location, the lead-
time for flood forecasting and warning within Bangladesh
can be extended, and the subsequent flood emergency mea-
sures can be better planned and executed. The setup of the
ANN models is done by making use of freely available re-
motely sensed (satellite) rainfall data and water level mea-
surement records.

4.2 Tropical Rainfall Measurement Mission (TRMM)

Inputs to the ANN model are of critical importance. Satel-
lite derived rainfall data of Tropical Rainfall Measurement
Mission (TRMM,NASDA, 2001) is providing 3 hourly rain-
fall, which is very promising. The reliability of the remotely
sensed data is always facing challenges, but it is found from
various validation projects that precipitation radar of TRMM
is producing error within acceptable range. However the ac-
curacy of such data, when compared with rainfall observed
from ground stations varies from place to place and it has
already been tested over Bangladesh. The study proves that
the correlation coefficient (R) is more than 0.773, which is
sensible to certain extent (Akhtar, 2006).

4.3 Data preparation

In this study, ANN is used to predict the river flow at
Hardinge Bridge (close to the entry point of the Ganges into
Bangladesh, see Fig.2), utilising (i) the calculated discharge
from water level gauge which is located at the same loca-
tion (with known rating curve for conversion of water levels
into discharges) and (ii) satellite based rainfall for the entire
catchment.

The documentation of satellite-derived rainfall is provided
in Huffman et al. (2007) (ftp://meso-a.gsfc.nasa.gov/pub/
trmmdocs/) and data from the Tropical Rainfall Measure-
ment Mission are available in a regular 0.25 degree lat/long
grid (TRMM V6.3B42). The extracted data has resolution of
0.25◦×0.25◦ (approximately: Lat. 27.7 km, Lon. 25.2 km),
with a temporal resolution of three hour, which is accumu-
lated to daily data for the period from 2001 to 2005. A data
processing tool has been developed to generate time series
for each pixel or areal average rainfall depending on the users
requirement.

A DEM (digital elevation model) has been extracted from
the website of Shuttle Radar Topography Mission (SRTM,
http://www2.jpl.nasa.gov/srtm/) with a grid size of 1.0 km.
The extracted DEM is then smoothened with ArcGIS and
then modified by FAP-19 (Flood Action Plan) information.
Sinks (and peaks) are isolated grids with missing or abnor-
mal values that often occur due to the resolution of the data or
rounding of elevation to the nearest integer value. Sinks can
generate discontinuity on the process of drainage network
derivation. The DEM has also been adjusted with known
river lines and catchment boundaries.

Five years (from 2001 to 2005) of daily river flow data
was generated using rating equations based on the continuous
observed water level and validation discharge measurements
of Bangladesh Water Development Board (BWDB).

Both discharge and rainfall data from 2001 to 2003 were
selected for training, the data from 2004 to 2005 were se-
lected for verification. Only high flow data were used to re-
duce the influence of low flow condition as the study aims
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Fig. 3. Example of precipitation cluster-area analysis for 9th of July 2003.

to develop flood forecasting model. It is important to high-
light that low flow are less dominated by the precipitation act-
ing on previosu days and instead determined by the ground-
water dynamics in the region. Therefore, the selection of
data is reduced. The number of samples used for training to
321 and 118 for verification. Statistical comparisons of the
mean, standard deviation and probability distribution of the
data sets has been performed. The results showed a good
agreement between the training and verification data sets.

In order to take into account the spatiotemporal distribu-
tion of rainfall as an input to the ANN model, a GIS-based
analysis of the satellite rainfall data has been carried out
which resulted in areal clusters of rainfall data time-series,
each with different lag time. The areal clusters have been
defined according to their calculated travel time to the outlet
of the catchment. In conventional approaches to such cluster-
ing usually one average velocity is assumed for both overland
and channel flow. A new method has been applied here that
assumed different velocities for these two flow components
(Sect. 3, Eq.2). The velocity along the river channel (vC)
is assumed 1 m/s and the overland velocity along the water-
shed is assumed 40 times smaller (vH =1/40 m/s), which is
within the range indicated byMoglen and Maidment(2005),
(10–100 times smaller).

Comparison of the areal clusters between the conventional
and the new method that has been applied here is presented
in Fig. 4aand b. The spatial distribution of equal travel time
areas is obviously coinciding with the drainage pattern by
using the new method.

Fig. 4a. Catchment delineation by travel time: velocity in channel
and flood plain.

In the process of building the best ANN model, a 10-fold
cross validation is performed. Figure5 shows the training
and validation data sets, together with one of the 10 fold cross
validation data sampled. It can be seen that the maximum
and minimum values are in the same bounds. Although the
distribution seems shifted, its shape shows good agreement
with the training data set.

Subsequently to this analysis, a composite of the rainfall
time series was also generated by adding all the individ-
ual areal rainfall time series, keeping in mind their lag time
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Fig. 4b. Catchment delineation by travel time: conventional average velocity method.

Fig. 5. Probability distribution of training, cross validation and val-
idation data sets.

(following the calculated travel times). It has been found
from correlation analysis that composite rainfall derived
from the new two-velocity travel time approach, demon-
strates better correlation with the outlet discharge compared
to the conventional one.

Furthermore, in order to improve the performance of the
ANN model the usual practice is to consider previous dis-
charges, as they contain more information than rainfall for
larger basins. Further correlation analysis has been carried
out to select the number of previous discharges, which
showed that 1 day previous discharge should be included in
the input as it contains 99% information of the present dis-
charge.

4.4 Modelling

4.4.1 ANN Setup

A number of scripts have been prepared to pre-process and
analyse the models using the ANN toolbox of Matlab. The
optimal structure of the model was analysed by testing the
training data set with different hidden nodes, ranging from 1
to 10. Various combinations of input data are tested to com-
pare and evaluate the sensitivity of the ANN. Fifteen differ-
ent options were tested in an extensive analysis carried out by
Akhtar (2006). Most of the result that excluded precipitation
had the disadvantage of performance reduction on the high
flow situations. The results found are in accordance with the
studies done byToth(2008); Elshorbagy et al.(2009). In this
paper the options with most important results are discussed
as follows:

[A] Only Discharge is used as input data (Only Q). Two
discharge time series, one of the present day and one of the
day before, are used as input data for the ANN.

[B] Two discharges and 25 average areal rainfall with
lagged time as input data (RF+Q). The area-average rainfall
time series are used with their respective lag time along with
two discharge (present and 1 day before) time series.

[C] Two discharges, and lagged sum of the rainfall as input
data (TRF+Q). All the 25 lagged area-average rainfall time
series are added to form one, composite rainfall time series.
Again two discharge (present and 1 day before) time series
are used. The idea behind this reduction of the number of
rainfall time series is to test if ANN may be able to perform
better with fewer input data series.
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Table 1. Root mean square error of the verification results for dif-
ferent options.

Option Description 1 day 2 day 3 day 4 day 5 day

A Only Q 952 2108 3281 4432 5375
B RF+Q 1117 2578 3730 6211 6244
C TRF+Q 968 2223 3250 4322 5290
D TRF+Q+Act.ET 968 2176 3390 4543 5427

[D] Two discharges, actual evapotranspiration and lagged
sum of rainfall as input data (TRF+Q+Act.Evp). Actual
evapotranspiration is used in this option as an input along
with the other inputs of option [C], to take into account the
evaporation losses. The actual evapotranspiration data were
generated by a quasi-physically based model built with the
Soil and Water Assessment Tool (SWAT).

4.4.2 Performance analysis

Training and verification has been performed for all different
ANN model setups (option A to D). To measure the perfor-
mance of the models, four criteria are selected, which are
Root Mean Square Error (RMSE), Normalised Root Mean
Square Error (NRMSE), Mean Average Error (MAE) and
Correlation coefficient (CoE,Nash and Sutcliffe, 1970). Adi-
tionally the PERS index, which is a more conventional mea-
sure for time series is included (Eq.6). Their values are
supplied in the following tables (Tables1 to 6). The errors
calculated numerically are supplemented by visual inspec-
tion of the hydrographs (Fig.6) based on verification set.
Root mean square error is calculated as:

RMSE=

√
SSE

n
(3)

SSE=

n∑
t=1

(
Qest,t − Qobs,t

)2 (4)

whereQobsandQestare the values of the observed and es-
timated discharge, respectively. The total number of samples
is represented byn and the SSE is the abbreviation for the
sum of square errors. Equation (3) is used to answer what is
the average magnitude of the forecast errors.

Sometimes it is important to compare two time series us-
ing a reference of statistical properties of measurements.
Therefore, here we use root relative squared error (Witten
and Frank, 2000), which compares the root square of the
mean of squared errors with the standard deviation of mea-
surement. This means that we can see if the average errors
are outside of the standard deviation of measurements. This
measure is sometimes expressed as percentage, so a value of

Fig. 6a. Option A, only discharge Q.

Fig. 6b. Option B (distributed rainfall and discharge (RF+Q)) and
C (composite rainfall and discharge (TRF+Q)).

Fig. 6c. Option C (composite rainfall and discharge (TRF+Q)) and
D (discharge and actual evapotranspiration, (TRF+Q+Act. Evp)).
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Table 2. Normalised root mean square error of the verification re-
sults for different options.

Option Description 1 day 2 day 3 day 4 day 5 day

A Only Q 8.937 19.76 30.7 41.4 50.1
B RF+Q 10.49 24.17 34.91 58.01 58.2
C TRF+Q 9.087 20.84 30.41 40.38 49.31
D TRF+Q+Act.ET 9.09 20.4 31.73 42.43 50.59

Table 3. Mean abasolute error of the verification results for differ-
ent options.

Option Description 1 day 2 day 3 day 4 day 5 day

Only Q 681.4 1602 2592 3398 4288
B RF+Q 847.7 1965 2948 4939 4891
C TRF+Q 688.9 1676 2535 3421 4292
D TRF+Q+Act.ET 687.9 1641 2564 3507 4443

100% means that the RMSE is in the bound of the standard
deviation. If the errors are much higher than these bound
values the root relative squared error will be above 100%. In
this sense the root relative error is a Normalized Root Mean
Square, term used in this thesis (NRMSE, Eq.5).

NRMSE=

√
SSE
n

σobs
(5)

Where the value ofσ is the standard deviation of the mea-
sured or observed discharges.

The persistence index (PERS) focuses on the relationship
of the model performance and the performance of the naı̈ve
(“no-change”) model which assumes that the forecast at each
time step is equal to the current value (Kitanidis and Bras,
1980):

PERS= 1 −
SSE

SSEn

(6)

SSEn =

n∑
t=1

(
Qobs,t+L − Qobs,t

)2 (7)

SSEn is a scaling factor based on the performance of the
näıve model;Qest,t is the DDM forecast or a process-based
model simulation of the next time step,Qobs,t is the observed
discharge at timet wheret=1, 2, . . . , n; L is the lead time
(L=1 for one day ahead forecast); andn is the number of
steps for which the model error is to be calculated.

PERS is a unit that is relative to the naı̈ve model. It
can range between 1 and minus infinite (i.e. it is degrading
the provided information), values above 0 indicate that the
considered model is better than the naı̈ve model (where the

Fig. 7a. Comparison between target and predicted values together
with errors (NRMSE) for Option C in training stage.

(a) Comparison between target and predicted values together with errors

(NRMSE) for Option C in training stage

(b) Comparison between target and predicted values together with errors

(NRMSE) for Option C in cross-validation stage

(c) Comparison between target and predicted values together with errors

(NRMSE) for Option C in verification stage

Fig. 7
17

Fig. 7b. Comparison between target and predicted values together
with errors (NRMSE) for Option C in cross-validation stage.

(a) Comparison between target and predicted values together with errors

(NRMSE) for Option C in training stage

(b) Comparison between target and predicted values together with errors

(NRMSE) for Option C in cross-validation stage

(c) Comparison between target and predicted values together with errors

(NRMSE) for Option C in verification stage

Fig. 7
17

Fig. 7c. Comparison between target and predicted values together
with errors (NRMSE) for Option C in verification stage.
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Fig. 8: Comparison of correlation coefficients for Options A (only Q) and Option C (TRF+Q) for

extended forecast horizon up to 10 days.
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Fig. 8. Comparison of correlation coefficients for Options A (only
Q) and Option C (TRF+Q) for extended forecast horizon up to 10
days.

closer to 1 the better), and negative values show less perfor-
mance than the naı̈ve model. Lauzon et al.(2006) suggest
using PERS in cases when the discharge forecast is made on
the basis of previous values.

For each option (A–D), five different simulations are per-
formed to check the performance of the model for a 1-day,
2-day, 3-day, 4-day and 5-day forecast horizon. The results
indicate that the model performance is showing decreasing
trend with the increase of lead-time. However, from the sim-
ulated hydrographs and performance tables, it is established
that forecasting performance is acceptable up to 3-days. Be-
yond this period, results are getting worse. To keep the dis-
cussion within limits and also to review the results metic-
ulously, 3-day forecast (verification) results are discussed
here. The results of the 3-day forecasts are shown in Fig. 6.

Option [A], with only Q time series as input, does not
show large differences from the options where rainfall time
series are included (Fig.6a). Option [C] exhibits some im-
provement in the forecasting performances compared to Op-
tion [B], which can also be seen from the performance cri-
teria tables (Tables1 to 6). This indicates that large number
of input parameters is not suitable to develop an ANN for a
basin area like the Ganges. After inclusion of the actual evap-
otranspiration as a separate time series in Option [D], Fig.6c
and the performance analysis criteria (Table1 to 6) indicate
deterioration of model result. This is most likely due to very
high uncertainty of the SWAT model results which were used
for generating the time series of actual evapotranspiration.
Assessment of the values of the performance analysis tables
indicates that option [C] is most suitable for flood forecasting
of Ganges basin with a 3-day forecast horizon.

Figure7 has been introduced to visualise the performance
of the model (option C) by comparison plots of training,
cross-validation and verification as well as errors analysis
in terms of NRMSE. It shows that there is an excellent
agreement between the observed and simulated data for the
training phase but the performance deteriorates in the cross-

Table 4. Correlation coefficient of the verification results for differ-
ent options.

Option Description 1 day 2 day 3 day 4 day 5 day

A Only Q 0.996 0.98 0.952 0.911 0.866
B RF+Q 0.995 0.971 0.938 0.821 0.817
C TRF+Q 0.996 0.978 0.953 0.915 0.87
D TRF+Q+Act.ET 0.996 0.979 0.948 0.906 0.863

Table 5. Mean of the forecast predictions.

Option Description 1 day 2 days 3 days 4 days 5 days

A Only Q 2.6544 2.6635 2.6508 2.6495 2.654
B RF+Q 2.6536 2.6598 2.6941 2.723 2.6018
C TRF+Q 2.6521 2.6474 2.6522 2.6517 2.6512
D TRF+Q+Act. ET 2.652 2.6523 2.5773 2.6202 2.6715

validation stage. However, model performance in the veri-
fication stage is satisfactory, as several peaks show good re-
semblance with observation.

Moreover, accurate timing is also important and is a crit-
ical factor in operational management and decision-making
activities related to high magnitude flood events. Timing er-
rors (phase lag) of the model results have, however, been
identified from all the options. This is a common problem
in neural network rainfall-runoff models and causes are still
under investigation by neuro-hydrologists. One approach to
this problem (as suggested byAbrahart et al., 2007) is to use
a time-error correction procedure as an integrated part of the
neural network optimisation process. However, at the time
of this writing the full description of this procedure was not
available for testing.

Note that Fig.7ais not completely continuous in time and
in sample 116, 28 October 2001, there is a gap of low flows,
so sample 117 corresponds to 9 July 2002. Figures7b and c
are continous in time for all the time series plot. Their time
frame is between 5 July 2003 till 5 October 2003 and 1 July
2004 till 26 October 2004, respectively.

4.4.3 Expanded forecast horizons

The similar performance of option [A] to options [B,C,D]
confirms that for short- to medium-term forecasts and for
large rivers, ANN can provide good forecasts based only on
current and previous discharge measurements. For long-term
forecasts it is expected that this predictability on the basis
of real-time discharge measurements decreases. In that case
rainfall information and rainfall-runoff modelling would be-
come more important. To investigate whether this applies to
the Ganges case study, forecasting horizon is increased from
5 days to 10 days for option [A] (only Q), and option [C]
(TRF + Q). The correlation performance of the two ANNs
is presented in Fig.8. It shows that for forecast horizons
from 7–10 days the inclusion of the rainfall as an input to
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Fig. 9. Hydrograph comparison between SWAT model simulation results and the rated discharge.

Table 6. PERS index of the verification results for different options.

Option Description 1 day 2 days 3 days 4 days 5 days

A Only Q 0.647 −0.7107 −3.3473 −7.4138 −11.5369
B RF+Q 0.5783 −1.2459 −3.6998 −2.0217 −12.1628
C TRF+Q 0.6836 −0.6696 −2.5676 −5.3076 −8.4465
D TRF+Q+Act. ET 0.6832 −0.6 −3.23 −5.615 −8.9429

the ANN (option [C]), improves the forecasting performance.
Note that with the increase of forecasting horizon, the perfor-
mance of the model is getting worse and the performance of
the forecast beyond three days is not acceptable, whatever
improvement can be seen by including the rainfall. However
this exercise proves that composite rainfall (which is satellite
driven) along with previous discharge can help to build better
ANN, for longer forecasting lead times.

Figure9 shows the rated and simulated discharge together
with total rainfall over the catchment. This simulated dis-
charge is the best performed simulation output of our SWAT
model setup. The results presented in this paper were com-
pared to the Soil Water Assessment Tool (SWAT) model of
the basin. Although a number of complex optimization algo-
rithms were tested, the SWAT model results did not achieve
the performance of the ANN model results presented here
(van Griensven et al., 2007). The errors for the SWAT model
results were a RMSE of 11600, a MAE of 8930 and a Cor-
relation coefficient of 0.359. This is most likely due to the
large spatial extension of the basin and lack of information on
catchment parameters data, as required for the SWAT model.

5 Conclusions

An ANN flow forecasting model that makes use of spatial
precipitation obtained from pre-processing based on hydro-
logical concepts of travel time and flow length has been
developed for the Ganges river basin. This was done by
combining ground station flow measurements with satellite
derived rainfall and DEMs, and hydrological GIS analyses.
A new method for estimation of travel time has also been
applied and tested with artificial neural networks.

From the analysis of various options for input data, it was
revealed that the forecasted discharge is highly influenced
by the previous discharge input data, because of their strong
correlation. This was expected, particularly because of the
exceptionally large spatial scale of the river. For this rea-
son, different combinations of rainfall input did not influence
the model much for the short forecast horizons, For forecast
horizons of 7 to 10 days inclusion of rainfall information in
addition to discharge data, improves the ANN model perfor-
mance.

Accurate timing is a critical factor in operational manage-
ment and decision-making activities related to high magni-
tude flood events. Timing errors (phase lag), however, have
been identified, which is a common problem in ANN rainfall-
runoff models. Inclusion of a time-error correction proce-
dure as an integral part of the ANN optimisation process can
improve the model performance.

The finally selected ANN model shows some disagree-
ment with the observed values, especially during the peak
discharge. The causes may be hidden within the unknown
processes of the catchment, unverified rainfall data and rated
discharge, etc. For further improvement of the model, it
is essential to investigate the target value (rated discharge),
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where discharge is generated from a conventional rating
curve.

The method that has been used to calculate travel-time and
delineate the clustered areas, from which water can reach
the outlet of the basin within a certain range of time, can be
further improved. In this study only two different velocities
were assumed, one for channels and the other for land surface
flow, but in reality the velocity is not the same in all rivers,
even velocity differs from reach to reach of a river. Surface-
runoff velocity is also considered constant for all over the
basin, irrespective of land use and land slope, which is con-
trary of the physical conditions. More detailed velocity esti-
mates by considering the land use characteristics can help to
improve the model performance.

From the overall analysis it is found that one-day previous
discharge along with composite rainfall (derived from GIS-
based travel time calculation) gives the best result compared
to other options. This shows that remote sensing techniques
and data driven modelling can be combined successfully to
prepare a spatially distributed ANN for flow forecasting of
large-scale river basins like the Ganges.

The study presented is a particular case and the findings
here can be tested and extended in further research. This
methodology will be explored and benchmarked together
with other methodologies reported in literature, specially on
smaller catchments in order to see the effect of distributed
rainfall input more clearly.
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