Articles | Volume 29, issue 3
https://doi.org/10.5194/hess-29-799-2025
https://doi.org/10.5194/hess-29-799-2025
Research article
 | 
13 Feb 2025
Research article |  | 13 Feb 2025

Refining remote sensing precipitation datasets in the South Pacific with an adaptive multi-method calibration approach

Óscar Mirones, Joaquín Bedia, Sixto Herrera, Maialen Iturbide, and Jorge Baño Medina

Related authors

Deep Learning Emulation of Multivariate Climate Indices: A Case Study of the Fire Weather Index in the Iberian Peninsula
Óscar Mirones, Joaquín Bedia, Pedro M. M. Soares, José M. Gutiérrez, and Jorge Baño-Medina
EGUsphere, https://doi.org/10.5194/egusphere-2025-2349,https://doi.org/10.5194/egusphere-2025-2349, 2025
Short summary

Cited articles

Aghakouchak, A., Nasrollahi, N., and Habib, E.: Accounting for Uncertainties of the TRMM Satellite Estimates, Remote Sens.-Basel, 1, 606–619, https://doi.org/10.3390/rs1030606, 2009. a, b, c
Almazroui, M.: Calibration of TRMM rainfall climatology over Saudi Arabia during 1998–2009, Atmos. Res., 99, 400–414, https://doi.org/10.1016/j.atmosres.2010.11.006, 2011. a, b
Arshad, M., Ma, X., Yin, J., Ullah, W., Ali, G., Ullah, S., Liu, M., Shahzaman, M., and Ullah, I.: Evaluation of GPM-IMERG and TRMM-3B42 precipitation products over Pakistan, Atmos. Res., 249, 105341, https://doi.org/10.1016/j.atmosres.2020.105341, 2021. a
As-syakur, A. R., Osawa, T., Miura, F., Nuarsa, I. W., Ekayanti, N. W., Dharma, I. G. B. S., Adnyana, I. W. S., Arthana, I. W., and Tanaka, T.: Maritime Continent rainfall variability during the TRMM era: The role of monsoon, topography and El Niño Modoki, Dynam. Atmos. Oceans, 75, 58–77, https://doi.org/10.1016/j.dynatmoce.2016.05.004, 2016. a
Australian Bureau of Meteorology and CSIRO: Climate change in the Pacific: scientific assessment and new research. Volume 1: Regional Overview, Pacific Climate Change Science Program, Aspendale, Victoria, https://www. pacificclimatechangescience.org/publications/reports/report-climate-change-in-the-pacific-scientific-assessment-and-new-research (last access: June 2024), 2011. a
Download
Short summary
We devised an adaptive method for calibrating remote sensing precipitation in the South Pacific. By classifying data into weather types and applying varied techniques, we achieve improved calibration. Results showed enhanced accuracy in mean and extreme precipitation indices across locations. The method offers customization options and effectively addresses intense rainfall events. Its versatility allows for application in diverse scenarios, supporting a better understanding of climate impacts.
Share