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Abstract. Calibration techniques refine numerical model
outputs for climate research, often preferred for their sim-
plicity and suitability in many climate impact applications.
Atmospheric pattern classifications for conditioned transfer
function calibration, common in climate studies, are seldom
explored for satellite product calibration, where significant
biases may occur compared to in situ meteorological
observations. This study proposes a new adaptive calibration
approach, applied to the Tropical Rainfall Measuring
Mission (TRMM) precipitation product across multiple
stations in the South Pacific. The methodology involves
the daily classification of the target series into five
distinct weather types (WTs) capturing the diverse spatio-
temporal precipitation patterns in the region. Various quantile
mapping (QM) techniques, including empirical quantile
mapping (eQM), parametric quantile mapping (pQM), and
generalized Pareto distribution quantile mapping (gpQM),
as well as an ordinary scaling, are applied to each WT. We
perform a comprehensive validation by evaluating 10 specific
precipitation-related indices that hold significance in impact
studies, which are then combined into a single ranking
framework (RF) score, which offers a comprehensive
evaluation of the performance of each calibration method
for every weather type. These indices are assigned user-
defined weights, allowing for a customized assessment of
their relative importance to the overall RF score. Thus, the
adaptive approach selects the best performing method for
each WT based on the RF score, yielding an optimally
calibrated series.

Our findings indicate that the adaptive calibration method-
ology surpasses standard and weather-type-conditioned
methods based on a single technique, yielding more
accurate calibrated series in terms of mean and extreme
precipitation indices consistently across locations. Moreover,
this methodology provides the flexibility to customize
the calibration process based on user preferences, thereby
allowing for specific indices, such as extreme rainfall
indicators, to be assigned higher weights. This ability enables
the calibration to effectively address the influence of intense
rainfall events on the overall distribution. Furthermore, the
proposed adaptive method is highly versatile and can be
applied to different scenarios, datasets, and regions, provided
that a prior weather typing exists to capture the pertinent
processes related to regional precipitation patterns. Open-
source code and illustrative examples are freely accessible
to facilitate the application of the method.

1 Introduction

Satellite rainfall products serve as crucial sources of
information for various hydrological applications, offering
continuous temporal coverage and consistent spatial es-
timates of precipitation in regions lacking sufficient rain
gauge data. However, unlike direct observations, satellite
measurements are prone to systematic errors originating
from uncertainties in estimating precipitation amounts from
radar reflectivity measurements (Simpson et al., 1996,
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Sekaranom and Masunaga, 2019) or the irregular timing of
satellite overpass (Aghakouchak et al., 2009), among others.
Consequently, these products often deviate significantly from
the statistical properties of observed series, particularly
concerning extreme precipitation events (Mirones et al.,
2023a), thus requiring calibration before their application in
impact studies.

In particular, the Tropical Rainfall Measuring Mission
(TRMM) was a research satellite launched by NASA in
1997 to improve the understanding of the distribution and
variability in precipitation in the tropics and subtropics.
TRMM used several spaceborne instruments to measure
rainfall and its associated heat release for the first time,
which is essential for regulating Earth’s climate. TRMM
ended its operation in 2015, after providing precipitation data
for 17 years, with a derived daily accumulated precipitation
product (TRMM Multi-satellite Precipitation Analysis,
TMPA) that has been discontinued as of 31 December
2019 (Huffman et al., 2016). To continue and extend the
legacy of TRMM, NASA developed the Integrated Multi-
satellitE Retrievals for GPM (IMERG) algorithm, which
combines information from the GPM satellite constellation
and other sources to estimate precipitation over most of
the globe in a very flexible framework (Huffman et al.,
2020). IMERG also incorporates TRMM-era data, creating
a continuous precipitation dataset spanning over 2 decades.
In this study, we focus on TRMM due to this long history
of usage. TRMM had a low-altitude (402.5 km), non-Sun-
synchronous orbit, which allowed it to sample the diurnal
cycle of precipitation and capture the variability in rainfall
at different times of the day (National Research Council,
2006). IMERG, on the other hand, uses data from multiple
satellites with different orbits and sensors, which may
introduce uncertainties and inconsistencies in the diurnal
sampling (Zhou et al., 2023). Thus, although new products
have emerged that offer better performance than TRMM
for many hydrological applications, TRMM still has some
advantages in specific contexts. In addition, we have found
that comparable biases are still present in the newer IMERG
product for most locations (Appendix C), thus also requiring
calibration (see, e.g., Arshad et al., 2021). Therefore, to
illustrate the adaptive calibration methodology, the choice
of data source is of secondary importance. The focus of our
study is on the calibration methodology itself. Additionally,
the proposed methodology, which calibrates data based
on regional-scale atmospheric processes and validates the
results, is applicable to any dataset.

Essentially, the calibration process entails adjusting a
transfer function that relates the parameters of raw satellite
precipitation distribution to observed rain gauge time series.
The effectiveness of bias reduction through post-processing
depends on the underlying mechanisms producing the
bias (see, e.g., Maraun et al., 2017), as well as the
appropriateness and accurate implementation of the chosen
technique. Moreover, it is crucial to accompany this process

with a proper estimation of the associated uncertainty.
In particular, the TRMM biases are not constant but
associated with specific meteorological conditions, often
exhibiting a systematic overestimation during wet periods
and underestimation during dry periods in some regions
(Islam et al., 2010; Almazroui, 2011; As-syakur et al., 2016;
Giarno et al., 2018). Hence, it is reasonable to anticipate that
incorporating explicit information regarding the synoptic-
scale meteorological conditions into the calibration process
would enhance the fitting of the transfer function. In this
context, weather typing techniques (see Huth et al., 2008, for
a comprehensive review) prove helpful in defining relevant
weather patterns by summarizing distinct atmospheric
configurations associated with different precipitation regimes
(Baltaci et al., 2015; Hay et al., 1991; Riediger and Gratzki,
2014; Trigo and DaCamara, 2000). This approach can
effectively situate the calibration within the context of
significant atmospheric circulation processes that impact
the target variable (Mirones et al., 2023a), considering that
the biases may be different depending on the prevailing
atmospheric processes at each moment (Jury et al., 2019),
so a generalist adjustment may not allow one to solve them
efficiently in all cases. Moreover, although conditioning
reduces the sample size, it has been shown that the calibration
with adequate sub-samples can significantly enhance the
reliability of the corrected series, as shown with some
popular calibration methods like quantile mapping (Reiter
et al., 2018).

Atmospheric pattern classifications for conditioned trans-
fer function calibration have already been used in
statistical downscaling for climate change studies (Stehlik
and Bardossy, 2002; Wetterhall et al., 2007, 2012) as
well as in seasonal forecasting applications (Manzanas
and Gutiérrez, 2019) and short-term forecast calibration
refinement (Vuillaume and Herath, 2017). However, they
have rarely been investigated in the context of satellite
product calibration. In a recent study, Mirones et al. (2023a)
proposed a novel approach for calibrating TRMM data in the
South Pacific region. The methodology incorporates scaling
and empirical quantile mapping techniques, conditioned to
the dominant modes of interannual variability captured by
specific precipitation types. This region encompasses the
South Pacific Convergence Zone (SPCZ), characterized by
a distinct band of low-level convergence and enhanced
cloudiness extending across the South Pacific (Australian
Bureau of Meteorology and CSIRO, 2011). The SPCZ is
associated with notable meteorological phenomena such as
heavy rainfall, convective storms, and displacement of the
Intertropical Convergence Zone (ITCZ, Waliser and Gautier,
1993). The defined weather types were thus designed to
capture the key characteristics of the regional precipitation
regime while ensuring a sufficient sample size for robust
conditional model fitting. Building upon this methodological
framework, this study aims to further explore the potential of
conditioned calibration for improving the quality of TRMM
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Table 1. Final set of rain-gauge stations from the PACRAIN database used in this study. The columns provide information such as the
PACRAIN ID, indicating the data source (NZ for NIWA, US for NCEI, and SP for SPaRCE), station name and location, longitude and
latitude coordinates in degrees, time coverage of the time series (start and end dates; an asterisk indicates data outside the TRMM period,
which were discarded in this study), percentage of missing data within the start-end period, and elevation in meters above sea level.

Station ID Station name Longitude Latitude Start End % missing data Altitude

NZ75400 Kolopelu
(Wallis and
Futuna)

178.12° W 14.32° S 1 Jan 1998 1 Jan 2012 9.74 36

NZ82400 Alofi
(Niue)

169.93° W 19.07° S 1 Jan 1998∗ 2 Sep 2010 2.68 59

NZ84317 Rarotonga
(Cook Islands)

159.80° W 21.20° S 28 Sep 1999 2 Jan 2012 11.36 4

NZ99701 Raoul Island
(New Zealand)

177.93° W 29.23° S 1 Jan 1998∗ 1 Jan 2012 0.72 49

SP00646 Port Vila
(Vanuatu)

168.30° E 17.72° S 26 Jan 2000 1 Jun 2013 18.13 24

US14000 A’oloau
(American
Samoa)

170.77° W 14.30° S 1 Jan 1998∗ 31 Dec 2019∗ 21.72 408

US14690 Nu’uuli
(American
Samoa)

170.70° W 14.32° S 1 Jan 1998∗ 31 Dec 2019∗ 0.037 3

precipitation data. As a result, the new calibration method
presented relies on a weather-type classification designed for
the synoptic characterization of regional precipitation. In this
study, we built upon an already constructed classification for
the study area (Mirones et al., 2023a); its applicability to
new regions is therefore constrained by a previous weather
typing able to capture the main regional features. We
expand the range of calibration techniques by incorporating
a broader selection of commonly used parametric and
non-parametric methods, including linear scaling, empirical
quantile mapping (eQM), parametric quantile mapping
(pQM), and generalized Pareto distribution quantile mapping
(gpQM), the latter adapted for a more specific treatment of
extreme values in the quantile adjustment. Moreover, we
examine the feasibility of combining different calibration
techniques for the same location, considering the various
weather types and applying a specific statistical correction
method for each WT individually. Then, we assess the
performance of these calibration techniques using user-
defined validation indices and suitable validation measures.
The validation results for each index are globally evaluated
using a weighted ranking framework (RF) score, which
allows us to identify the optimal combination of techniques
for site-based calibration.

2 Data and methods

2.1 Data

The reference observations used as the predictand for
calibration were obtained from the Pacific Rainfall Database
(PACRAIN, Greene et al., 2008). The PACRAIN dataset
comprises daily and monthly rainfall records from a
comprehensive collection of rain-gauge stations situated
across atolls and islands in the South Pacific region. These
records are sourced from various institutions, including the
National Institute of Water and Atmospheric Research of
New Zealand (NIWA, https://www.niwa.cri.nz, last access:
June 2024), the US National Centers for Environmental
Information (NCEI, https://www.ncei.noaa.gov/, last access:
June 2024), the French Polynesian Meteorological Service
(https://meteo.pf, last access: June 2024), the Schools of
the Pacific Rainfall Climate Experiment (SPaRCE, https:
//sparce.ou.edu, last access: June 2024), and the Atlas of
Pacific Rainfall (Taylor, 1973). Despite the seemingly ample
raw samples within the database, an examination of missing
data reveals a significantly reduced number of suitable data
points. Two critical considerations arise in this context:

(i) Bias correction requirements. Achieving robust fits
for the various statistical methods employed in bias
correction demands a relatively large sample size. This
is especially true for effectively characterizing extreme
events, a main point in our study due to their paramount
importance in numerous hydrological applications.
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(ii) Representativity of locations. The chosen locations
must encompass a representative spectrum of variability
within the region. In our study, these locations are strate-
gically distributed across the entire domain, offering a
sensible representation of diverse precipitation regimes
across the weather typing spatial domain.

As a result, we used the final subset of suitable rain-
gauge stations presented in Table 1. The calibrated dataset
in this study is the Tropical Rainfall Measuring Mission
3B42_7B Daily product (TRMM TMPA Precipitation L3
1 d 0.25°× 0.25° V7, Huffman et al., 2016)1. This dataset
provides measurements of daily accumulated precipitation,
covering the period from 1 January 1998 to 1 January 2020,
with a daily temporal resolution. The TRMM 3B42_7B
is a research-grade dataset designed for climatological
and hydrological analyses, which combines satellite-based
precipitation estimates with ground-based gauge data to
enhance accuracy. Specifically, it applies bias corrections
using monthly gauge analysis from the Global Precipitation
Climatology Centre (GPCC, Schneider et al., 2011), which
helps reduce systematic errors present in the raw satellite
estimates. The spatial coverage of the dataset ranges from
50.0° N to 50.0° S and 180.0° E to 180.0° W. For the
calibration process, the TRMM data were extracted at the
nearest grid point to each rain gauge location.

2.2 Weather typing

We used principal component analysis (PCA) to obtain
representative precipitation patterns and then performed
a clustering approach. We chose K-means clustering, a
traditional method that divides the feature space into a
fixed (K) number of clusters by iteratively finding group
centroids that maximize cluster distances and minimize
within-cluster dispersion (e.g., Pike and Lintner, 2020).

The variables used for clustering were precipitation, sea-
level pressure, day-to-day sea-level pressure difference, and
eastward and northward wind components, all extracted
from the ERA5 reanalysis (Hersbach et al., 2020). Sea-level
pressure and its difference were chosen in order to provide
suitable descriptors of the South Pacific Convergence Zone
state and the occurrence of tropical cyclones, respectively,
that have a major effect on precipitation patterns within
this region (Vincent et al., 2011; Mirones et al., 2023a).
Since the geostrophic approximation is not valid near the
Equator, we also include the wind components in order to
characterize circulation. In order to eliminate redundance
and linear dependence among variables to be clustered, we
performed a joint principal component analysis (PCA) of
all the variables, retaining all PCs explaining up to 80 % of
total variance (summing up to 45 PCs) prior to clustering.
We chose k = 5 different weather types (WTs) as a trade-

1https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/
summary, last access: June 2024

off between the representativity of each group (at least
2 years of data in each group) and the minimization of
the total within-cluster variance. Additional groups did not
lead to significant reductions of within-group variance and
resulted in less representative WTs (less than 600 d for the
21-year period from 1998–2019), thus potentially affecting
the robustness of the conditioned statistical calibration.
Furthermore, we assessed the robustness of the obtained
classification following a 4-fold cross-validation approach
by partitioning the data in four temporal blocks (1979–
1988, 1989–1998, 1999–2008, and 2009–2019). PCA was
iteratively trained on each fold, and the resulting empirical
orthogonal function (EOF) was projected onto the remaining
folds. At each iteration, the resulting weather typing
yielded consistent results in terms of climatologies and
precipitation seasonality. The identification of five distinct
daily WTs and their relatively balanced sample sizes ensures
a robust conditioning of the calibration process, thereby
enhancing the reliability and stability of the calibration
results. We provide a summary of the resulting weather-type
classification in Appendix A. The methodology and main
features of the classification are further explained in Mirones
et al. (2023a).

2.3 Bias correction techniques

The calibration techniques used for the adaptive method-
ology include scaling, empirical quantile mapping (eQM),
parametric quantile mapping (pQM), and generalized Pareto
distribution quantile mapping (gpQM). A more detailed
description of the methods is provided in Appendix B.

The scaling technique is applied to the raw TRMM data
by multiplying it with a correction factor. This factor is
computed as the ratio between the mean of the predictand
(PACRAIN rain gauge measurements) and the mean of the
raw TRMM measurements during the training period.

The eQM method is an adaptation of the approach
presented in Themeßl et al. (2011), which utilizes empirical
cumulative distribution functions (eCDFs) for calibration.
In its parametric version (pQM), the QM method relies on
the theoretical distribution rather than the empirical one,
whose parameters are estimated based on the observed and
TRMM data. In particular, here it is assumed that both the
observed and the simulated intensity distributions can be well
approximated by the biparametric gamma distribution (Piani
et al., 2010), and therefore both shape and scaling parameters
need to be estimated for transfer function fitting.

The gpQM approach also utilizes quantile mapping but
incorporates the generalized Pareto distribution (GPD) above
a certain threshold (Gutjahr and Heinemann, 2013). The
threshold, denoted as u, represents the percentile above
which the GPD is used to adjust the wet-day distribution.
Below the threshold, the distribution is adjusted to a gamma
distribution following the pQM method. This method aims
to improve the performance of pQM in the upper tail
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of the distribution, specifically for extreme events. In this
work, two different thresholds are selected: the 95th and the
75th percentiles, resulting in the methods named gpQM-95
and gpQM-75, respectively.

2.4 Adaptive calibration methodology

2.4.1 Calibration model fitting

The adaptive calibration methodology involves the appli-
cation of scaling eQM, pQM, gpQM-95, and gpQM-75
(Sect. 2.3) individually to each weather type (WT; Sect. 2.2).
Subsequently, the best calibration method for each WT is
selected, and the calibrated series are combined to form a
unified time series spanning the entire calibration period.
For each model fit, the calibrated series are obtained
following a cross-validation scheme, aimed at avoiding
model overfitting, allowing us to obtain a more realistic
measure of model performance (Efron and Gong, 1983).
Under this scheme, the calibration methods are fit and
validated k times, considering in turn each of the folds as a
test set and training the method with the remaining k−1 ones.
The resulting k-test series are finally joined and validated
together in a single series spanning the whole calibration
period. In the adaptive calibration approach, the k folds are
randomly chosen from each WT separately, with k ranging
from 2 to 6 folds depending on the number of observations
falling within each WT in order to ensure an approximate
sample size of ∼ 300 d in each fold to secure a robust fit.

2.4.2 Calibration model assessment

In this work, we focus on general validation aspects
involving the observed and calibrated TRMM marginal
distributions. In this context, the validation ultimately entails
deriving specific precipitation indices calculated from both
rain gauge observations and calibrated TRMM time series
and quantifying the mismatch with the help of suitable
performance measures (see, e.g., Maraun et al., 2015).

There are different types of precipitation indices that can
be used to validate a precipitation model depending on
the purpose and scale of the model. The criteria used in
this study for choosing precipitation indices for validation
are (i) the ability of the index set to capture the relevant
aspects of precipitation variability and extremes, such as
frequency, intensity, and duration, and (ii) an index set that
is comparable across the different locations and weather
types and across different timescales within the study area. A
number of precipitation-derived indices are computed to this
aim, following the validation framework of the COST Action
VALUE (Gutiérrez et al., 2019; see Table 2), thus enabling a
consistent, objective, and shareable evaluation of the quality
and performance of different calibration methods (note that
here, the term index can also refer to a time series, as in

the case of correlation as validation measure, that receives
as input the raw precipitation times series; Table 2).

However, validation is a multi-faceted process, and
ranking the different methods using different measures
of performance is difficult because there is no single,
universal criterion that can capture all aspects of a method’s
effectiveness. As the different measures emphasize different
dimensions of performance (Table 2), such as distributional
(e.g., skewness and mean), average precipitation intensity
(e.g., simple daily intensity index, SDII), higher-percentile
precipitation amount (P98WetAmount), or extreme precipi-
tation values for specific return periods (e.g., RV20_max),
some measures may be more relevant or important than
others or attain different rankings depending on the method,
potentially yielding inconsistent or conflicting outcomes.
In order to facilitate a comprehensive evaluation and
intercomparison between each calibration method and
WT, we have employed a standardized score calculation
methodology able to integrate into one single composite
score the different aspects of the validation. Furthermore,
specific user-defined weights can be assigned to each
validation measure to reflect their relative importance or
relevance for the evaluation process, as outlined next.

To determine the best method for each WT, we utilize
a ranking framework (RF) score, which is based on the
methodology described in Kotlarski et al. (2019). The
computation of this score involves several steps. Firstly, we
calculate the bias of each calibration method with respect to
the reference observations by taking the absolute differences
between each of the index values (Table 2) of the reference
observations (Xi) and the calibrated TRMM series for each
method (Yi,j ):

Zi,j = |Xi −Yi,j |. (1)

Next, we normalize the bias values obtained from all
calibrations (j ) for a given index (i), such that lower values
are considered better by the normalization:

Z′i,j = 1−
Zi,j −Zi,min

Zi,max−Zi,min
. (2)

Finally, the RF score for each method is calculated as the
average of the normalized values for all indices:

RFj =
1
N

N∑
i=1

wi ·Z
′

i,j with
N∑

i=1
wi = 1, (3)

where N represents the total number of indices evaluated
(N = 10; see Table 2). Thus, in the calculation of the
score, it is possible to incorporate the arbitrary (unit-
normalized) weight wi for the normalized climate indices.
Normalization of weights is a straightforward method where
we assign weights based on criteria such as the importance
or impact of the validation measure within the validation
procedure. For example, we might assign a higher value
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Table 2. Summary of the validation indices and measures used in the study, along with their corresponding codes. The indices and measures
serve as evaluation metrics for assessing the performance and accuracy of the calibration techniques in the study.

Code Description Type

Skewness Skewness index
Mean Mean index
SDII Mean wet-day (≥ 1 mm) precipitation index
R10 Relative frequency of days with precipitation ≥ 10 mm index
R10p Precipitation amount falling in days with precipitation ≥ 10 mm index
R20 As R10 but considering a 20 mm threshold index
R20p As R10p but considering a 20 mm threshold index
P98Wet 98th percentile of wet (≥ 1 mm) days index
P98WetAmount Total amount above 98th percentile of wet (≥ 1 mm) days index
RV20_max Maximum daily precipitation for a 20-year return value index

Absolute bias measure
Relative bias measure
Spearman’s rank correlation measure

to performance in extreme indices. Each weight is then
divided by the total sum of all weights to ensure they sum
to one. This allows for explicit consideration of validation
aspects that may carry greater importance, with higher
weights assigned to those aspects to determine the final
score. The assigned weights have an intuitive interpretation
(e.g., a weight of 0.1 for a specific index bias indicates
and overall influence of 10 % in the final RF score). A
common example in many hydrological applications is the
significance of accurately representing extreme precipitation
events following calibration. Therefore, specific extreme
indices (e.g., P98Wet or P98WetAmount, as shown in
Table 2) can be given a higher relative weight in their
contribution to the overall score, thereby reflecting their
increased relevance in the calibration method ranking
process. It is important to note that under this validation
framework, the ranking of calibration methods is sensitive to
arbitrary decisions in (i) the battery of validation indices used
and (ii) the weight assigned to each measure to compute the
overall score. We present a flexible validation framework that
can be adapted to various impact applications and research
objectives. Nevertheless, end users can also define their own
validation sets according to their specific research questions.
With a suitable battery of validation indices, an equally
weighted scheme is often a suitable alternative, particularly
when aiming to avoid arbitrary choices in index weighting.

All the calibration methods have been run using the
implementation available in the package downscaleR (Bedia
et al., 2020) from the open-source climate4R framework for
climate data analysis and visualization (Iturbide et al., 2019).
The different evaluation indices presented in Table 2 have
been computed using the standard definitions of the VALUE
framework (Maraun et al., 2015), which are implemented in
the R package VALUE2.

2https://github.com/SantanderMetGroup/VALUE

3 Results and discussion

3.1 Standard and weather-type conditioned calibration
method intercomparison

To obtain a comprehensive evaluation of the method’s
overall performance, we initially focus on an unconditioned
intercomparison, referred to as standard calibration hereafter.
This evaluation involves assessing the method across the
entire time series without considering different weather
types. The preliminary findings indicate the presence of
low to moderate (negative) biases in the TRMM product.
As an illustrative example, we present the results obtained
at the Kolopelu station in Fig. 1 (the upper triangle
represents the standard calibration results), which are
representative of the overall outcomes observed at other
locations (the corresponding plots for the remaining rain
gauge locations are included in Appendix B). While
certain TRMM indices show negligible biases compared
to the rain-gauge stations (such as skewness and SDII),
others exhibit significant relative biases, particularly for
representing high-precipitation events (such as R10p, R20p,
or P98_WetAmount). These findings highlight the necessity
of applying some form of calibration to enhance the accuracy
of TRMM for impact studies. In the same vein, we include
the ERA5 precipitation series to provide a benchmark to
contextualize the biases of satellite data. This comparison
helps to highlight the strengths of the satellite products while
also underscoring the importance of calibration against a
reliable reference as satellite product biases remain an issue.

Under the assumption that the satellite and radar error
may be proportional to the magnitude of the rain rate
(Aghakouchak et al., 2009), scaling has been previously
used for TRMM correction (see, e.g., Islam et al.,
2010; Almazroui, 2011). However, it was found to be
ineffective in mitigating biases in most specific indices
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Figure 1. Relative biases of the climate indices used for validation
(Table 2 of raw TRMM data and TRMM-calibrated data, at the
Kolopelu station grid box (Table 1). As an additional reference, we
include in the second column the biases of the ERA5 reanalysis
raw precipitation data (Hersbach et al., 2020). The calibration
techniques are scaling, eQM, pQM, GPQM-95, and GPQM-75
(Sect. 2.3). For each method plot cell, the upper triangle displays
the relative bias of the standard calibration, while the lower triangle
represents the WT-conditioned approach. The last column shows a
comparison between the relative bias of the best performing WT-
conditioned technique (eQM at the Kolopelu site) and the adaptive
calibration. The circle indicates the best-performing approach with
the lowest relative bias. The Y -axis labels show the actual index
values from the rain gauge observations beneath the index names.

related to intense precipitation events and some others
related to mean precipitation, such as SDII. Instead of
yielding and improvement, scaling had an overall deleterious
effect, underscoring the critical importance of considering
alternative calibration techniques better suited to TRMM
adjustment. As shown in Fig. 1, the scaling step introduces
additional bias to the raw TRMM data, specially for SDII,
R10p, R20p, and P98Wet. The scaling step also changes the
sign of the bias in these cases but consistently increases its
absolute value in both the standard (not conditioned) and the
WT-conditioned approaches.

As Fig. 1 shows, overall the quantile-mapping-based
techniques attain similar performance, although this may
vary by index or technique. The relative bias of the
indices is also similar for both standard and conditioned
calibration. This supports Mirones et al. (2023a)’s finding
that EQM outperforms scaling, with minor differences
between unconditioned and WT-conditioned calibration
in bias. This also applies to the parametric quantile
mapping variants (pQM and gpQM) for different exceedance
thresholds, which are additional methods introduced in this
study.

The final column in Fig. 1 compares the best-performing
conditioned technique in each case with the adaptive
methodology, combining the optimal calibration technique
for each weather type individually. In general, the adaptive
methodology surpasses the results achieved by the best-
conditioned calibration. The most notable reduction in
relative bias is observed in indices that measure high rainfall
amounts, such as R10p, R20p, or P98WetAmount. This
improvement is significant because conditioned calibration
alone did not exhibit substantial enhancements, except for
specific cases involving techniques like gpQM. However,
only three indices (mean, SDII, and P98Wet) did not show
improvement with the adaptive approach and remained
nearly unchanged. In summary, the overall results indicate
that the adaptive calibration method offers improved
adjustment in the upper tail of the distribution, which is
where TRMM exhibits the most significant biases. This
calibration methodology facilitates enhanced adjustment for
extreme precipitation events, with a specific focus on high
precipitation indices. Next, in Sect. 3.2, we present a more
in-depth analysis of the detailed results obtained from the
adaptive calibration approach.

3.2 Adaptive calibration

We introduce the RF score as a comprehensive measure that
accounts for the various indices described earlier (Table 2)
to evaluate the performance of the adaptive approach
in comparison to the standard WT-conditioned method.
This measure allows for an easier ranking of methods.
Figure 2 presents the summarized results, considering both
unweighted and weighted RF values, where “unweighted”
here refers to a version in which all evaluation metrics are
equally weighted, and thus no specific weights are assigned
by the user. The latter emphasizes the significance of extreme
indicators in the evaluation process, as discussed in Sect. 2.4.

First of all, we undertake a method intercomparison using
the unweighted RF score as a ranking measure (Fig. 2a).
In most stations the adaptive calibration outperforms
the standard and WT-conditioned techniques, with some
exceptions (Port Vila and Nu’uuli), in which the adaptive
approach has a similar performance than the simpler ones.
On the contrary, the adaptive method outperforms the
standard and WT-conditioned calibration at other locations,
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Figure 2. (a) Ranking framework (RF) score results of the adaptive calibration for each WT and site. The red dots indicate the best method
for the corresponding WT, while the white stars represent the best method for the standard calibration (the same technique applied over
the entire period without conditioning). On the right side, the standard approach score for each method is represented in the box plot (their
mean is represented by the color of the boxes). (b) Similar to panel (a), but with the addition of different weights (refer to Table B2) in the
computation of climate indices for the RF score.

such as Kolopelu, Alofi, or Raoul Island. Here, the adaptive
calibration yields much higher RF scores than the best
scores achieved by the other methods. While the score
for the best standard technique at these stations exceeds
0.60, the adaptive calibration achieves values between 0.80
and 0.90, representing an improvement of 33 %–50 %.
This significant enhancement in calibration demonstrates
an overall improvement that justifies the application of
the adaptive method. Furthermore, it is noteworthy that in
the worst-case scenario, the adaptive approach will nearly
match (and never significantly impair) the performance of
the calibration. Furthermore, the limited spatial variability
across locations observed in the adaptive method (Fig. 2, box
plots) underpins its potential for a robust application across
different locations. This characteristic holds importance in
hydrological studies, where spatial consistency between
locations at the basin level is typically desired.

As mentioned earlier, it is also possible to assign arbitrary
weights to the indices involved in the RF score, giving
more importance to specific precipitation characteristics,
such as the representation of extremes. In this study, we
selected index weights that prioritize extreme precipitation
indices (Table B2). This weighting aims to guide the

calibration towards better adjustment in the upper tail of
the distribution, thereby achieving improved correction for
extreme precipitation events beyond a certain threshold. In
this way, the increased influence of extreme indices favors
methods like gpQM, which specialize in adjusting the upper
tail using a GPD (generalized Pareto distribution). The
findings are illustrated through the box plots presented in
Fig. 2, showing that the scores of gpQM95 and gpQM75
exhibit higher values in the weighted version (Fig. 2b)
compared to the unweighted version (Fig. 2a). Moreover, the
differences in their performance can be visualized in Fig. 3.

The analysis of the RF weighting configuration demon-
strates its dual impact: not only does it affect the overall
score, but it also influences the selection of techniques for
each weather type (Fig. 3). In our weighting scheme, which
prioritizes performance in extreme precipitation indices, the
gpQM approaches often appear as the best choice, for
instance, at the A’oloau site for WTs 1 to 3, Kolopelu (WTs 1
and 2), or Alofi (WT1, Fig. 3). This outcome indicates the
suitability of the gpQM technique over the conventional
eQM and pQM methods when the representation of extreme
indices is prioritized. For instance, at A’oloau, the overall
adaptive calibration RF score improves from approximately
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0.65 to 0.85, representing a 30 % increase, with the best
standard calibration method changing from eQM or pQM to
gpQM75 in WT1, WT2, and WT3 (Fig. 3).

In the same vein, at the Port Vila station in Fig. 2a, the
adaptive calibration score is lower compared to the score of
gpQM75. However, when applying weighting with a focus
on high rainfall indices (Fig. 2b), the adaptive calibration
undergoes enhancements and achieves a competitive score
higher than the unweighted version. It is worth noting
that while the inclusion of weights leads to changes and
improvements in the adaptive calibration for certain stations,
it has no effect on others. For instance, stations like
Rarotonga or Nu’uuli exhibit no changes in the composition
of the adaptive calibration regardless of the weighting
applied. The particular case of the Rarotonga site emphasizes
the fact that model assessment is sensitive to user choices,
such as the set of indices and measures used for validation
and, as in this case, the weights assigned to each of them. As
a result, when more weight is assigned to the performance
of extreme precipitation indices (weighted RF evaluation),
the adaptive calibration approach performs better than the
standard calibration with the best-performing method (pQM,
RF∼ 0.75). On the contrary, the standard unconditioned
calibration using the PQM method performs (marginally)
better under the unweighted RF scheme. In the case of
Nu’uuli station, the adaptive calibration did not improve the
performance, although it also attained a similar high RF score
(∼ 0.85/0.75 unweighted/weighted RF scores; Fig. 2a and b).
Compared to other locations in Figs. B1–B6 (Appendix B)
and Fig. 1 (Kolopelu), Nu’uuli has moderate raw TRMM
biases that are effectively corrected by both empirical and
parametric quantile mapping (Fig. B6). gpQM performs
similarly in general, but fails in reproducing distributional
skewness and RV20_max in the case of the adaptive
approach.

Therefore, the results show that adaptive method attains an
overall better performance in all stations, as highlighted in
the box plots in Fig. 2. Additionally, the adaptive calibration
demonstrates a narrower interquartile range (IQR) compared
to the other methods in Fig. 2a, indicating lower variability.
Only gpQM95 calibration shows a narrower IQR range but
obtains significantly lower scores. We attribute this result to
the limited robustness of the fit of the extreme function due
to the high-percentile threshold, which greatly reduces the
sample size (see Table B1). The other methods individually
considered exhibit wider RF variability ranges and lower
values as compared to the adaptive approach.

Quantile mapping can preserve the relative changes in
the simulated data, such as trends and patterns (see, e.g.,
Casanueva et al., 2018), while scaling may distort them
by applying a constant factor. As a result, scaling shows
limitation in representing some of the extreme precipitation
indices, such as P98Wet and RV20_max, in most of the
locations, as well as the SDII (see Figs. B1–B6 and Fig. 1,
for Kolopelu). On the other hand, eQM and pQM show

an overall good performance in most precipitation indices,
and eQM is most often the best method for the “standard”
calibration (Fig. 2).

The gpQM method has the potential to improve the
modeling of local extreme precipitation by better adjusting
extreme events above a given percentile (75 and 95 in
this study), by fitting a generalized Pareto distribution
on the threshold exceedances as the transfer function for
these points (see, e.g., Vrac and Naveau, 2007). This may
happen, for instance, in weather types 1 and 2, which are
associated with enhanced tropical cyclone frequency and
extreme precipitation events (Mirones et al. (2023a), and
Fig. A), and it is shown at Kolopelu (Fig. 2a and b for
unweighted/weighted RF score) and A’oloau (Fig. 2b), where
gpQM75 is the best-performing calibration method, or WT1
at Alofi (with gpQM95). The limitation, however, arises from
the sample size required to perform a robust fit; this is a
major challenge in the adaptive approach since only the
observations of the given WT are used, and it is exacerbated
for higher-percentile thresholds that further limit the number
of points for a robust fit. This limitation also exists for the
other quantile mapping techniques, although, in this case, the
number of observations, even for the less frequent weather
type (approximately 300 d for the calibration period in this
study; see Sect. 2.4.1), can ensure a robust fit. Nevertheless,
scaling requires less data and is easier to implement than
quantile mapping. The assumption of the scaling of a linear
relationship between raw satellite and observed precipitation,
even though it may not hold true in most occasions, can still
be reasonable (Aghakouchak et al., 2009), yielding a good
approximation on some occasions (see, e.g., the overall RF
results obtained in Port Vila in Fig. 2).

4 Conclusions

We intercompared a range of bias-adjustment techniques for
the calibration of daily Tropical Rainfall Measuring Mission
(TRMM) precipitation data, building upon a set of rain-
gauge stations scattered across the South Pacific region,
spanning the period 1998–2019. The calibration techniques
evaluated in this study include empirical quantile mapping
(eQM), parametric quantile mapping (pQM), generalized
Pareto distribution quantile mapping (gpQM), and scaling,
the latter used as a benchmark since it is the most
common and simple approach for this task. An adaptive
calibration methodology has been developed based on
weather-type (WT) conditioning, which selects the best-
performing calibration technique for each specific WT
according to a user-defined weighted set of precipitation
indices for validation.

The adaptive calibration method improves upon the results
obtained with the standard WT-conditioned methodology
presented in Mirones et al. (2023a), or at least, in
the worst case, it maintains the calibration performance.

https://doi.org/10.5194/hess-29-799-2025 Hydrol. Earth Syst. Sci., 29, 799–822, 2025



808 Ó. Mirones et al.: An adaptive multi-method approach for calibrating satellite precipitation datasets

Figure 3. Differences between unweighted and weighted RF scores attained for each weather type at each of the target locations. The
technique associated with the highest score is also indicated by the key of symbols.

Notably, the most substantial improvements are observed in
accumulated precipitation indices, specifically R10p, R20p,
and P98WetAmount. These indices hold significance in
hydrological modeling and climate impact studies, making
the attained improvements in the calibration particularly
relevant. Thus, the method showcases competitive perfor-
mance in effectively calibrating the TRMM data at the target
stations, thereby promoting consistency in the results across
diverse locations. This adaptability further enhances the
overall calibration accuracy by adjusting its bias according to
the specific precipitation regimes prevalent in each weather
type. Furthermore, the capability to customize the calibration
by applying arbitrary weights to specific indices offers
increased flexibility in determining the optimal combination
of methods that align with the unique characteristics of
each site and research objectives. In conclusion, this new
adaptive calibration methodology refines and improves the
accuracy of precipitation data from indirect sources, such as
the TRMM database or similar products. This enhances the
reliability of hydrological and climate impact assessments
based on these data. In the Supplement, we provide the
data and a reproducible documented notebook, to aid in the
application of the method.

Appendix A: Weather typing results

Next, we provide a visual summary of the weather typing
classification undertaken using ERA5 reanalysis (Sect. 2.2).
Here, we include a summary figure of the resulting
classification (Fig. A1) in order to include additional
relevant information for the analysis presented in this study,

such as the occurrence of tropical cyclones (TCs), as
relevant features significantly contributing to total annual
precipitation and directly related to extreme precipitation
events in the region. The TC track record for the study area
has been obtained from the International Best Track Archive
for Climate Stewardship (IBTrACS v4.0) database (Knapp
et al., 2010)3.

Figure A1. (a) Daily time series classification of weather types for
the extended 41-year period from 1979–2020. TC occurrences are
represented by the white dots. (b) Absolute number of days affected
by TCs by year and WT.

3All data are open-access through a dedicated URL (https://
www.ncei.noaa.gov/products/international-best-track-archive, last
access: 11 February 2025)
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While the seasonal pattern of the classification is depicted,
interannual variability fluctuations also emerge in this
visualization. A few years stand out as particularly cyclonic
(e.g., 1981, 1997, and 1998), with most of these TC events
associated with weather types 1 and 4 (e.g., years 1983,
2003, and 2010) and mostly restricted to the period from
December–April (Fig. A1b). The exceptional year 1997
extends the TC activity to May–July and starts earlier, in
October, while the second-strongest (1981) does not extend
the season but exhibits an increased TC activity in the period
from December–March (Fig. A1a). Notably, both years are
characterized by experiencing the two strongest El Niño
events of recent decades4, together with the period from
2015–2016, which also exhibits a remarkable TC frequency
(Fig. A1b). The interested reader is referred to the weather
typing methodology and main results presented in more
detail in Mirones et al. (2023a).

Appendix B: Bias correction methods formulas and
complementary information

Here, we provide a detailed description of the correction
methods used in the study. These methods aim to improve
the accuracy of the TRMM rainfall data by incorporating
information from PACRAIN rain gauge measurements used
as the predictand. The calibration techniques are described as
follows.

Equation (B1) presents the scaling method, where
p̂trmm represents the corrected TRMM rainfall; prg and
ptrmm denote the PACRAIN rain gauge and raw TRMM
measurements, respectively; and P rg and P trmm are the
means of the prg and ptrmm series.

p̂trmm = ptrmm
P rg

P trmm
(B1)

Equation (B2) describes the empirical quantile mapping
(eQM) method. Here, X̂t,i represents the corrected value for
a specific day and grid; F̂ trmm

doy,i and F̂
rg
doy,i are the empirical

cumulative distribution functions (eCDFs) for TRMM and
PACRAIN, respectively, corresponding to the given day of
the year (doy); and Xt,i is the uncorrected value.

X̂t,i = F̂
rg−1

doy,i

(
F̂ trmm

doy,i (Xt,i)
)

(B2)

4El Niño and La Niña Years: NOAA Physical Sciences
Laboratory [WWW Document], n.d. URL https://psl.noaa.gov/
enso/climaterisks/years/top24enso.html (last access: 2 December
2024).

Equation (B3) presents the parametric quantile mapping
(pQM) method. F trmm

doy,i and F
rg
doy,i represent the assumed

theoretical distributions for TRMM and PACRAIN, respec-
tively, and Xt,i is the uncorrected value.

X̂t,i = F
rg−1

doy,i

(
F trmm

doy,i (Xt,i)
)

(B3)

Lastly, Eq. (B4) outlines the generalized parametric
quantile mapping (gpQM) method. It uses a combination
of gamma and generalized Pareto distribution (GPD) to
correct the TRMM rainfall values based on their percentiles.
F

trmm,gamma
doy,i and F

rg,gamma
doy,i are the gamma cumulative

distributions for TRMM and PACRAIN, while F
trmm,GPD
doy,i

and F
rg,GPD
doy,i represent the GPDs for TRMM and PACRAIN,

respectively. The threshold of the 95th percentile is used to
differentiate between the two distributions.

X̂t,i =


F

rg,gamma−1

doy,i

(
F

trmm,gamma
doy,i (Xt,i)

)
if Xt,i < 95th percentile

F
rg,GPD−1

doy,i

(
F

trmm,GPD
doy,i (Xt,i)

)
if Xt,i ≥ 95th percentile

(B4)
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Figure B1. Relative biases of the climate indices used for validation (Table 2 of raw TRMM data and TRMM-calibrated data, at the Alofi
station grid box (Table 1). As an additional reference, we include in the second column the biases of the ERA5 reanalysis raw precipitation
data (Hersbach et al., 2020). The calibration techniques are scaling, eQM, pQM, GPQM-95, and GPQM-75 (Sect. 2.3). For each method plot
cell, the upper triangle displays the relative bias of the standard calibration, while the lower triangle represents the WT-conditioned approach.
The last column presents a comparison between the relative bias of the best WT-conditioned technique and the adaptive calibration. The
circle indicates the best-performing approach with the lowest relative bias. The Y -axis labels show the actual index values from the rain
gauge observations beneath the index names.
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Figure B2. Same as Fig. B1 but for the Rarotonga rain gauge location.
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Figure B3. Same as Fig. B1 but for the Raoul Island rain gauge location.
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Figure B4. Same as Fig. B1 but for the Port Vila rain gauge location.
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Figure B5. Same as Fig. B1 but for the A’oloau rain gauge location.
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Figure B6. Same as Fig. B1 but for the Nu’uuli rain gauge location.

https://doi.org/10.5194/hess-29-799-2025 Hydrol. Earth Syst. Sci., 29, 799–822, 2025



816 Ó. Mirones et al.: An adaptive multi-method approach for calibrating satellite precipitation datasets

Table B1. Overview of observations (days) for each WT across multiple stations. Each row corresponds to a specific station, while the
columns represent different WTs. The table displays the total number of observations recorded for each WT along with the corresponding
75th and 95th percentiles.

Station WT1 WT2 WT3 WT4 WT5

N P75 P95 N P75 P95 N P75 P95 N P75 P95 N P75 P95

Kolopelu 966 242 48 775 194 39 851 213 43 826 206 41 306 76 15
Alofi 1140 285 57 932 233 47 1023 256 51 917 229 46 437 109 22
Rarotonga 1105 276 55 916 229 46 1055 264 53 957 239 48 391 98 20
Raoul Island 1327 332 66 1058 264 53 1158 290 58 1076 269 54 458 114 23
Port Vila 1084 271 54 884 221 44 1010 252 50 849 212 42 370 92 18
A’oloau 1091 273 55 874 218 44 999 250 50 826 206 41 428 107 21
Nu’uuli 2076 519 104 1721 430 86 1846 462 92 1570 392 78 820 205 41

Table B2. Index weight, wi (see Eq. 3), for the weighted RF score calculation in the adaptive calibration technique selection.

Code Weight

Skewness 0.05
Mean 0.05
SDII 0.05
R10 0.05
R10p 0.05
R20 0.15
R20p 0.15
P98Wet 0.15
P98WetAmount 0.2
RV20_max 0.1
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Appendix C: Comparison of IMERG and TRMM
dataset biases

In this appendix, we indicate the biases of the IMERG
product (together with TRMM and ERA5 reanalysis as
reference) as compared against the rain gauge observations
at the seven locations of the study. Our analysis shows
that the biases observed in TRMM are still present in the
newer IMERG products at the selected localities. In Fig. C1,
we depict the biases of both TRMM and IMERG using
a quantile–quantile plot against the rain gauge records. In
Fig. C2, these biases are more accurately quantified in terms
of the different validation indices used in this study. The new
IMERG products show a moderate overall improvement over
the old TRMM product in some sites (Alofi, Raoul Island);
however, biases are still present and in some locations are
even higher that TRMM (Port Vila) necessitating calibration
against a ground-truth reference.

https://doi.org/10.5194/hess-29-799-2025 Hydrol. Earth Syst. Sci., 29, 799–822, 2025



818 Ó. Mirones et al.: An adaptive multi-method approach for calibrating satellite precipitation datasets

Figure C1. Quantile–quantile plots of TRMM (blue) and IMERG (red) against the rain gauge daily precipitation records of the stations
indicated.
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Figure C2. Relative biases of the climate indices used for validation (Table 2 of raw TRMM and IMERG datasets at the closest grid points
of the locations of each reference station used in the study (Table 1). As an additional reference, we include in the first column the biases of
the ERA5 reanalysis (Hersbach et al., 2020) raw precipitation.
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Code and data availability. An interactive notebook associated
with this study is available via the following link:
https://github.com/SantanderMetGroup/notebooks/tree/2023_
TRMM_adaptiveCal/2023_adaptiveCalibration (Mirones et al.,
2023b). This notebook provides a comprehensive illustration of
the entire adaptive calibration process, including available data
download from an open repository and the computation of both
standard and adaptive calibration RF scores.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/hess-29-799-2025-supplement.
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