Articles | Volume 29, issue 3
https://doi.org/10.5194/hess-29-733-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-733-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing national exposure to and impact of glacial lake outburst floods considering uncertainty under data sparsity
Huili Chen
School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough LE11 3TU, UK
School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough LE11 3TU, UK
Jiaheng Zhao
FM Research Division, FM Center, 288 Pasir Panjang Road, 117369, Singapore
Sudan Bikash Maharjan
International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal
Related authors
No articles found.
Harriet Moore, Qiuhua Liang, Lee Bosher, John Atanbori, Mark Gussy, Amogh Madbhatkal, Joe Swift, Jaspreet Phull, Kirsten Guy, Lynsey Collinson, Andy Penny, Maria Athanassiadou, Kaja Milczewska, Ebenezer Amankwaa, Lucy Kennedy, Edward Hanna, Gregory Sutton, Bartholomew Hill, and Colin Hopkirk
EGUsphere, https://doi.org/10.5194/egusphere-2025-4062, https://doi.org/10.5194/egusphere-2025-4062, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Climate change will increase the frequency of extreme weather events like floods, droughts and storms. These hazards have impacts on human health. Some hazards, like storms, cause additional hazards like flooding. Little is known about the compound effects of multiple hazards on health, or how impacts vary between communities and areas. We present ten urgent research priorities related to the impact of multiple hazards on health to guide future decision-making towards climate resilience.
Zhen Lei Wei, Yue Quan Shang, Qiu Hua Liang, and Xi Lin Xia
Nat. Hazards Earth Syst. Sci., 24, 3357–3379, https://doi.org/10.5194/nhess-24-3357-2024, https://doi.org/10.5194/nhess-24-3357-2024, 2024
Short summary
Short summary
The initiation of debris flows is significantly influenced by rainfall-induced hydrological processes. We propose a novel framework based on an integrated hydrological and hydrodynamic model and aimed at estimating intensity–duration (ID) rainfall thresholds responsible for triggering debris flows. In comparison to traditional statistical approaches, this physically based framework is particularly suitable for application in ungauged catchments where historical debris flow data are scarce.
Cited articles
Ancey, C., Bardou, E., Funk, M., Huss, M., Werder, M. A., and Trewhela, T.: Hydraulic reconstruction of the 1818 Giétro glacial lake outburst flood, Water Resour. Res., 55, 8840–8863, https://doi.org/10.1029/2019WR025274, 2019.
Arcement, G. J. and Schneider, V. R.: Guide for selecting Manning's roughness coefficients for natural channels and flood plains, US Government Printing Office, Washington, DC, https://doi.org/10.3133/wsp2339, 1989.
Bajracharya, S. R., Maharjan, S. B., Shrestha, F., Sherpa, T. C., Wagle, N., and Shrestha, A. B.: Inventory of glacial lakes and identification of potentially dangerous glacial lakes in the Koshi, Gandaki, and Karnali River Basins of Nepal, the Tibet Autonomous Region of China, International Centre for Integrated Mountain Development GPO Box, 3226, https://doi.org/10.53055/ICIMOD.773, 2020.
Barnes, H. H.: Roughness characteristics of natural channels, US Government Printing Office, https://doi.org/10.3133/WSP1849, 1967.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Carrivick, J. L. and Tweed, F. S.: A global assessment of the societal impacts of glacier outburst floods, Global Planet. Change, 144, 1–16, https://doi.org/10.1016/j.gloplacha.2016.07.001, 2016.
Cenderelli, D. A. and Wohl, E. E.: Peak discharge estimates of glacial-lake outburst floods and “normal” climatic floods in the Mount Everest region, Nepal, Geomorphology, 40, 57–90, https://doi.org/10.1016/S0169-555X(01)00037-X, 2001.
Chen, H., Zhao, J., Liang, Q., Maharjan, S. B., and Joshi, S. P.: Assessing the potential impact of glacial lake outburst floods on individual objects using a high-performance hydrodynamic model and open-source data, Sci. Total Environ., 806, 151289, https://doi.org/10.1016/j.scitotenv.2021.151289, 2022.
Chow, V. T.: Open-channel Hydraulics, McGraw-Hill, New York, 680, https://doi.org/10.1016/C2019-0-03618-7, 1959.
Cook, K. L., Andermann, C., Gimbert, F., Adhikari, B. R., and Hovius, N.: Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya, Science, 362, 53–57, https://doi.org/10.1126/science.aat4981, 2018.
Cook, S. J. and Quincey, D. J.: Estimating the volume of Alpine glacial lakes, Earth Surf. Dynam., 3, 559–575, https://doi.org/10.5194/esurf-3-559-2015, 2015.
Dubey, S. and Goyal, M. K.: Glacial lake outburst flood hazard, downstream impact, and risk over the Indian Himalayas, Water Resour. Res., 56, e2019WR026533, https://doi.org/10.1029/2019WR026533, 2020.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., and Seal, D.: The shuttle radar topography mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
FEMA: Multi-hazard loss estimation methodology: Flood model, HAZUS-MH MR3 technical manual, P220, https://www.fema.gov/sites/default/files/2020-09/fema_hazus_flood-model_technical-manual_2.1.pdf (last access: 4 February 2025), 2009.
Fujita, K., Sakai, A., Takenaka, S., Nuimura, T., Surazakov, A. B., Sawagaki, T., and Yamanokuchi, T.: Potential flood volume of Himalayan glacial lakes, Nat. Hazards Earth Syst. Sci., 13, 1827–1839, https://doi.org/10.5194/nhess-13-1827-2013, 2013.
Gao, B. C.: NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space, Remote Sens. Environ., 58, 257–266, https://doi.org/10.1016/S0034-4257(96)00067-3, 1996.
Ghimire, M.: Review of studies on glacier lake outburst floods and associated vulnerability in the Himalayas, Himalayan Rev., 35, 49–64, 2004.
Granshaw, F. D. and Fountain, A. G.: Glacier change (1958–1998) in the North Cascades National Park complex, Washington, USA, J. Glaciol., 52, 251–256, https://doi.org/10.3189/172756506781828782, 2006.
Haritashya, U. K., Kargel, J. S., Shugar, D. H., Leonard, G. J., Strattman, K., Watson, C. S., Shean, D., Harrison, S., Mandli, K. T., and Regmi, D.: Evolution and controls of large glacial lakes in the Nepal Himalaya, Remote Sens.-Basel, 10, 798, https://doi.org/10.3390/rs10050798, 2018.
HEMLab: High-Performance Integrated Hydrodynamic Modelling System (HiPIMS-CUDA), GitHub [code], https://github.com/HEMLab/HiPIMS-CUDA, last access: 22 August 2023.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ., 83, 195–213, https://doi.org/10.1016/S0034-4257(02)00096-2, 2002.
Huizinga, J., De Moel, H., and Szewczyk, W.: Global flood depth-damage functions: Methodology and the database with guidelines, Joint Research Centre (Seville site), no. JRC105688, https://doi.org/10.2760/16510, 2017.
ICIMOD: Land cover of Nepal 2010, ICIMOD [data set], http://rds.icimod.org/Home/DataDetail?metadataId=9224 (last access: 26 April 2020), 2013.
Khadka, N., Zhang, G., and Chen, W.: The state of six dangerous glacial lakes in the Nepalese Himalaya, Terr. Atmos. Ocean. Sci., 30, 6, https://doi.org/10.3319/TAO.2018.09.28.03, 2019.
Krause, L., Mal, S., Karki, R., and Schickhoff, U.: Recession of Trakarding glacier and expansion of Tsho Rolpa lake in Nepal Himalaya based on satellite data, Himal. Geol., 40, 103–114, 2019.
Lala, J. M., Rounce, D. R., and McKinney, D. C.: Modeling the glacial lake outburst flood process chain in the Nepal Himalaya: reassessing Imja Tsho's hazard, Hydrol. Earth Syst. Sci., 22, 3721–3737, https://doi.org/10.5194/hess-22-3721-2018, 2018.
Lamsal, D., Sawagaki, T., Watanabe, T., and Byers, A. C.: Assessment of glacial lake development and prospects of outburst susceptibility: Chamlang South Glacier, eastern Nepal Himalaya, Geomat. Nat. Haz. Risk, 7, 403–423, https://doi.org/10.1080/19475705.2014.931306, 2016.
Liang, Q., Chen, K. C., Hou, J., Xiong, Y., Wang, G., and Jing, Q.: Hydrodynamic modelling of flow impact on structures under extreme flow conditions, J. Hydrodyn. Ser. B, 28, 267–274, https://doi.org/10.1016/S1001-6058(16)60628-5, 2016.
Lord, A.: Citizens of a hydropower nation: Territory and agency at the frontiers of hydropower development in Nepal, Econ. Anthropol., 3, 145–160, https://doi.org/10.1002/sea2.12051, 2016.
McFeeters, S. K.: The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features, Int. J. Remote Sens., 17, 1425–1432, https://doi.org/10.1080/01431169608948714, 1996.
Mool, P. K., Maskey, P. R., Koirala, A., Joshi, S. P., Lizong, W., Shrestha, A. B., Eriksson, M., Gurung, B., Pokharel, B., Khanal, N. R., and Panthi, S.: Glacial lakes and glacial lake outburst floods in Nepal, International Centre for Integrated Mountain Development (ICIMOD), https://doi.org/10.53055/ICIMOD.543, 2011.
Morris, M. W., Hassan, M. A. A. M., and Vaskinn, K. A.: Breach formation: Field test and laboratory experiments, J. Hydraul. Res., 45, 9–17, https://doi.org/10.1080/00221686.2007.9521828, 2007.
Muñoz, R., Huggel, C., Frey, H., Cochachin, A., and Haeberli, W.: Glacial lake depth and volume estimation based on a large bathymetric dataset from the Cordillera Blanca, Peru, Earth Surf. Proc. Land., 45, 1510–1527, https://doi.org/10.1002/esp.4826, 2020.
Nepal Hydropower Portal: 572 Hydropower Projects, Nepal Hydropower Portal [data set], https://hydro.naxa.com.np/core/datasets/, last access: 22 August 2023.
Nie, Y., Sheng, Y., Liu, Q., Liu, L., Liu, S., Zhang, Y., and Song, C.: A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015, Remote Sens. Environ., 189, 1–13, https://doi.org/10.1016/j.rse.2016.11.008, 2017.
Nie, Y., Liu, Q., Wang, J., Zhang, Y., Sheng, Y., and Liu, S.: An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis, Geomorphology, 308, 91–106, https://doi.org/10.1016/j.geomorph.2018.02.002, 2018.
Nie, Y., Pritchard, H. D., Liu, Q., Hennig, T., Wang, W., Wang, X., Liu, S., Nepal, S., Samyn, D., Hewitt, K., and Chen, X.: Glacial change and hydrological implications in the Himalaya and Karakoram, Nat. Rev. Earth Environ., 2, 91–106, https://doi.org/10.1038/s43017-020-00124-w, 2021.
OpenStreetMap contributors: OpenStreetMap data for Nepal, Geofabrik [data set], http://download.geofabrik.de/asia/nepal.html, last access: 26 April 2022.
Rana, B., Shrestha, A. B., Reynolds, J. M., Aryal, R., Pokhrel, A. P., and Budhathoki, K. P.: Hazard assessment of the Tsho Rolpa Glacier Lake and ongoing remediation measures, J. Nepal Geol. Soc., 22, 563, https://doi.org/10.3126/jngs.v22i0.32432, 2000.
Richardson, S. D. and Reynolds, J. M.: An overview of glacial hazards in the Himalayas, Quatern. Int., 65, 31–47, https://doi.org/10.1016/S1040-6182(99)00035-X, 2000.
Rinzin, S., Zhang, G., Sattar, A., Wangchuk, S., Allen, S. K., Dunning, S., and Peng, M.: GLOF hazard, exposure, vulnerability, and risk assessment of potentially dangerous glacial lakes in the Bhutan Himalaya, J. Hydrol., 619, 129311, https://doi.org/10.1016/j.jhydrol.2023.129311, 2023.
Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., and Rigol-Sanchez, J. P.: An assessment of the effectiveness of a random forest classifier for land-cover classification, ISPRS J. Photogramm., 67, 93–104, https://doi.org/10.1016/j.isprsjprs.2011.11.002, 2012.
Rounce, D. R., McKinney, D. C., Lala, J. M., Byers, A. C., and Watson, C. S.: A new remote hazard and risk assessment framework for glacial lakes in the Nepal Himalaya, Hydrol. Earth Syst. Sci., 20, 3455–3475, https://doi.org/10.5194/hess-20-3455-2016, 2016.
Rounce, D. R., Watson, C. S., and McKinney, D. C.: Identification of hazard and risk for glacial lakes in the Nepal Himalaya using satellite imagery from 2000–2015, Remote Sens.-Basel, 9, 654, https://doi.org/10.3390/rs9070654, 2017.
Sattar, A., Goswami, A., and Kulkarni, A. V.: Hydrodynamic moraine-breach modeling and outburst flood routing – A hazard assessment of the South Lhonak lake, Sikkim, Sci. Total Environ., 668, 362–378, https://doi.org/10.1016/j.scitotenv.2019.02.388, 2019.
Sattar, A., Haritashya, U. K., Kargel, J. S., Leonard, G. J., Shugar, D. H., and Chase, D. V.: Modeling lake outburst and downstream hazard assessment of the Lower Barun Glacial Lake, Nepal Himalaya, J. Hydrol., 598, 126208, https://doi.org/10.1016/j.jhydrol.2021.126208, 2021.
Scawthorn, C., Flores, P., Blais, N., Seligson, H., Tate, E., Chang, S., Mifflin, E., Thomas, W., Murphy, J., Jones, C., and Lawrence, M.: HAZUS-MH flood loss estimation methodology. II. Damage and loss assessment, Nat. Hazards Rev., 7, 72–81, https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(72), 2006.
Schaffer-Smith, D., Swenson, J. J., Barbaree, B., and Reiter, M. E.: Three decades of Landsat-derived spring surface water dynamics in an agricultural wetland mosaic; Implications for migratory shorebirds, Remote Sens. Environ., 193, 180–192, https://doi.org/10.1016/j.rse.2017.02.016, 2017.
Schwanghart, W., Worni, R., Huggel, C., Stoffel, M., and Korup, O.: Uncertainty in the Himalayan energy–water nexus: Estimating regional exposure to glacial lake outburst floods, Environ. Res. Lett., 11, 074005, https://doi.org/10.1088/1748-9326/11/7/074005, 2016.
Shakti, P. C., Pun, I., Talchabhadel, R., and Kshetri, D.: The role of glaciers in hydropower production in Nepal, J. Asian Energy Stud., 5, 1–13, https://doi.org/10.24112/jaes.050001, 2021.
Shrestha, B. B. and Nakagawa, H.: Assessment of potential outburst floods from the Tsho Rolpa glacial lake in Nepal, Nat. Hazards, 71, 913–936, https://doi.org/10.1007/s11069-013-0940-3, 2014.
Shrestha, F., Steiner, J. F., Shrestha, R., Dhungel, Y., Joshi, S. P., Inglis, S., Ashraf, A., Wali, S., Walizada, K. M., and Zhang, T.: A comprehensive and version-controlled database of glacial lake outburst floods in High Mountain Asia, Earth Syst. Sci. Data, 15, 3941–3961, https://doi.org/10.5194/essd-15-3941-2023, 2023.
Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S., Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S., and Strattman, K.: Rapid worldwide growth of glacial lakes since 1990, Nat. Clim. Change, 10, 939–945, https://doi.org/10.1038/s41558-020-0855-4, 2020.
Smith, L. S. and Liang, Q.: Towards a generalised GPU/CPU shallow-flow modelling tool, Comput. Fluids, 88, 334–343, https://doi.org/10.1016/j.compfluid.2013.09.018, 2013.
Somos-Valenzuela, M. A., McKinney, D. C., Byers, A. C., Rounce, D. R., Portocarrero, C., and Lamsal, D.: Assessing downstream flood impacts due to a potential GLOF from Imja Tsho in Nepal, Hydrol. Earth Syst. Sci., 19, 1401–1412, https://doi.org/10.5194/hess-19-1401-2015, 2015.
Tucker, C. J.: Red and photographic infrared linear combinations for monitoring vegetation, Remote Sens. Environ., 8, 127–150, https://doi.org/10.1016/0034-4257(79)90013-0, 1979.
Tulbure, M. G., Broich, M., Stehman, S. V., and Kommareddy, A.: Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region, Remote Sens. Environ., 178, 142–157, https://doi.org/10.1016/j.rse.2016.02.034, 2016.
Veh, G., Korup, O., von Specht, S., Roessner, S., and Walz, A.: Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya, Nat. Clim. Change, 9, 379–383, https://doi.org/10.1038/s41558-019-0437-5, 2019.
Veh, G., Korup, O., and Walz, A.: Hazard from Himalayan glacier lake outburst floods, P. Natl. Acad. Sci. USA, 117, 907–912, https://doi.org/10.1073/pnas.1914898117, 2020.
Vuichard, D. and Zimmermann, M.: The 1985 catastrophic drainage of a moraine-dammed lake, Khumbu Himal, Nepal: Cause and consequences, Mt. Res. Dev., 7, 91–110, https://doi.org/10.2307/3673305, 1987.
Walder, J. S. and O'Connor, J. E.: Methods for predicting peak discharge of floods caused by failure of natural and constructed earthen dams, Water Resour. Res., 33, 2337–2348, https://doi.org/10.1029/97WR01616, 1997.
Walder, J. S., Iverson, R. M., Godt, J. W., Logan, M., and Solovitz, S. A.: Controls on the breach geometry and flood hydrograph during overtopping of noncohesive earthen dams, Water Resour. Res., 51, 6701–6724, https://doi.org/10.1002/2014WR016620, 2015.
Watson, C. S., Carrivick, J., and Quincey, D.: An improved method to represent DEM uncertainty in glacial lake outburst flood propagation using stochastic simulations, J. Hydrol., 529, 1373–1389, https://doi.org/10.1016/j.jhydrol.2015.08.046, 2015.
Worni, R., Stoffel, M., Huggel, C., Volz, C., Casteller, A., and Luckman, B.: Analysis and dynamic modeling of a moraine failure and glacier lake outburst flood at Ventisquero Negro, Patagonian Andes (Argentina), J. Hydrol., 444, 134–145, https://doi.org/10.1016/j.jhydrol.2012.04.013, 2012.
Xu, H.: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery, Int. J. Remote Sens., 27, 3025–3033, https://doi.org/10.1080/01431160600589179, 2006.
Yang, M., Cai, Q., Li, Z., and Yang, J.: Uncertainty analysis on flood routing of embankment dam breach due to overtopping failure, Sci. Rep.-UK, 13, 20151, https://doi.org/10.1038/s41598-023-47542-6, 2023.
Yang, Y., Cao, S. Y., Yang, K. J., and Li, W. P.: Experimental study of breach process of landslide dams by overtopping and its initiation mechanisms, J. Hydrodyn., 27, 872–883, https://doi.org/10.1038/s41598-023-47542-6, 2015.
Yu, X., Hyyppä, J., Vastaranta, M., Holopainen, M., and Viitala, R.: Predicting individual tree attributes from airborne laser point clouds based on the random forests technique, ISPRS J. Photogramm., 66, 28–37, https://doi.org/10.1016/j.isprsjprs.2010.08.003, 2011.
Zhang, G., Yao, T., Xie, H., Wang, W., and Yang, W.: An inventory of glacial lakes in the Third Pole region and their changes in response to global warming, Global Planet. Change, 131, 148–157, https://doi.org/10.1016/j.gloplacha.2015.05.013, 2015.
Zhang, T., Wang, W., and An, B.: A conceptual model for glacial lake bathymetric distribution, The Cryosphere, 17, 5137–5154, https://doi.org/10.5194/tc-17-5137-2023, 2023a.
Zhang, T., Wang, W., An, B., and Wei, L.: Enhanced glacial lake activity threatens numerous communities and infrastructure in the Third Pole, Nat. Commun., 14, 8250, https://doi.org/10.1038/s41467-023-44123-z, 2023b.
Zhao, J. and Liang, Q.: Novel variable reconstruction and friction term discretisation schemes for hydrodynamic modelling of overland flow and surface water flooding, Adv. Water Resour., 163, 104187, https://doi.org/10.1016/j.advwatres.2022.104187, 2022.
Zheng, G., Allen, S. K., Bao, A., Ballesteros-Cánovas, J. A., Huss, M., Zhang, G., Li, J., Yuan, Y., Jiang, L., Yu, T., and Chen, W.: Increasing risk of glacial lake outburst floods from future Third Pole deglaciation, Nat. Clim. Change, 11, 411–417, https://doi.org/10.1038/s41558-021-01028-3, 2021.
Short summary
Glacial lake outburst floods (GLOFs) can cause serious damage. To assess their risks, we developed an innovative framework using remote sensing, Bayesian models, flood modelling, and open-source data. This enables us to evaluate GLOFs on a national scale, despite limited data and challenges accessing high-altitude lakes. We evaluated dangerous lakes in Nepal, identifying those most at risk. This work is crucial for understanding GLOF risks, and the framework can be transferred to other areas.
Glacial lake outburst floods (GLOFs) can cause serious damage. To assess their risks, we...