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Abstract. Glacial lake outburst floods (GLOFs) are widely
recognised as one of the most devastating natural hazards
in the Himalayas, with catastrophic consequences, includ-
ing substantial loss of life. To effectively mitigate these risks
and enhance regional resilience, it is imperative to conduct
an objective and holistic assessment of GLOF hazards and
their potential impacts over a large spatial scale. However,
this is challenged by the limited availability of data and the
inaccessibility to most of the glacial lakes in high-altitude
areas. The data challenge is exacerbated when dealing with
multiple lakes across an expansive spatial area. This study
aims to exploit remote sensing techniques, well-established
Bayesian regression models for estimating glacial lake con-
ditions, cutting-edge flood modelling technology, and open
data from various sources to innovate a framework for assess-
ing the national exposure and impact of GLOFs. In the in-
novative framework, multi-temporal imagery is utilised with
a random forest model to extract glacial lake water sur-
faces. Bayesian models are employed to estimate a plausible
range of glacial lake water volumes and the associated GLOF
peak discharges while accounting for the uncertainty stem-
ming from the limited sizes of the available data and outliers
within the data. A significant number of GLOF scenarios
is subsequently generated based on this estimated plausible
range of peak discharges. A graphics processing unit (GPU)-
based hydrodynamic model is then adopted to simulate the
resulting flood hydrodynamics in different GLOF scenar-
ios. Necessary socio-economic information is collected and
processed from multiple sources, including OpenStreetMap,
Google Earth, local archives, and global data products, to
support exposure analysis. Established depth–damage curves

are used to assess the GLOF damage extents for different ex-
posures. The evaluation framework is applied to 21 glacial
lakes identified as potentially dangerous in the Nepalese Hi-
malayas. The results indicate that, in the scenario of a com-
plete breach of dam height across 21 lakes, Tsho Rolpa Lake,
Thulagi Lake, and Lower Barun Lake bear the most serious
impacts of GLOFs on buildings, roads, and agricultural ar-
eas, while Thulagi Lake could influence existing hydropower
facilities. One unnamed lake in the Trishuli River basin, two
unnamed lakes in the Tamor River basin, and three unnamed
lakes in the Dudh River basin have the potential to impact
more than 200 buildings. Moreover, the unnamed lake in the
Trishuli River basin has the potential to inundate existing hy-
dropower facilities.

1 Introduction

Glacial lake outburst floods (GLOFs) are recognised as one
of the most impactful natural hazards in the Himalayas,
where these disasters have had the highest death toll world-
wide and caused serious economic damage (Veh et al., 2020).
GLOFs can generate transient discharges that are orders of
magnitude greater than the typical annual floods in the re-
ceiving rivers (Cenderelli and Wohl, 2001), and some of
them can travel > 200 km downstream (Richardson and
Reynolds, 2000). The extreme discharges, accelerating along
the steep mountainous terrains, make GLOFs extremely de-
structive to downstream communities and infrastructure sys-
tems. The unpredictable nature of GLOFs, often occurring
without warning, has left downstream communities and in-
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frastructures ill-prepared, causing the loss of human lives and
economic damages. The ongoing impact of climate change
has introduced additional uncertainty into GLOF risk. The
Himalayan region is observing extensive glacier shrinkage
and a proliferation of glacial lakes (Zhang et al., 2015). The
potential impacts of GLOFs on downstream communities are
expected to intensify further due to population growth and
socio-economic development. Hence, it is crucial to develop
effective strategies for managing GLOF risks to enhance hu-
man safety and support sustainable development. This neces-
sitates the requirement of reproducible assessment of GLOF
hazards and their potential impacts arising from these glacial
lakes.

Some potentially dangerous lakes have been well-studied
individually, such as Tsho Rolpa Lake (e.g. Shrestha and
Nakagawa, 2014), Imja Tsho Lake (e.g. Somos-Valenzuela
et al., 2015), and Lower Barun Lake (e.g. Sattar et al.,
2021). However, these studies provide limited insight into
the overall danger and potential impacts of glacial lakes as
a whole. While there have been assessments of glacial lake
hazards in the Himalayan region, certain limitations exist.
Previous work by Mool et al. (2011) and Bajracharya et al.
(2020) employed remote sensing techniques to identify po-
tentially dangerous glacial lakes (PDGLs) in Nepal, consid-
ering different hazard factors. Rounce et al. (2017) under-
took a similar study, quantifying the hazard levels of 131
glacial lakes with areas > 0.1 km2 in Nepal. Furthermore,
Rounce et al. (2017) evaluated the potential downstream im-
pacts of GLOFs caused by these glacial lakes using a simple
flood model without any physical basis. This simple flood
model has also been applied to evaluate the overall impacts of
GLOFs originating from multiple glacial lakes in the Indian
Himalayas (Dubey and Goyal, 2020). Zheng et al. (2021) ex-
tended their analysis to assess the impacts of GLOFs across
the Third Pole by using a Geographic Information System
(GIS)-based hydrological model. However, the complexity of
GLOFs renders simple flood models inadequate for capturing
their dynamics, thereby making them incapable of support-
ing detailed assessments of potential impacts on downstream
communities and infrastructure.

A range of physically based hydrodynamic models have
been developed and applied to predict the spatial–temporal
processes of GLOFs, offering detailed insights into the re-
sulting flood impacts (e.g. Worni et al., 2012; Ancey et al.,
2019; Sattar et al., 2019). Recently, researchers explored the
use of a hydrodynamic model to assess GLOF downstream
impacts at the Third Pole (Zhang et al., 2023b). However,
hydrodynamic models entail a huge amount of computa-
tion and face substantial demands for computation resources
when applied at a large scale. What is even more challenging
is that the computational requirements increase significantly
when addressing GLOF simulations involving a large num-
ber of scenarios, which is necessary for assessing GLOFs’
potential impact due to the complexity and uncertainty of the
glacier lake breach process. Moreover, the application of hy-

drodynamic models to support GLOF modelling and impact
assessment necessitates a considerable amount of data, and
data availability poses another significant challenge.

The high-alpine conditions have constrained our ability
to acquire detailed spatial data for multiple lakes across a
large scale. To correctly depict the dynamic inundation pro-
cess of GLOFs, glacial lake conditions and dam breach pro-
cesses are essential for estimating the outflow discharge re-
sulting from a breach. While the distribution and changes of
glacial lakes have been mapped extensively from increas-
ingly available satellite imagery (e.g. Zhang et al., 2015;
Nie et al., 2017; Shugar et al., 2020), accurately determining
lake volumes and reliably predicting dam breach processes
has remained a challenge because high-alpine conditions im-
pede detailed fieldwork. Combining satellite imagery with
existing lake bathymetry measurements offers the possibility
of estimating water volumes and peak discharges from out-
bursts by establishing empirical relationships (e.g. Zhang et
al., 2023a). However, estimated lake volumes and potential
peak discharges derived from these empirical relationships
can vary by up to 1 order of magnitude (Cook and Quincey,
2015; Muñoz et al., 2020). To account for the uncertainties
inherent in conventional empirical relationships, Veh et al.
(2020) developed a Bayesian robust regression, utilising data
from the bathymetric survey of 24 glacial lakes. This model
estimates water volume based on the surface areas of glacial
lakes. Simultaneously, they created a Bayesian variant of a
physical dam breach model originally proposed by Walder
and O’Connor (1997) to predict the peak discharge associ-
ated with the flood volume. The Bayesian estimates explore
the parameter space of plausible flood volumes and the as-
sociated peak discharges, generating 1 million possible out-
burst scenarios for each lake. These scenarios comprehen-
sively consider all potential conditions of the dam breach
process for each specific lake and provide a full range of in-
put information for hydrodynamic models, thereby facilitat-
ing predictions of the GLOF inundation process. Therefore,
this study aims to leverage these established Bayesian mod-
els to support GLOF inundation simulations.

GLOF exposure and impact assessment are also restricted
by data sparsity. Previous studies have typically relied on
census data at coarse spatial resolutions or aggregated land
use data that encompass various objects like properties and
infrastructure to estimate the potential socio-economic im-
pact of GLOFs (e.g. Shrestha and Nakagawa, 2014; Rounce
et al., 2016). Benefiting from the emergence of new data
technologies and the resulting enhancements in data quantity
and quality, a spatially explicit assessment method has been
developed to identify GLOF exposure at an object level and
has been applied to Tsho Rolpa Lake (Chen et al., 2022). Em-
ploying a similar strategy, essential socio-economic informa-
tion is collected and processed from various sources, includ-
ing OpenStreetMap (OSM), Google Earth, global data prod-
ucts, and local archives. The information is used to create
a spatial exposure dataset that specifies the locations of dif-
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ferent objects, such as individual buildings and hydropower
facilities. Subsequently, these spatial exposure data are over-
laid with the spatially distributed flood simulation outputs to
identify potential exposure to GLOFs along their path.

Overall, this study aims to create a framework for object-
based exposure and potential impact assessments of GLOFs
for multiple lakes at a large scale by integrating remote sens-
ing techniques, the developed Bayesian regression models
for estimating lake volumes and potential peak discharges,
a physically based hydrodynamic model supported by par-
allelised high-performance computing, and socio-economic
information from multiple sources. Nepal has been chosen
as the test area due to its abundance of glacial lakes, and it
has been reported to experience the most significant national-
level economic consequences from GLOFs globally (Carriv-
ick and Tweed, 2016).

2 Methodology and data

The proposed framework for object-based exposure and im-
pact assessment of GLOFs across multiple lakes comprises
several key components: extraction of glacial lake water sur-
faces from multi-temporal imagery, estimation of lake vol-
umes and peak discharges using well-established Bayesian
regression models, utilization of a high-performance hy-
drodynamic flood model accelerated by graphics process-
ing unit (GPU) technology, and creation of an exposure
dataset from open-source data (Fig. 1). In particular, lever-
aging multi-temporal imagery availability, a random forest
model is developed using a set of predictor variables to delin-
eate the maximum extent of glacial lake water surfaces. The
plausible range of glacial lake water depths, volumes, and
GLOF-induced peak discharges is estimated through exist-
ing Bayesian models. A substantial number of GLOF scenar-
ios, encompassing outflow discharge hydrographs through
glacial lakes, is sampled based on the plausible range of peak
discharges. For each scenario, the resulting outflow discharge
hydrograph is employed to drive the GPU-accelerated hy-
drodynamic model, efficiently simulating the temporal and
spatial dynamics of floods. These flood dynamics are then
overlaid with the spatial exposure data to identify potential
exposure to GLOFs and quantify damage extent by using es-
tablished depth–damage curves.

2.1 Glacial lake water surface extraction

With the availability of multi-temporal imagery, a random
forest model based on a set of predictor variables is used to
map the location and extent of water surfaces of glacial lakes
under different hydrological conditions to produce the maxi-
mum extent of lake water surfaces.

2.1.1 Acquisition of satellite imagery

Sentinel-2 is an operational multi-spectral imaging mission
of the European Space Agency for global land observation.
The Sentinel-2A and Sentinel-2B satellites were launched
in 2015 and 2017, respectively. These satellites capture im-
agery every 10 d (every 5 d with the twin satellites together).
The spatial resolution for the visible and broad near-infrared
(NIR) bands is 10 m, while it is 20 m for the red edge, nar-
row NIR, and short-wave infrared bands. Here, all avail-
able Sentinel-2 imagery for the case study of glacial lakes
is utilised to identify the maximum extent of their water sur-
faces. The analysis is based on the Sentinel-2 level-1C top-
of-atmosphere (TOA) products, which are accessible through
Google Earth Engine. Any observations affected by clouds
are masked using the Sentinel-2 quality-assurance band flags.
Bands originally at 20 m resolution are resampled to 10 m
using the nearest-neighbour method before being stacked for
subsequent interpretation. All available Sentinel-2 datasets
are collected and filtered to preserve imagery from the ab-
lation season, reducing the impact of frozen water surfaces
as per the empirical period of the local melt season (Shugar
et al., 2020). In total, 1520 Sentinel-2 images have been col-
lected for this purpose.

2.1.2 Random forest model

Mapping water surfaces from multiple images is a complex
task that necessitates the consideration and analysis of vari-
ous water-related signals in spectral responses, which is often
influenced by water turbidity and bottom sediments. In this
context, a random forest model is developed based on a set of
predictor variables to extract water surfaces. Random forest
modelling is an ensemble classification technique (Breiman,
2001) and has been used extensively in the classification of
remote sensing data (e.g. Yu et al., 2011; Rodriguez-Galiano
et al., 2012). Random forest models excel at recognising re-
gional variations in threshold values, surpassing the capabili-
ties of traditional index-thresholding methods (Tulbure et al.,
2016). Notably, random forest models do not rely on data
distribution assumptions and can yield accurate predictions
without overfitting data. Consequently, they have been used
increasingly in water surface extraction as a favourable al-
ternative to traditional statistical approaches (e.g. Schaffer-
Smith et al., 2017).

A random forest model consists of a set of classification
trees, each of which grows from a random subset of train-
ing samples and randomly permuted explanatory variables.
The classification trees can grow to a specified maximum
number without pruning, and the final classifications are de-
termined by the majority votes of the trees in the forest.
The explanatory variables for Sentinel-2 datasets in the ran-
dom forest model include TOA reflectance for every spec-
tral band, brightness temperature, vegetation indices, and wa-
ter indices. TOA reflectance and brightness temperature are
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Figure 1. GLOF exposure and impact assessment framework for multiple glacial lakes (key components highlighted in blue).

obtained by normalising the target imagery, mitigating un-
wanted effects resulting from variations in the Sun angle and
Earth–Sun distance. The vegetation indices include the Nor-
malized Difference Vegetation Index (NDVI) and the En-
hanced Vegetation Index (EVI). The NDVI is sensitive to
chlorophyll and is used to assess terrestrial vegetation con-
ditions (Tucker, 1979), while the EVI is developed to opti-
mise the vegetation signal in high biomass regions, decouple
the canopy background signal, and reduce atmospheric in-
fluences (Huete et al., 2002). Water indices include the Nor-
malized Difference Water Index (NDWI; McFeeters, 1996),
Modified NDWI (MNDWI; Xu, 2006), and Normalized Dif-
ference Moisture Index (NDMI; Gao, 1996). The NDWI en-
hances the response to open-water features while minimising
soil and terrestrial vegetation influences. The MNDWI sub-
stitutes the middle-infrared band for the NIR band used in
the NDWI to enhance water features and remove noise from
other land types. The NDMI is an effective indicator of vege-
tation water content. The training samples are selected via vi-
sual interpretation of satellite images to represent glacial lake
water surfaces along with various non-water covers, includ-
ing diverse landscapes and vegetation types. The uncertainty
in estimating the glacial lake area is quantified using a widely
used buffer method (Granshaw and Fountain, 2006). A buffer
area of half a pixel (e.g. Zhang et al., 2015; Krause et al.,
2019) is adopted to measure the uncertainty in the estimated
lake area. The misclassified glacial lake water areas resulting
from terrain shadows are eliminated during post-processing
through manual exclusion of inaccurately classified regions.

2.2 GLOF dynamic inundation process simulation

Using the maximum extent of glacial lake water surfaces, we
employ the established Bayesian models to predict glacial

lake conditions and the dam breach process. This allows us
to estimate the full range of GLOF outflow discharge through
the breach. Subsequently, various GLOF scenarios featur-
ing a range of outflow discharge hydrographs are sampled to
drive the GPU-based hydrodynamic model for the simulation
of flood dynamics resulting from GLOFs.

2.2.1 Estimating volumes and peak discharges of
glacial lakes

Global samples from glacial lakes have suggested that the
water depths for glacial lakes with similar surface areas can
vary by 1 order of magnitude. To estimate the water vol-
umes of glacial lakes, we adopted the model that relates lake
areas to their maximum depths, which was developed by
Veh et al. (2020). The model was built by compiling the re-
ported lake areas and maximum depths obtained from bathy-
metric surveys conducted on 24 Himalayan glacial lakes. A
Bayesian robust linear regression with a normally distributed
target variable (lake depth d) d ∼N(µd(a),1/τ) is adopted
to account for possible effects of the limited sample size and
outliers present in the compiled dataset. The mean µd(a) is
calculated below through a linear combination of the input
lake area a. The precision τ (the inverse of variance) is the
gamma-distributed τ ∼ 0(0.001,0.001).

µd(a)= α0+α1a (1)

a is the lake area, α0 ∼N(0,10−12) is the intercept, and α1 ∼

N(0,10−12) is the slope.
We obtained 100 posterior estimates for d from the

Bayesian model for each lake. For each lake, samples inside
the 95 % highest density interval (HDI) of credible lake depth
values are reserved, i.e. 94 lake depth samples for each lake.
In this study, we maintained the same assumption regard-
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ing the bathymetry of the glacial lakes as outlined by Veh
and Walz (2020). The delineated lake from satellite imagery
is circular, and each lake is assumed to have an ellipsoidal
bathymetry. Therefore, we obtained 94 estimates of the total
volume (Vtot) for each glacial lake.

Vtot = (2/3)da (2)

With regard to estimating peak discharge during dam fail-
ure, Veh and Walz (2020) built a Bayesian piecewise robust
model to characterise the physically motivated model devel-
oped by Walder and O’Connor (1997). The latter model pre-
dicts peak discharge Qp during natural dam failure. In their
study, Walder and O’Connor (1997) compiled data from 63
observed natural dam breaks in various settings and identi-
fied a constant response of dimensionless peak discharge Q∗p
when plotted against the dimensionless product η of lake vol-
ume and breach rate k. They inferred a model that describes
the relationship between peak discharge and lake volume us-
ing the dimensionless peak discharge Q∗p.

Q∗p =QPg
−

1
2 h−

5
2 (3)

η = V ∗Ok
∗ (4)

V ∗O = V0h
−3 represents the dimensionless flood volume,

k∗ = kg−1/2h−1/2 is the dimensionless breach rate, g is the
acceleration of gravity, h is the breach depth, and V0 is the
released water volume (flood volume). k is the breach rate
and subsumes lithological conditions, the erodibility of the
outflow channel, and the breach and downstream valley ge-
ometry. h is measured from the final lake surface after dam
failure to the initial lake surface. V0 is the released water vol-
ume and depends on h and Vtot.

Empirical data support a piecewise regression model in the
form Q∗p = b0η

b1 (b0 and b1 are the regression parameters)
for η < ηc, and Q∗p is constant for η > ηc. Bayesian piece-
wise linear regression was developed to predict peak dis-
charge Q∗p from η, which is the product of the breach rate
k and the released flood volume (Veh and Walz, 2020). The
extent of breaching is closely linked to the geometry and
material composition of the dam. To account for the the-
oretically most severe GLOFs, the maximum breach depth
is considered to reach the marine dam’s maximum height
and extend from the dam crest down to the point where the
hummocky terrain ends, as determined using high-resolution
satellite imagery and DEM data. The dam maximum height
data were requested from and obtained through Bajracharya
et al. (2020) and are presented in Table 1. For each lake, we
predicted peak discharge Qp based on given values of Vtot
and η using the Bayesian piecewise linear regression model.
We generated 100 estimates of the posterior predictedQp for
each given value of Vtot and η. The values of η for individ-
ual lakes encompass the assumed flood volumes, and we also
considered 100 physically plausible values of the breach rate
k based on a log-normal fit to reported breach rates. By mul-
tiplying the 94 samples of Vtot by the 100 samples of k and

100 samples ofQp, we ultimately obtained a total of 940 000
scenarios ofQp per lake. Considering the substantial compu-
tational resources required for GLOF inundation simulations
in Sect. 2.2.2, 100 scenarios are selected from the 940 000
Qp and associated V0 scenarios per lake using k-means clus-
tering. The k-means algorithm partitions the Qp and V0 data
into 100 clusters, optimising intra-cluster homogeneity and
inter-cluster heterogeneity. By selecting the data point closest
to the centroid of each cluster, the selected scenarios ensure
diverse and representative sampling across the full spectrum
of the dataset. The weight of each selected scenario is deter-
mined by its occurrence probability, specifically the propor-
tion of times its peak discharge does not exceed that of other
scenarios relative to the total number of scenarios. A smaller
proportion indicates a lower likelihood of occurrence, while
a larger proportion indicates a higher likelihood. The weight
of each scenario is calculated by dividing the proportion by
the total proportion of all possible scenarios. In these sim-
ulations, the dam breach hydrograph is assumed to have an
isosceles triangle shape, simplifying its derivation from Qp
and V0. The breach hydrograph then serves as the boundary
condition for the hydrodynamic modelling. Although there
is some uncertainty, the assumption of an isosceles trian-
gle shape for the dam breach hydrograph aligns with exper-
imental observations (e.g. Morris et al., 2007; Walder et al.,
2015; Yang et al., 2015) and is supported by simulation re-
sults from commonly used mechanisms and empirical mod-
els (e.g. Yang et al., 2023). Apart from the theoretically most
severe scenarios, less severe conditions are also considered,
where 10 %, 30 %, and 50 % of dam heights are breached.

2.2.2 Two-dimensional hydrodynamic modelling

The High-Performance Integrated Hydrodynamic Modelling
System (HiPIMS) (Zhao and Liang, 2022) is employed here
to simulate the breach hydrograph. HiPIMS develops a fully
dynamic model based on the 2-D depth-averaged shallow
water equations. The conservative form of the governing 2-D
shallow water equations is expressed as follows:

∂q

∂t
+
∂f

∂x
+
∂g

∂y
= s, (5)

where t is the time, x and y represent the Cartesian coor-
dinates, q denotes the flow-variable vector, f and g are the
flux vectors in the x and y directions, and s is the source term
vector. The vector terms are defined as
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Table 1. Delineated glacial lake areas at varied water-occurrence frequencies from multi-temporal Sentinel-2 imagery.

Lake Lake ID Lake name Maximum Longitude Latitude Area (km2) Area (km2) Area (km2)
number height of (E) (N) (> 5 %) (> 25 %) (> 50 %)

dam (m)

1 GL087749E27816N Unnamed 1 221 87°44′59′′ 27°48′57′′ 0.178± 0.011 0.169± 0.011 0.161± 0.011
2 GL087934E27790N Unnamed 2 128 87°56′05′′ 27°47′26′′ 0.148± 0.012 0.134± 0.012 0.112± 0.010
3 GL087945E27781N Unnamed 3 124 87°56′42′′ 27°46′51′′ 0.048± 0.005 0.040± 0.005 0.035± 0.004
4 GL087632E27729N Unnamed 4 63 87°37′55′′ 27°43′44′′ 0.036± 0.004 0.032± 0.004 0.016± 0.005
5 GL087596E27705N Unnamed 5 158 87°35′46′′ 27°42′18′′ 0.026± 0.003 0.020± 0.003 0.010± 0.003
6 GL087893E27694N Unnamed 6 51 87°53′36′′ 27°41′41′′ 0.037± 0.005 0.028± 0.005 0.015± 0.004
7 GL086925E27898N Imja Tsho 55 86°55′30′′ 27°53′53′′ 1.741± 0.047 1.630± 0.042 1.561± 0.041
8 GL086476E27861N Tsho Rolpa 159 86°28′34′′ 27°51′40′′ 1.712± 0.043 1.657± 0.041 1.610± 0.040
9 GL086928E27850N Unnamed 7 45 86°55′41′′ 27°51′00′′ 0.553± 0.021 0.533± 0.021 0.510± 0.022
10 GL086935E27838N Hongu 1 43 86°56′06′′ 27°50′17′′ 0.322± 0.018 0.305± 0.018 0.293± 0.018
11 GL086917E27832N Unnamed 8 128 86°55′01′′ 27°49′55′′ 0.361± 0.015 0.342± 0.014 0.332± 0.014
12 GL087095E27829N Unnamed 9 61 87°05′42′′ 27°49′44′′ 0.118± 0.008 0.114± 0.008 0.037± 0.012
13 GL087092E27798N Lower Barun 128 87°05′31′′ 27°47′53′′ 2.193± 0.048 2.044± 0.046 1.900± 0.053
14 GL086957E27783N Hongu 2 382 87°57′25′′ 27°46′59′′ 0.872± 0.030 0.865± 0.030 0.843± 0.030
15 GL086612E27779N Lumding 62 86°36′43′′ 27°46′44′′ 1.475± 0.037 1.411± 0.034 1.349± 0.035
16 GL086958E27755N Chamlang 212 86°57′29′′ 27°45′18′′ 0.921± 0.027 0.856± 0.021 0.700± 0.026
17 GL086977E27711N Unnamed 10 129 86°58′37′′ 27°42′40′′ 0.085± 0.007 0.074± 0.007 0.009± 0.003
18 GL086858E27687N Unnamed 11 172 86°51′29′′ 27°41′13′′ 0.336± 0.015 0.324± 0.015 0.307± 0.014
19 GL085630E28162N Unnamed 12 223 85°37′51′′ 28°09′44′′ 0.150± 0.009 0.137± 0.008 0.124± 0.008
20 GL082673E29802N Unnamed 13 99 82°40′27′′ 29°48′09′′ 0.047± 0.006 0.041± 0.005 0.032± 0.005
21 GL084485E28488N Thulagi 192 84°29′06′′ 28°29′17′′ 0.997± 0.032 0.964± 0.032 0.921± 0.029

q =

 hqx
qy

 , f =

 qx

uqx +
1
2gh

2

uqy

 ,
g =

 qy
vqx

vqy +
1
2gh

2

 ,
s =

 0
−Cf u

√
u2+ v2− gh ∂zb

∂x

−Cf v
√
u2+ v2− gh ∂zb

∂y

 ,
(6)

where h is the water depth, qx = uh and qy = vh are the unit-
width discharges in the x and y directions, u and v denote
the depth-averaged velocities in two Cartesian directions, zb
is the bed elevation, and Cf is the bed roughness coefficient.

The governing equations outlined above are solved
through a shock-capturing finite-volume Godunov-type
scheme on uniform grids (Zhao and Liang, 2022). The nu-
merical scheme introduces a robust Godunov-type model to
deliver precise and stable predictions of overland flow and
flooding processes at the catchment scale. This scheme is
implemented through a Python and CUDA C hybrid pro-
gramming framework to achieve multi-GPU and multi-node
high-performance computing for large-scale simulations. It
is worth noting that the GPU-accelerated model has demon-
strated a computational efficiency of up to 10 times greater
than its CPU-based counterpart (Smith and Liang, 2013).
HiPIMS is set up using the terrain data and roughness data,

and it is driven by the breach hydrograph for each scenario,
as calculated in Sect. 2.2.1. Subsequently, the runoff is routed
throughout the flow area.

2.3 GLOF exposure and impact assessment

Based on the GLOF inundation process predicted by HiP-
IMS for each scenario, we can estimate potential flood expo-
sure by superimposing the exposure datasets onto the flood
simulation results. In addition to assessing flood exposure,
it is imperative to quantify the potential losses and impacts
of GLOFs under various conditions to understand the as-
sociated risks. Estimating direct damage to buildings and
other exposed objects can be done by employing appropriate
depth–damage curves that establish the relationship between
flood depth and potential damage. Typically, the damage is
quantified as a percentage of the cost required for repairs or
replacements. In this study, we utilise depth–damage curves
from the HAZUS Flood model to investigate the impact of
GLOFs on buildings (Scawthorn et al., 2006). Beyond build-
ings, GLOFs can also have a significant impact on agricul-
tural lands and roads. We evaluate the damage to agricultural
lands and roads caused by GLOFs using the damage curves
recommended in a technical report published by the Joint
Research Centre of the European Commission (Huizinga et
al., 2017). The specific water depth–damage curves for build-
ings, roads, and agricultural lands used in this study can be
found in Chen et al. (2022).
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2.4 Data

HiPIMS is set up using a DEM to represent domain topog-
raphy and land use data to parameterise domain roughness.
It is driven by the out-of-breach flow discharge estimated in
Sect. 2.2.1. The DEM used in this work is the Shuttle Radar
Topography Mission (SRTM) DEM with a spatial resolution
of 30 m (Farr et al., 2007). Land use types are extracted from
the Landsat Thematic Mapper imagery from 2010 provided
by the International Centre for Integrated Mountain Devel-
opment (ICIMOD, 2013). The roughness of the flow area is
represented by the Manning coefficient (n), which is depen-
dent on land use types. The values assigned are 0.15 for for-
est, 0.035 for arable land, 0.03 for grassland, 0.027 for water
surface, and 0.016 for construction land. The Manning coeffi-
cients 0.016 to 0.15 were specified based on values provided
in earlier hydraulic textbooks or reports (e.g. Chow, 1959;
Barnes, 1967; Arcement and Schneider, 1989), aligning with
values in previous studies, e.g. 0.035 to 0.17 in Nepal (Sat-
tar et al., 2021) and 0.035 to 0.120 in Bhutan (Rinzin et al.,
2023).

Open-source datasets are used to support the assessment
of GLOF exposure and impacts. The OSM is a collabora-
tive user-generated project initiated in 2004 to provide an
openly available geographical database of the world, cov-
ering both the natural and artificial environments of Earth’s
surface (OpenStreetMap contributors, 2022). While primar-
ily built by volunteers, the OSM also integrates geograph-
ical data contributed by governmental and specialised GIS
databases for certain areas or entire countries, e.g. Nepal,
providing relatively complete spatial data on buildings and
other objects. Hydropower plant data are obtained from the
Hydro Map project (Nepal Hydropower Portal, 2023). In the
Hydro Map project, hydropower plants are categorised into
three types: operation, generation, and survey. In Nepal, the
hydropower licensing regime is divided into two stages: a
survey license is issued to conduct a feasibility and environ-
mental assessment, and a generation license is granted after
the project is found to be technically, environmentally, and
economically viable. From the Hydro Map project, Nepal
has a total of 572 hydropower projects. These projects in-
clude 81 that are currently operational, 180 with issued gen-
eration licenses, and 311 with issued survey licenses. De-
tailed information on each hydropower plant is provided, in-
cluding the capacity, commission and issue dates, longitude,
and latitude. Importing hydropower plant data into ArcGIS
and comparing them with sub-metre imagery from ArcGIS
Server and Google Earth, the positions of some hydropower
plants are found to be inaccurate. To address the inaccuracies
in the positions of some hydropower plants, a process has
been undertaken to enhance the quality of the hydropower
plant data. Initially, we identified all hydropower stations lo-
cated within a 2 km buffer zone along the downstream rivers
of glacier lakes. For licensed hydropower plants that were
not situated on the river, we relocated them to the nearest

river point, ensuring that they were accurately placed on the
river as indicated by the Hydro Map project. For operational
hydropower stations, we used high-resolution remote sens-
ing imagery from sources such as Google Maps and Google
Earth to determine their locations precisely.

3 Study area and glacial lakes

Nepal is highly vulnerable to GLOFs. A total of 53 GLOF
events have been documented in Nepal from 1560 up to
now (Shrestha et al., 2023). Additionally, there have been
37 GLOF events recorded in the Tibetan Autonomous Re-
gion, China, that had transboundary impacts on Nepal. These
historical events have had devastating consequences for the
country. For example, both the 1985 Dig Tsho GLOF and the
1998 Tam Pokhari GLOF had devastating effects, resulting
in significant loss of life, property and infrastructure dam-
age, and severe disruptions to the livelihoods of those living
in downstream areas. Approximately 1.56 million people live
downstream within 3 km of moraine-dammed lakes in Nepal,
putting them at risk of GLOFs (Ghimire, 2004).

In Nepal, a total of 2070 glacial lakes with lake areas
equal to or greater than 0.003 km2 have been identified and
mapped using Landsat images (Bajracharya et al., 2020).
These glacial lakes are predominantly located in northern
Nepal at elevations ranging from 3400 to 5908 m. Notably,
98 % of these glacial lakes are located above 4000 m. Ba-
jracharya et al. (2020) assessed GLOF hazard factors related
to lake and dam characteristics, glacier activity at the source,
and the morphology of the lake surroundings for the 2070
glacial lakes. They identified 21 lakes as PDGLs (Fig. 2 and
Table 1). Of the 21 PDGLs, some lakes have names, while
others do not and were designated as “Unnamed”.

This study focuses on these 21 PDGLs and conducts a
comprehensive assessment of their GLOF risk and down-
stream impacts. Each lake is assessed using the proposed
evaluation framework in Sect. 2. The model and evaluation
domain for each lake are determined based on the maximum
potential inundation extent resulting from GLOFs as well as
the topographic features and river network conditions down-
stream. Typically, the domain spans more than 100 km and is
sufficiently extensive to encompass all potential impacts.

4 Results

4.1 Glacial lake water surface extraction

Water surfaces of glacial lakes are delineated from Sentinel-
2 images using the random forest model, as previously out-
lined. The random forest model is trained with a set of train-
ing samples that comprise both water and non-water features.
To account for seasonal variations in lake water surfaces,
the training samples for water features are manually selected
from images acquired at different times. Various non-water
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Figure 2. Study area and the 21 identified dangerous glacial lakes, each with a unique lake number and potentially impacted hydropower
plants.

features encompass diverse landscapes and vegetation types.
This training dataset is subsequently employed to drive and
train the random forest model, which is then employed to
delineate water surfaces for all the adopted Sentinel-2 im-
ages. The subsequent analysis involves the computation of
water-occurrence frequency based on multi-temporal water
surfaces. The outcomes of water-occurrence frequency for
specific representative lakes are visually presented in Fig. 3.
It is noteworthy that lake areas are not consistently char-
acterised by open water throughout the year. For instance,
Unnamed 1 (Fig. 3a) exhibits an average water-occurrence
frequency of 72 %, while Unnamed 2 (Fig. 3b) has an aver-
age water-occurrence frequency of 58 %. In contrast, for cer-
tain lakes, like Unnamed 8 and Tsho Rolpa Lake, lake areas
are always covered with water. Hence, the capacity to map
glacial lakes to assess the associated GLOF risk is influenced
by the timing of the image acquisition.

Table 1 presents the determined lake areas based on
varying water-occurrence frequencies. To mitigate the ef-
fects of misinterpretations, such as cloud shadows, a 5 %
threshold is utilised to exclude areas characterised by low
water-occurrence frequencies. Subsequently, the maximum
lake boundary is delineated for each lake, allowing for the
straightforward calculation of maximum lake areas. Of the
21 lakes, the largest is Lower Barun Lake, a substantial
glacial lake in Nepal known for its depth and size. Its
area measures 2.193± 0.048 km2, while the smallest lake
(Unnamed 5) covers only 0.026± 0.003 km2. Lower Barun
Lake, along with the second largest PDGL, Imja Tsho Lake,
has undergone significant area growth. The estimated max-
imum area of Imja Tsho Lake here is 1.741± 0.047 km2.
Tsho Rolpa Lake boasts a maximum area estimated at
1.712± 0.043 km2. This aligns with previous findings, which
reported that the lake had an area of 0.23 km2 in 1957, which
grew to 1.02 km2 in 1979, 1.65 km2 in 1999, and 1.61 km2

in 2019 (Chen et al., 2022). Lumding Lake, another PDGL
with an estimated area exceeding 1 km2, displayed notable
growth. It had an area of 0.104 km2 in 1963, 0.66 km2 in
1987, 0.8 km2 in 1996, and 1.18 km2 in 2016 (Khadka et al.,
2019). Our assessment indicates that the maximum area of
Lumding Lake is 1.475± 0.037 km2. In summary, the es-
timated maximum lake areas derived from multi-temporal
satellite images for these extensively studied lakes are in
good agreement with previous research. To establish the
maximum lake boundary for potential risk assessment, it is
imperative to leverage multi-temporal imagery capturing var-
ious hydrological conditions of glacial lakes.

The maximum areas of the four large lakes (Lower Barun,
Imja Tsho, Tsho Rolpa, and Lumding), each exceeding
1 km2, are approximately 1.1 times the extent of the area
that water covers more than 50 % of the time. In contrast,
for the comparatively smaller lakes (Unnamed 3, 4, 5, 6, 10,
and 13), the ratio of the maximum area to the area covered
by water for more than 50 % of the time can be as high as 1.4
to 2.5 times. For instance, Unnamed 10 has a maximum area
of 0.085 km2, while only 0.009 km2 is covered with water
more than 50 % of the time. The areas of small PDGLs ex-
hibit more significant variations in space and time compared
to those of larger PDGLs, making the associated risks more
uncertain.

4.2 Lake volumes and peak discharge prediction

We obtained 94 estimates of the total volume Vtot (Fig. 4a)
and flood volume V0 under a complete breach of dam height
(Fig. 4b) for each lake and a total of 940 000 scenarios of
peak discharge Qp per lake (Fig. 4c) using the models intro-
duced in Sect. 2.2.1. Figure 4a clearly illustrates the variation
in total volumes among the 21 PDGLs, with Lower Barun
(number 13) standing out as the most substantial one, pos-
sessing a median value of approximately 208.2× 106 m3. In
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Figure 3. Water surfaces extracted from multi-temporal Sentinel-2 imagery in representative glacial lakes in Nepal (lake numbers and other
lake details can be found in Table 1).

contrast, Unnamed 5 (number 5) is the smallest one, with a
median volume of approximately 204.0× 103 m3. The dis-
parity between these two lakes is striking, as Lower Barun’s
median volume is approximately 1000 times greater than that
of Unnamed 5. We collected geophysical investigation data
for named PDGLs and compared them against calculated
volumes using field-investigated lake areas, as shown in Ta-
ble 2. While there are some inconsistencies, the calculated
volumes generally align with the investigated values. For ex-
ample, the water volume of the glacial Lower Barun Lake
in 2015 was approximately 112.3× 106 m3, with a lake area
of 1.52 km2 based on bathymetric measurements. Using the
established relationship between lake area and volume, the
average volume for a lake with a 1.52 km2 area is calculated
to be 108.27× 106 m3, which closely matches the measured
volume of the glacial Lower Barun Lake.

Figure 4b highlights the substantial variation in potential
flood volumes across the lakes in the theoretically most ex-
treme scenarios, i.e. a complete breach of dam height with
Lower Barun exhibiting the highest median flood volume
and Unnamed 5 having the lowest median flood volume. No-
tably, the median flood volume of Lower Barun is approxi-
mately 1160 times greater than that of Unnamed 5. Accord-
ing to Fig. 4c, which shows the distribution of peak dis-

charges, Lower Barun has the highest median peak discharge
at 21.3× 103 m3 s−1. Following it are Lumding, Imja Tsho,
and Tsho Rolpa, which have similar peak discharge magni-
tudes ranging from 13 000 to 15 000 m3 s−1. The lake with
the lowest peak discharge is Unnamed 6, with a discharge of
154.1 m3 s−1. The peak discharge of Lower Barun is approx-
imately 140 times greater than that of Unnamed 6.

4.3 Flood inundation simulation

4.3.1 Inundation areas

HiPIMS is used to simulate flood dynamics in 100 scenarios
for each lake with its maximum dam height breached. The
final flood inundation probability and maximum water depth
are derived from each scenario’s results multiplied by their
respective weights. Herein, we use the simulation results
from Imja Tsho Lake and Lower Barun Lake as illustrative
examples (Fig. 5). The areas with high flood inundation prob-
abilities are predominantly distributed along the downstream
valley. The areas with flood inundation frequencies exceed-
ing 5 % can be substantial, reaching 95.6 km2 for Imja Tsho
Lake and 200.4 km2 for Lower Barun Lake. The maximum
water depth offers spatial insights into the potential severity
of GLOFs in downstream areas (Fig. 5c and d). It facilitates
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Table 2. Comparisons between the lake areas (km2) and volumes (106 m3) derived from bathymetric investigations and those calculated in
this study for the named lakes.

Lake Lake name Maximum Median Investigation Investigated Investigated Calculated volume Reference
number areas estimated year areas volume for the investigated

volume areas

7 Imja Tsho 1.741 124.9 2016 1.35 88 87.6 Lala et al. (2017)
8 Tsho Rolpa 1.712 134.7 1994 1.39 76.45 92.1 Rana et al. (2000)
13 Lower Barun 2.193 208.2 2015 1.52 112.3 108.3 Haritashya et al. (2018)
15 Lumding 1.475 106.2 2015 1.13 57.7 65.9 Rounce et al. (2016)
16 Chamlang 0.921 54.9 2009 0.87 34.9–35.6 45.8 Lamsal et al. (2016)
21 Thulagi 0.997 67.1 2017 0.89 36 47.1 Haritashya et al. (2018)

Figure 4. (a) Estimated total volume, (b) flood volume under the
complete breach of dam height, and (c) peak discharge for each
glacial lake.

the identification of areas characterised by both high inun-
dation probability and significant maximum water depth. For
instance, for Lower Barun Lake, there are 127.4 km2 of ar-
eas exhibiting both an inundation frequency exceeding 90 %

and a maximum water depth exceeding 0.5 m. These specific
areas should undoubtedly receive heightened attention in fu-
ture flood risk management and mitigation.

The resulting inundation areas at different levels of inun-
dation probabilities are shown in Fig. 6. The inundation ex-
tent resulting from GLOFs originating from the 21 PDGLs
ranges from 3.6 to 200.4 km2. Notably, the largest glacial
lake, Lower Barun (lake number 13), has inundation areas
of 172.4 and 189.5 km2 for inundation probabilities exceed-
ing 75 % and 50 %, respectively. Tsho Rolpa (lake number
8), having a smaller lake area than Lower Barun, projects
inundation areas of 106.9 and 120.3 km2 for probabilities ex-
ceeding 75 % and 50 %, respectively. Imja Tsho Lake (lake
number 7), similar in size to Tsho Rolpa Lake, anticipates
inundation areas of 67.2 and 79.6 km2 for probabilities ex-
ceeding 75 % and 50 %, respectively. It is worth noting that
lakes that have not been extensively studied can potentially
cause large inundation areas of over 10 km2 for probabili-
ties exceeding 50 %, including Unnamed 7, Unnamed 8, Un-
named 11, Unnamed 12, Unnamed 1, and Unnamed 2. The
smallest lake, Unnamed 5, has an inundation area of 2.7 km2

for probabilities exceeding 50 %.
To comprehensively evaluate all potential glacial lake out-

burst scenarios, we also consider less severe conditions,
specifically where 10 %, 30 %, and 50 % of dam heights are
breached. In each of these scenarios, 100 representative cases
are selected from a total of 940 000 samples using k-means
clustering. The outcomes of these less severe scenarios are
then compared to the condition of 100 % of the dam height
breached. Figure 7 illustrates the inundation areas for prob-
abilities exceeding 5 % due to GLOFs. For Lower Barun
Lake, breaches reaching 10 % and 30 % of the dam height
result in inundations of 25.5 and 131.0 km2 of downstream
areas. When 100 % of the dam height is breached, the inun-
dation areas are 7.87 and 1.53 times larger than those ob-
served in the 10 % and 30 % scenarios, respectively. Follow-
ing Lower Barun Lake, Tsho Rolpa Lake and Lumding Lake
also present substantial inundation risks. Even at 10 % of
the dam height breached, Tsho Rolpa Lake has the potential
to inundate approximately 40 km2 of areas with inundation
probabilities exceeding 5 %.
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Figure 5. GLOF inundation probability for (a) Imja Tsho Lake and (b) Lower Barun Lake, together with the maximum water depth for
(c) Imja Tsho Lake and (d) Lower Barun Lake, in the theoretically worst situation, i.e. complete breach of dam height. (The basemaps used
were accessed from ArcGIS Online Basemap provided by Esri.)

4.3.2 Exposure assessment

The exposure of objects can be determined spatially by over-
laying the predicted flood inundation maps with relevant
datasets detailing buildings, roads, and agricultural land (Ta-
ble 3). Here, we focus on areas with flood probabilities
greater than 5 %. The number of inundated buildings varies
from 11 to 34 715. Out of the 21 PDGLs, 14 have a number
of inundated buildings exceeding 100, while 8 of them inun-

date at least 1000 buildings. The three lakes with the highest
number of inundated buildings are Thulagi, Tsho Rolpa, and
Lower Barun, each of which could inundate more than 5000
buildings and cover an area of 3.7×105 m2 of building areas.
The numbers of buildings inundated by Tsho Rolpa and Thu-
lagi are 1.7 and 2.5 times that of Lower Barun Lake. Over-
all, these well-studied lakes could impact more buildings
than unnamed lakes. These 13 unnamed lakes typically af-
fect fewer than 300 buildings, with the exceptions being Un-
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Figure 6. Inundation area (km2) at different levels of inundation probabilities and maximum lake area (km2).

Figure 7. Inundation area (km2) for inundation probabilities exceeding 5 % under 10 %, 30 %, 50 %, and 100 % of dam heights breached.

named 1 and Unnamed 12, which can influence 310 and 1659
buildings, respectively. Six unnamed lakes, i.e. Unnamed 12,
1, 7, 11, 8, and 2, have the potential to impact more than
200 buildings. Further investigation and research are required
for the six unnamed lakes. Conversely, three lakes, i.e. Un-
named 10, Unnamed 6, and Unnamed 9, pose lower risks,
with a number of 15 or fewer buildings affected.

Regarding inundated roads, the value ranges from 4 to
646 km. Tsho Rolpa, Thulagi, and Lower Barun still hold
the top three positions with the greatest lengths of inundated
roads, each exceeding 350 km. To illustrate this, Tsho Rolpa
Lake, the top one in this category, inundates a 646 km long
road. Following closely is Thulagi Lake, which has inun-
dated roads with a length of 539 km. Agriculture is a corner-
stone of the Nepalese economy, and it is susceptible to the
impacts of GLOFs. It is anticipated that 12 lakes will have
more than 10 km2 of inundated agricultural land and that 3
lakes will have a negligible impact on agriculture. Lower
Barun, Tsho Rolpa, and Thulagi are still the most perilous
lakes in terms of the inundation of agricultural lands.

In addition to the high potential for human settlements to
be exposed to GLOFs, hydropower projects are increasingly
vulnerable to these events. A total of 49 hydropower plants

(as shown in Fig. 2, with detailed information provided in
Table S1 in the Supplement) have been identified as being in
close proximity to GLOF flow channels, thereby rendering
them potentially vulnerable to GLOFs associated with the 21
PDGLs. Of these, five plants are currently operational. Addi-
tionally, 44 hydropower plants, for which generation or sur-
vey licenses have been issued, are also exposed to the risk
of GLOFs from these 21 PDGLs. When examining the po-
tential impact of lakes on operational hydropower plants and
those holding generation licenses, it is observed that Thulagi
and Tsho Rolpa pose a risk of inundating five plants (three
operational ones and two licensed ones) and three plants (all
licensed), respectively. Moreover, it is noteworthy that Un-
named 12, Unnamed 1, and Unnamed 2 have the potential
to inundate seven plants (two operational and six licensed),
two plants (both licensed), and two plants (both licensed),
respectively.

4.3.3 Damage assessment

GLOF damage assessment relies on spatial inundation maps
of water depth and depth–damage curves. The inundation
maps, depicting water depth, are represented by maximum
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water depths for areas with flood probabilities greater than
5 %. Following the technical manual of the HAZUS Flood
model (FEMA, 2009), damage extents of 1 % to 10 %, 11 %
to 50 %, and 50 % to 100 % are defined as slight, moder-
ate, and substantial damage, respectively. Figure 8 uses Un-
named 12 as an example to illustrate the spatial distribution
of damage to buildings, roads, and agricultural land caused
by GLOFs. Table 3 provides estimates of damage to build-
ings, roads, and agricultural lands for each lake. In the case of
Tsho Rolpa, 7394 buildings are projected to suffer substantial
damage from GLOFs. Thulagi Lake and Lower Barun Lake
are expected to cause substantial damage to 6520 and 3194
buildings, respectively. Other lakes, such as Imja Tsho Lake
and Lumding Lake, are estimated to impact roughly 1160
buildings with substantial damage. Notably, Unnamed 12 has
the potential to affect 1659 buildings, with 964 experiencing
moderate impact and 375 facing substantial damage. Situated
in the Trishuli River basin, Unnamed 12 faces high exposure.
On the other hand, another unnamed lake (Unnamed 13) is
not projected to cause any substantial damage to buildings
due to GLOFs. For PDGLs with a high number of impacted
buildings (more than 1000), except for Unnamed 12, more
than 50 % of the impacted buildings are expected to incur
substantial damage. In all the PDGLs, most affected build-
ings (over 60 %) are predicted to experience moderate or sub-
stantial damage. Likewise, over 60 % of roads and agricul-
tural lands are anticipated to undergo moderate or substantial
damage due to high levels of maximum water depth.

5 Discussion

We evaluate GLOF scenarios involving breaches of 10 %,
30 %, 50 %, and 100 % of dam heights. It is recognised that,
for certain lakes, a complete (100 %) breach may be improb-
able and represents only a theoretical worst-case scenario. In
practical terms, the most severe realistic scenario should con-
sider the unique lithology, composition, and structural char-
acteristics of each moraine dam; however, conducting such
detailed field investigations to gather this information across
multiple lakes at a large scale remains challenging. For large-
scale GLOF risk assessments, Zhang et al. (2023b) applied
an empirical relationship between lake volume and flood vol-
ume, derived from historical GLOFs, to estimate flood vol-
umes, capping the maximum flood volume at 20× 106 m3

due to limited data on large glacial lakes. Fujita et al. (2013)
estimated potential flood volume by analysing the depression
angle from lake shorelines using DEM data, noting that po-
tential flood volume is helpful for preliminarily identifying
and prioritising lakes for further investigation, but it does not
directly quantify GLOF risk. As no straightforward and reli-
able method currently exists for accurately predicting flood
volumes across multiple lakes, we analysed scenarios assum-
ing breaches at 10 %, 30 %, 50 %, and 100 % of dam heights
for consistency. When interpreting these impact results, the

inherent limitations in predicting flood volume and the real-
istic likelihood of each scenario should be considered care-
fully.

GLOFs can have a significant impact due to the large
volume of water stored in glacial lakes, resulting in rapid
breaches, high outflow peaks, and high total discharges.
While there is a positive correlation between inundation ex-
tent and lake area (Fig. 6), it is important to note that inunda-
tion propagation and extent also depend on dam breach pro-
cesses as well as the underlying topography and land surface
conditions of downstream areas (Worni et al., 2012; Ancey et
al., 2019). In particular, steep and narrow valley gorges can
influence flood waves, causing them to spread rapidly over
long distances, which is often accompanied by significant
physical processes such as erosion and the transport of ice,
sediment, and debris. Of the 21 PDGLs in Nepal, Tsho Rolpa
Lake, Thulagi Lake, and Lower Barun Lake are expected
to experience the most severe impacts of GLOFs on build-
ings, roads, and agricultural areas. Rounce et al. (2016, 2017)
also assessed the downstream impacts of GLOFs from glacial
lakes in the Nepalese Himalayas. They likewise identified
Tsho Rolpa Lake, Lower Barun Lake, and Thulagi Lake as
having the most affected buildings, while two unnamed lakes
and Thulagi Lake were anticipated to experience the most
significant impacts on agricultural areas. However, it is im-
portant to note that Rounce et al. (2016, 2017) employed the
Monte Carlo least-cost path model (Watson et al., 2015) to
estimate the extent of GLOFs for each lake. While the model
is computationally efficient and suitable for large-scale ap-
plications, it lacks a physical basis and relies solely on the
terrain conditions downstream along the river channel, with-
out considering variations in lake release volumes and peak
discharges. As a result, flood extents for lakes with differ-
ing potential flood volumes may be indistinguishable. An-
other limitation is that the threshold for the cut-off distance
in the Monte Carlo least-cost path model needs to be set ar-
tificially, while the realistic cut-off distance downstream for
each lake varies, sometimes extending over 200 km down-
stream (Richardson and Reynolds, 2000). This study takes
a different approach by employing a physics-based hydro-
dynamic model that predicts not only the inundation extent,
but also the spatial characteristics of flood features, including
inundation probabilities and water depth, while considering
various outburst scenarios. This information can be used to
identify potential exposures and assess the extent of damage
to which exposures may be subject.

In addition to the growing vulnerability of human settle-
ments in mountainous regions, there is increasing exposure
to GLOFs of infrastructure related to energy security and
commerce. Therefore, an objective assessment of the risk to
infrastructure posed by PDGLs is crucial. This study con-
siders hydropower plants, given their critical importance and
rapid development in Nepal. Nepal is at the heart of a mod-
ern resurgence in hydropower development in the Himalayas
(Lord, 2016). The country boasts abundant hydropower re-
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Figure 8. Damage to buildings, roads, and agricultural land caused by the theoretically most serious GLOF due to Unnamed 12 (basemap
sources: Earthstar Geographics and Maxar).

sources thanks to its ample river water, steep gradients,
and mountainous terrain. At present, a considerable num-
ber of hydropower projects are in the planning and con-
struction stages (46 projects exceeding 100 GW) to enhance
the country’s overall generating capacity. These planned hy-
dropower projects are primarily situated along rivers con-
nected to glaciers located in the northern region of Nepal
(Shakti et al., 2021). A few existing hydropower plants have
experienced direct impacts from recorded GLOFs, such as
the Namche hydroelectric power plant destroyed by the 1985
Dig Tsho GLOF (Vuichard and Zimmermann, 1987) and the
Bhotekoshi hydropower plant affected by the 2016 GLOF
(Cook et al., 2018), so GLOFs can be highly destructive
and unpredictable, posing a significant threat to hydropower
facilities. Furthermore, the expansion of hydropower plants
into the upstream regions of watersheds substantially in-
creases the vulnerability of infrastructure to GLOFs (Nie
et al., 2021). Schwanghart et al. (2016) estimated that two-
thirds of the existing and planned hydropower projects in
the Himalayas are located in areas potentially affected by
GLOFs, and up to one-third of these projects could face
GLOF discharges exceeding their local design flood capaci-
ties. In this study, we have identified 49 existing and planned
hydropower projects that could potentially be impacted by
GLOFs originating from the 21 PDGLs; however, we did not
assess the specific impacts of GLOFs on these hydropower
projects. To our knowledge, there are no readily available

damage curves that correlate the potential impact on hy-
dropower plants with flood depth and other flood charac-
teristics. Furthermore, hydropower plants typically comprise
multiple components, including dam and reservoir, power-
house, and auxiliary facilities. The spatial extent of a hy-
dropower plant can vary significantly, ranging from a few
square kilometres to several hundred square kilometres. Ac-
curate assessment would require detailed spatial information
and mapping of hydropower plants, which is currently lack-
ing. Consequently, this study focuses exclusively on identi-
fying whether a hydropower plant is potentially at risk from
GLOFs without engaging in a detailed assessment of the spe-
cific damages that may be incurred. Still, we urge stakehold-
ers responsible for planning, designing, constructing, and
managing infrastructure to consider these potential GLOF
risks.

In addition to well-studied PDGLs like Tsho Rolpa Lake,
Thulagi Lake, and Lower Barun Lake, some unnamed lakes
also present a significant risk of GLOFs. For instance, Un-
named 12, 1, 7, 11, 8, and 2 pose high GLOF risks. GLOFs
from any of these six lakes have the potential to impact more
than 200 buildings, and GLOFs resulting from Unnamed 12
may submerge existing hydropower facilities. Unfortunately,
there is limited information available about these unnamed
lakes in comparison to well-studied PDGLs. To gain a better
understanding of their conditions, a comprehensive research
strategy is needed, which includes fieldwork investigations,
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remote sensing techniques, and modelling approaches. This
study has leveraged remote sensing techniques and mod-
elling approaches to preliminarily identify PDGLs with a
high level of exposure and potential impacts from GLOFs.
However, it is imperative to conduct fieldwork investigations,
including in situ measurements, to obtain the essential infor-
mation required to comprehend the actual state of these un-
named lakes at the local scale. These field investigations will
also serve as a ground truth to calibrate remote-sensing-based
data and model outputs. Moreover, considering the challeng-
ing nature of fieldwork in glacial lake areas, the cost of expe-
ditions, and the high level of fitness and expertise required by
monitoring teams, the preliminary identification of PDGLs
with high exposure and potential impacts can offer valuable
evidence to support decision-making in the allocation of fi-
nancial and human resources.

We acknowledge the importance of validating the pro-
posed framework for estimating the impact of GLOFs while
recognising the inherent challenges associated with valida-
tion due to the limited availability of historical data. Al-
though Nie et al. (2018), Veh et al. (2019), and Shrestha et
al. (2023) provided valuable inventories of historical GLOFs
in the Himalayas, these primarily provide information on
the dates and locations of outbursts, offering limited or no
information on the actual impacts resulting from histori-
cal GLOFs. Even when impact data are available, they of-
ten only comprise generalised descriptions, encompassing
metrics like the overall number of casualties, infrastruc-
ture damage, and affected villages and lacking specific spa-
tial information. Consequently, obtaining adequate data for
validating our proposed impact estimation framework for
GLOFs proves challenging. It is noteworthy that our pro-
posed framework employs the fully physically based hydro-
dynamic model HiPIMS, which is intricately designed to
capture the highly transient and complex hydrodynamic pro-
cesses induced by events such as dam breaks and flash floods.
HiPIMS has been validated successfully for these extreme
flow conditions (e.g. Smith and Liang, 2013; Liang et al.,
2016). The adoption of this model enhances our confidence
in simulating the spatial–temporal processes of GLOF inun-
dation, ultimately contributing to improved hazard evaluation
results. Furthermore, we employ Bayesian approaches to de-
rive plausible value ranges for lake volumes and peak dis-
charges. These approaches facilitate the creation of multiple
GLOF scenarios for each glacial lake, ensuring comprehen-
sive coverage of all potential glacial lake outburst scenarios.
The incorporation of Bayesian methods allows us to account
for uncertainties, thereby enhancing the robustness of our im-
pact evaluation for potentially devastating GLOFs.

6 Conclusion

Exposure and damage estimations are integral components of
GLOF risk assessment. Having sufficient information on the

potential impacts of GLOFs originating from PDGLs is es-
sential for facilitating GLOF risk management. In this study,
we harnessed multi-temporal satellite imagery, Bayesian re-
gression models that establish relationships between lake ar-
eas and depths as well as between flood volume and peak dis-
charge, and a high-performance hydrodynamic flood model
to support GLOF exposure and damage assessments for mul-
tiple lakes. We applied this assessment framework to 21
PDGLs identified in the Nepalese Himalayas, and the key
findings of this study are summarised as follows:

– Utilising multi-temporal imagery capturing different
hydrological conditions of glacial lakes enables deriva-
tion of the full or maximum glacial lake boundaries for
potential risk assessment.

– The Bayesian regression model, which establishes rela-
tionships between lake areas and depths as well as be-
tween flood volume and peak discharge, can produce
predictive posterior distributions for lake depths and
peak discharges for each lake. These distributions offer
a plausible range of values for lake volumes and peak
discharges for each PDGL, facilitating subsequent ob-
jective flood modelling and impact analysis.

– The hydrodynamic model (HiPIMS), supported by par-
allelised high-performance GPU computation, is capa-
ble of predicting the resulting GLOFs in terms of tem-
porally and spatially varying flood frequency and water
depths to reflect the highly transient flood dynamics in
various scenarios for multiple glacial lakes on a large
scale.

– Of the 21 PDGLs identified in the Nepalese Himalayas,
in the scenario of a complete breach of dam height, Tsho
Rolpa Lake, Thulagi Lake, and Lower Barun Lake are
poised to bear the most severe impacts of GLOFs on
buildings, roads, and agricultural areas. Six unnamed
lakes, specifically Unnamed 12 in the Trishuli River
basin, Unnamed 1 and Unnamed 2 in the Tamor River
basin, and Unnamed 7, 8, and 11 in the Dudh River
basin, have the potential to impact more than 200 build-
ings. The GLOFs from these 21 PDGLs can also impact
the 5 existing hydropower plants and the 44 hydropower
projects that have been granted generation or survey li-
censes. Notably, Unnamed 12 in the Trishuli River basin
may even submerge existing hydropower facilities.
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Appendix A: List of abbreviations used in this study

CI Confidence interval
DEM Digital elevation model
EVI Enhanced Vegetation Index
GIS Geographic Information System
GLOFs Glacial lake outburst floods
GPU Graphics processing unit
HDI Highest density interval
HiPIMS High-Performance Integrated Hydrodynamic

Modelling System
MNDWI Modified Normalized Difference Water Index
NIR Near-infrared
NDMI Normalized Difference Moisture Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
OSM OpenStreetMap
PDGL Potentially dangerous glacial lake
SRTM Shuttle Radar Topography Mission
TOA Top of atmosphere

Code availability. The flood model developed by HEMLab is
freely accessible at https://github.com/HEMLab/HiPIMS-CUDA
(HEMLab, 2023).

Data availability. The DEM used in this work is the SRTM DEM.
The land use types are extracted from the Landsat TM imagery from
the year 2010 (http://rds.icimod.org/Home/DataDetail?metadataId=
9224; ICIMOD, 2013). The OSM data can be accessed online (http:
//download.geofabrik.de/asia/nepal.html; OpenStreetMap contribu-
tors, 2022). The hydropower plant data are obtained from the Hydro
Map project (https://hydro.naxa.com.np/core/datasets/, Nepal Hy-
dropower Portal, 2023).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-29-733-2025-supplement.

Author contributions. HC was responsible for developing the
methodology, conducting the analysis, and drafting the paper. QL
handled the funding acquisition, research design, and review and
refinement of the draft. JZ developed the flood model codes, and
SBM provided a review of the draft.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-

ery effort to include appropriate place names, the final responsibility
lies with the authors.

Financial support. This research has been supported by the UK
Natural Environment Research Council (grant no. NE/S005919/1).

Review statement. This paper was edited by Damien Bouffard and
reviewed by Adam Emmer and one anonymous referee.

References

Ancey, C., Bardou, E., Funk, M., Huss, M., Werder, M. A.,
and Trewhela, T.: Hydraulic reconstruction of the 1818 Giétro
glacial lake outburst flood, Water Resour. Res., 55, 8840–8863,
https://doi.org/10.1029/2019WR025274, 2019.

Arcement, G. J. and Schneider, V. R.: Guide for selecting Man-
ning’s roughness coefficients for natural channels and flood
plains, US Government Printing Office, Washington, DC,
https://doi.org/10.3133/wsp2339, 1989.

Bajracharya, S. R., Maharjan, S. B., Shrestha, F., Sherpa, T.
C., Wagle, N., and Shrestha, A. B.: Inventory of glacial
lakes and identification of potentially dangerous glacial lakes
in the Koshi, Gandaki, and Karnali River Basins of Nepal,
the Tibet Autonomous Region of China, International Cen-
tre for Integrated Mountain Development GPO Box, 3226,
https://doi.org/10.53055/ICIMOD.773, 2020.

Barnes, H. H.: Roughness characteristics of natural channels, US
Government Printing Office, https://doi.org/10.3133/WSP1849,
1967.

Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.

Carrivick, J. L. and Tweed, F. S.: A global assessment of the societal
impacts of glacier outburst floods, Global Planet. Change, 144,
1–16, https://doi.org/10.1016/j.gloplacha.2016.07.001, 2016.

Cenderelli, D. A. and Wohl, E. E.: Peak discharge estimates of
glacial-lake outburst floods and “normal” climatic floods in
the Mount Everest region, Nepal, Geomorphology, 40, 57–90,
https://doi.org/10.1016/S0169-555X(01)00037-X, 2001.

Chen, H., Zhao, J., Liang, Q., Maharjan, S. B., and Joshi, S. P.:
Assessing the potential impact of glacial lake outburst floods
on individual objects using a high-performance hydrodynamic
model and open-source data, Sci. Total Environ., 806, 151289,
https://doi.org/10.1016/j.scitotenv.2021.151289, 2022.

Chow, V. T.: Open-channel Hydraulics, McGraw-Hill, New York,
680, https://doi.org/10.1016/C2019-0-03618-7, 1959.

Cook, K. L., Andermann, C., Gimbert, F., Adhikari, B. R.,
and Hovius, N.: Glacial lake outburst floods as drivers
of fluvial erosion in the Himalaya, Science, 362, 53–57,
https://doi.org/10.1126/science.aat4981, 2018.

Cook, S. J. and Quincey, D. J.: Estimating the volume
of Alpine glacial lakes, Earth Surf. Dynam., 3, 559–575,
https://doi.org/10.5194/esurf-3-559-2015, 2015.

Dubey, S. and Goyal, M. K.: Glacial lake outburst flood
hazard, downstream impact, and risk over the Indian
Himalayas, Water Resour. Res., 56, e2019WR026533,
https://doi.org/10.1029/2019WR026533, 2020.

https://doi.org/10.5194/hess-29-733-2025 Hydrol. Earth Syst. Sci., 29, 733–752, 2025

https://github.com/HEMLab/HiPIMS-CUDA
http://rds.icimod.org/Home/DataDetail?metadataId=9224
http://rds.icimod.org/Home/DataDetail?metadataId=9224
http://download.geofabrik.de/asia/nepal.html
http://download.geofabrik.de/asia/nepal.html
https://hydro.naxa.com.np/core/datasets/
https://doi.org/10.5194/hess-29-733-2025-supplement
https://doi.org/10.1029/2019WR025274
https://doi.org/10.3133/wsp2339
https://doi.org/10.53055/ICIMOD.773
https://doi.org/10.3133/WSP1849
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.gloplacha.2016.07.001
https://doi.org/10.1016/S0169-555X(01)00037-X
https://doi.org/10.1016/j.scitotenv.2021.151289
https://doi.org/10.1016/C2019-0-03618-7
https://doi.org/10.1126/science.aat4981
https://doi.org/10.5194/esurf-3-559-2015
https://doi.org/10.1029/2019WR026533


750 H. Chen et al.: Assessing national impact of GLOFs considering uncertainty under data sparsity

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley,
S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., and Seal,
D.: The shuttle radar topography mission, Rev. Geophys., 45,
RG2004, https://doi.org/10.1029/2005RG000183, 2007.

FEMA: Multi-hazard loss estimation methodology: Flood
model, HAZUS-MH MR3 technical manual, P220,
https://www.fema.gov/sites/default/files/2020-09/fema_hazus_
flood-model_technical-manual_2.1.pdf (last access: 4 February
2025), 2009.

Fujita, K., Sakai, A., Takenaka, S., Nuimura, T., Surazakov, A. B.,
Sawagaki, T., and Yamanokuchi, T.: Potential flood volume of
Himalayan glacial lakes, Nat. Hazards Earth Syst. Sci., 13, 1827–
1839, https://doi.org/10.5194/nhess-13-1827-2013, 2013.

Gao, B. C.: NDWI – A normalized difference water index for re-
mote sensing of vegetation liquid water from space, Remote
Sens. Environ., 58, 257–266, https://doi.org/10.1016/S0034-
4257(96)00067-3, 1996.

Ghimire, M.: Review of studies on glacier lake outburst floods and
associated vulnerability in the Himalayas, Himalayan Rev., 35,
49–64, 2004.

Granshaw, F. D. and Fountain, A. G.: Glacier change
(1958–1998) in the North Cascades National Park
complex, Washington, USA, J. Glaciol., 52, 251–256,
https://doi.org/10.3189/172756506781828782, 2006.

Haritashya, U. K., Kargel, J. S., Shugar, D. H., Leonard, G. J.,
Strattman, K., Watson, C. S., Shean, D., Harrison, S., Mandli,
K. T., and Regmi, D.: Evolution and controls of large glacial
lakes in the Nepal Himalaya, Remote Sens.-Basel, 10, 798,
https://doi.org/10.3390/rs10050798, 2018.

HEMLab: High-Performance Integrated Hydrodynamic Modelling
System (HiPIMS-CUDA), GitHub [code], https://github.com/
HEMLab/HiPIMS-CUDA, last access: 22 August 2023.

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Fer-
reira, L. G.: Overview of the radiometric and biophysical perfor-
mance of the MODIS vegetation indices, Remote Sens. Environ.,
83, 195–213, https://doi.org/10.1016/S0034-4257(02)00096-2,
2002.

Huizinga, J., De Moel, H., and Szewczyk, W.: Global flood depth-
damage functions: Methodology and the database with guide-
lines, Joint Research Centre (Seville site), no. JRC105688,
https://doi.org/10.2760/16510, 2017.

ICIMOD: Land cover of Nepal 2010, ICIMOD [data set], http://rds.
icimod.org/Home/DataDetail?metadataId=9224 (last access: 26
April 2020), 2013.

Khadka, N., Zhang, G., and Chen, W.: The state of six dangerous
glacial lakes in the Nepalese Himalaya, Terr. Atmos. Ocean. Sci.,
30, 6, https://doi.org/10.3319/TAO.2018.09.28.03, 2019.

Krause, L., Mal, S., Karki, R., and Schickhoff, U.: Recession of
Trakarding glacier and expansion of Tsho Rolpa lake in Nepal
Himalaya based on satellite data, Himal. Geol., 40, 103–114,
2019.

Lala, J. M., Rounce, D. R., and McKinney, D. C.: Modeling the
glacial lake outburst flood process chain in the Nepal Himalaya:
reassessing Imja Tsho’s hazard, Hydrol. Earth Syst. Sci., 22,
3721–3737, https://doi.org/10.5194/hess-22-3721-2018, 2018.

Lamsal, D., Sawagaki, T., Watanabe, T., and Byers, A.
C.: Assessment of glacial lake development and prospects
of outburst susceptibility: Chamlang South Glacier, east-

ern Nepal Himalaya, Geomat. Nat. Haz. Risk, 7, 403–423,
https://doi.org/10.1080/19475705.2014.931306, 2016.

Liang, Q., Chen, K. C., Hou, J., Xiong, Y., Wang, G., and Jing,
Q.: Hydrodynamic modelling of flow impact on structures un-
der extreme flow conditions, J. Hydrodyn. Ser. B, 28, 267–274,
https://doi.org/10.1016/S1001-6058(16)60628-5, 2016.

Lord, A.: Citizens of a hydropower nation: Territory and agency
at the frontiers of hydropower development in Nepal, Econ. An-
thropol., 3, 145–160, https://doi.org/10.1002/sea2.12051, 2016.

McFeeters, S. K.: The use of the Normalized Differ-
ence Water Index (NDWI) in the delineation of open
water features, Int. J. Remote Sens., 17, 1425–1432,
https://doi.org/10.1080/01431169608948714, 1996.

Mool, P. K., Maskey, P. R., Koirala, A., Joshi, S. P., Lizong, W.,
Shrestha, A. B., Eriksson, M., Gurung, B., Pokharel, B., Khanal,
N. R., and Panthi, S.: Glacial lakes and glacial lake outburst
floods in Nepal, International Centre for Integrated Mountain De-
velopment (ICIMOD), https://doi.org/10.53055/ICIMOD.543,
2011.

Morris, M. W., Hassan, M. A. A. M., and Vaskinn, K. A.: Breach
formation: Field test and laboratory experiments, J. Hydraul.
Res., 45, 9–17, https://doi.org/10.1080/00221686.2007.9521828,
2007.

Muñoz, R., Huggel, C., Frey, H., Cochachin, A., and Haeberli, W.:
Glacial lake depth and volume estimation based on a large bathy-
metric dataset from the Cordillera Blanca, Peru, Earth Surf. Proc.
Land., 45, 1510–1527, https://doi.org/10.1002/esp.4826, 2020.

Nepal Hydropower Portal: 572 Hydropower Projects, Nepal
Hydropower Portal [data set], https://hydro.naxa.com.np/core/
datasets/, last access: 22 August 2023.

Nie, Y., Sheng, Y., Liu, Q., Liu, L., Liu, S., Zhang, Y., and Song, C.:
A regional-scale assessment of Himalayan glacial lake changes
using satellite observations from 1990 to 2015, Remote Sens.
Environ., 189, 1–13, https://doi.org/10.1016/j.rse.2016.11.008,
2017.

Nie, Y., Liu, Q., Wang, J., Zhang, Y., Sheng, Y., and Liu,
S.: An inventory of historical glacial lake outburst floods
in the Himalayas based on remote sensing observations
and geomorphological analysis, Geomorphology, 308, 91–106,
https://doi.org/10.1016/j.geomorph.2018.02.002, 2018.

Nie, Y., Pritchard, H. D., Liu, Q., Hennig, T., Wang, W., Wang,
X., Liu, S., Nepal, S., Samyn, D., Hewitt, K., and Chen,
X.: Glacial change and hydrological implications in the Hi-
malaya and Karakoram, Nat. Rev. Earth Environ., 2, 91–106,
https://doi.org/10.1038/s43017-020-00124-w, 2021.

OpenStreetMap contributors: OpenStreetMap data for Nepal, Ge-
ofabrik [data set], http://download.geofabrik.de/asia/nepal.html,
last access: 26 April 2022.

Rana, B., Shrestha, A. B., Reynolds, J. M., Aryal, R., Pokhrel, A.
P., and Budhathoki, K. P.: Hazard assessment of the Tsho Rolpa
Glacier Lake and ongoing remediation measures, J. Nepal Geol.
Soc., 22, 563, https://doi.org/10.3126/jngs.v22i0.32432, 2000.

Richardson, S. D. and Reynolds, J. M.: An overview of
glacial hazards in the Himalayas, Quatern. Int., 65, 31–47,
https://doi.org/10.1016/S1040-6182(99)00035-X, 2000.

Rinzin, S., Zhang, G., Sattar, A., Wangchuk, S., Allen, S. K.,
Dunning, S., and Peng, M.: GLOF hazard, exposure, vulner-
ability, and risk assessment of potentially dangerous glacial

Hydrol. Earth Syst. Sci., 29, 733–752, 2025 https://doi.org/10.5194/hess-29-733-2025

https://doi.org/10.1029/2005RG000183
https://www.fema.gov/sites/default/files/2020-09/fema_hazus_flood-model_technical-manual_2.1.pdf
https://www.fema.gov/sites/default/files/2020-09/fema_hazus_flood-model_technical-manual_2.1.pdf
https://doi.org/10.5194/nhess-13-1827-2013
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.3189/172756506781828782
https://doi.org/10.3390/rs10050798
https://github.com/HEMLab/HiPIMS-CUDA
https://github.com/HEMLab/HiPIMS-CUDA
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.2760/16510
http://rds.icimod.org/Home/DataDetail?metadataId=9224
http://rds.icimod.org/Home/DataDetail?metadataId=9224
https://doi.org/10.3319/TAO.2018.09.28.03
https://doi.org/10.5194/hess-22-3721-2018
https://doi.org/10.1080/19475705.2014.931306
https://doi.org/10.1016/S1001-6058(16)60628-5
https://doi.org/10.1002/sea2.12051
https://doi.org/10.1080/01431169608948714
https://doi.org/10.53055/ICIMOD.543
https://doi.org/10.1080/00221686.2007.9521828
https://doi.org/10.1002/esp.4826
https://hydro.naxa.com.np/core/datasets/
https://hydro.naxa.com.np/core/datasets/
https://doi.org/10.1016/j.rse.2016.11.008
https://doi.org/10.1016/j.geomorph.2018.02.002
https://doi.org/10.1038/s43017-020-00124-w
http://download.geofabrik.de/asia/nepal.html
https://doi.org/10.3126/jngs.v22i0.32432
https://doi.org/10.1016/S1040-6182(99)00035-X


H. Chen et al.: Assessing national impact of GLOFs considering uncertainty under data sparsity 751

lakes in the Bhutan Himalaya, J. Hydrol., 619, 129311,
https://doi.org/10.1016/j.jhydrol.2023.129311, 2023.

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-
Olmo, M., and Rigol-Sanchez, J. P.: An assessment of
the effectiveness of a random forest classifier for land-
cover classification, ISPRS J. Photogramm., 67, 93–104,
https://doi.org/10.1016/j.isprsjprs.2011.11.002, 2012.

Rounce, D. R., McKinney, D. C., Lala, J. M., Byers, A. C., and
Watson, C. S.: A new remote hazard and risk assessment frame-
work for glacial lakes in the Nepal Himalaya, Hydrol. Earth Syst.
Sci., 20, 3455–3475, https://doi.org/10.5194/hess-20-3455-2016,
2016.

Rounce, D. R., Watson, C. S., and McKinney, D. C.: Identification
of hazard and risk for glacial lakes in the Nepal Himalaya using
satellite imagery from 2000–2015, Remote Sens.-Basel, 9, 654,
https://doi.org/10.3390/rs9070654, 2017.

Sattar, A., Goswami, A., and Kulkarni, A. V.: Hydro-
dynamic moraine-breach modeling and outburst flood
routing – A hazard assessment of the South Lhonak
lake, Sikkim, Sci. Total Environ., 668, 362–378,
https://doi.org/10.1016/j.scitotenv.2019.02.388, 2019.

Sattar, A., Haritashya, U. K., Kargel, J. S., Leonard, G. J.,
Shugar, D. H., and Chase, D. V.: Modeling lake outburst
and downstream hazard assessment of the Lower Barun
Glacial Lake, Nepal Himalaya, J. Hydrol., 598, 126208,
https://doi.org/10.1016/j.jhydrol.2021.126208, 2021.

Scawthorn, C., Flores, P., Blais, N., Seligson, H., Tate, E.,
Chang, S., Mifflin, E., Thomas, W., Murphy, J., Jones, C., and
Lawrence, M.: HAZUS-MH flood loss estimation methodology.
II. Damage and loss assessment, Nat. Hazards Rev., 7, 72–81,
https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(72), 2006.

Schaffer-Smith, D., Swenson, J. J., Barbaree, B., and Reiter, M.
E.: Three decades of Landsat-derived spring surface water dy-
namics in an agricultural wetland mosaic; Implications for
migratory shorebirds, Remote Sens. Environ., 193, 180–192,
https://doi.org/10.1016/j.rse.2017.02.016, 2017.

Schwanghart, W., Worni, R., Huggel, C., Stoffel, M., and Ko-
rup, O.: Uncertainty in the Himalayan energy–water nexus:
Estimating regional exposure to glacial lake outburst floods,
Environ. Res. Lett., 11, 074005, https://doi.org/10.1088/1748-
9326/11/7/074005, 2016.

Shakti, P. C., Pun, I., Talchabhadel, R., and Kshetri, D.: The role
of glaciers in hydropower production in Nepal, J. Asian Energy
Stud., 5, 1–13, https://doi.org/10.24112/jaes.050001, 2021.

Shrestha, B. B. and Nakagawa, H.: Assessment of potential outburst
floods from the Tsho Rolpa glacial lake in Nepal, Nat. Hazards,
71, 913–936, https://doi.org/10.1007/s11069-013-0940-3, 2014.

Shrestha, F., Steiner, J. F., Shrestha, R., Dhungel, Y., Joshi, S. P.,
Inglis, S., Ashraf, A., Wali, S., Walizada, K. M., and Zhang, T.:
A comprehensive and version-controlled database of glacial lake
outburst floods in High Mountain Asia, Earth Syst. Sci. Data, 15,
3941–3961, https://doi.org/10.5194/essd-15-3941-2023, 2023.

Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Wat-
son, C. S., Kennedy, M. C., Bevington, A. R., Betts, R. A.,
Harrison, S., and Strattman, K.: Rapid worldwide growth of
glacial lakes since 1990, Nat. Clim. Change, 10, 939–945,
https://doi.org/10.1038/s41558-020-0855-4, 2020.

Smith, L. S. and Liang, Q.: Towards a generalised GPU/CPU
shallow-flow modelling tool, Comput. Fluids, 88, 334–343,
https://doi.org/10.1016/j.compfluid.2013.09.018, 2013.

Somos-Valenzuela, M. A., McKinney, D. C., Byers, A. C., Rounce,
D. R., Portocarrero, C., and Lamsal, D.: Assessing down-
stream flood impacts due to a potential GLOF from Imja
Tsho in Nepal, Hydrol. Earth Syst. Sci., 19, 1401–1412,
https://doi.org/10.5194/hess-19-1401-2015, 2015.

Tucker, C. J.: Red and photographic infrared linear combinations
for monitoring vegetation, Remote Sens. Environ., 8, 127–150,
https://doi.org/10.1016/0034-4257(79)90013-0, 1979.

Tulbure, M. G., Broich, M., Stehman, S. V., and Kommareddy,
A.: Surface water extent dynamics from three decades of sea-
sonally continuous Landsat time series at subcontinental scale
in a semi-arid region, Remote Sens. Environ., 178, 142–157,
https://doi.org/10.1016/j.rse.2016.02.034, 2016.

Veh, G., Korup, O., von Specht, S., Roessner, S., and Walz, A.:
Unchanged frequency of moraine-dammed glacial lake out-
burst floods in the Himalaya, Nat. Clim. Change, 9, 379–383,
https://doi.org/10.1038/s41558-019-0437-5, 2019.

Veh, G., Korup, O., and Walz, A.: Hazard from Himalayan glacier
lake outburst floods, P. Natl. Acad. Sci. USA, 117, 907–912,
https://doi.org/10.1073/pnas.1914898117, 2020.

Vuichard, D. and Zimmermann, M.: The 1985 catastrophic
drainage of a moraine-dammed lake, Khumbu Himal,
Nepal: Cause and consequences, Mt. Res. Dev., 7, 91–110,
https://doi.org/10.2307/3673305, 1987.

Walder, J. S. and O’Connor, J. E.: Methods for predicting peak
discharge of floods caused by failure of natural and con-
structed earthen dams, Water Resour. Res., 33, 2337–2348,
https://doi.org/10.1029/97WR01616, 1997.

Walder, J. S., Iverson, R. M., Godt, J. W., Logan, M., and Solovitz,
S. A.: Controls on the breach geometry and flood hydrograph
during overtopping of noncohesive earthen dams, Water Resour.
Res., 51, 6701–6724, https://doi.org/10.1002/2014WR016620,
2015.

Watson, C. S., Carrivick, J., and Quincey, D.: An improved method
to represent DEM uncertainty in glacial lake outburst flood prop-
agation using stochastic simulations, J. Hydrol., 529, 1373–1389,
https://doi.org/10.1016/j.jhydrol.2015.08.046, 2015.

Worni, R., Stoffel, M., Huggel, C., Volz, C., Casteller, A., and
Luckman, B.: Analysis and dynamic modeling of a moraine
failure and glacier lake outburst flood at Ventisquero Ne-
gro, Patagonian Andes (Argentina), J. Hydrol., 444, 134–145,
https://doi.org/10.1016/j.jhydrol.2012.04.013, 2012.

Xu, H.: Modification of normalised difference water in-
dex (NDWI) to enhance open water features in remotely
sensed imagery, Int. J. Remote Sens., 27, 3025–3033,
https://doi.org/10.1080/01431160600589179, 2006.

Yang, M., Cai, Q., Li, Z., and Yang, J.: Uncertainty analysis on
flood routing of embankment dam breach due to overtopping fail-
ure, Sci. Rep.-UK, 13, 20151, https://doi.org/10.1038/s41598-
023-47542-6, 2023.

Yang, Y., Cao, S. Y., Yang, K. J., and Li, W. P.: Experimen-
tal study of breach process of landslide dams by overtop-
ping and its initiation mechanisms, J. Hydrodyn., 27, 872–883,
https://doi.org/10.1038/s41598-023-47542-6, 2015.

Yu, X., Hyyppä, J., Vastaranta, M., Holopainen, M.,
and Viitala, R.: Predicting individual tree attributes

https://doi.org/10.5194/hess-29-733-2025 Hydrol. Earth Syst. Sci., 29, 733–752, 2025

https://doi.org/10.1016/j.jhydrol.2023.129311
https://doi.org/10.1016/j.isprsjprs.2011.11.002
https://doi.org/10.5194/hess-20-3455-2016
https://doi.org/10.3390/rs9070654
https://doi.org/10.1016/j.scitotenv.2019.02.388
https://doi.org/10.1016/j.jhydrol.2021.126208
https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(72)
https://doi.org/10.1016/j.rse.2017.02.016
https://doi.org/10.1088/1748-9326/11/7/074005
https://doi.org/10.1088/1748-9326/11/7/074005
https://doi.org/10.24112/jaes.050001
https://doi.org/10.1007/s11069-013-0940-3
https://doi.org/10.5194/essd-15-3941-2023
https://doi.org/10.1038/s41558-020-0855-4
https://doi.org/10.1016/j.compfluid.2013.09.018
https://doi.org/10.5194/hess-19-1401-2015
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1016/j.rse.2016.02.034
https://doi.org/10.1038/s41558-019-0437-5
https://doi.org/10.1073/pnas.1914898117
https://doi.org/10.2307/3673305
https://doi.org/10.1029/97WR01616
https://doi.org/10.1002/2014WR016620
https://doi.org/10.1016/j.jhydrol.2015.08.046
https://doi.org/10.1016/j.jhydrol.2012.04.013
https://doi.org/10.1080/01431160600589179
https://doi.org/10.1038/s41598-023-47542-6
https://doi.org/10.1038/s41598-023-47542-6
https://doi.org/10.1038/s41598-023-47542-6


752 H. Chen et al.: Assessing national impact of GLOFs considering uncertainty under data sparsity

from airborne laser point clouds based on the random
forests technique, ISPRS J. Photogramm., 66, 28–37,
https://doi.org/10.1016/j.isprsjprs.2010.08.003, 2011.

Zhang, G., Yao, T., Xie, H., Wang, W., and Yang, W.: An inventory
of glacial lakes in the Third Pole region and their changes in
response to global warming, Global Planet. Change, 131, 148–
157, https://doi.org/10.1016/j.gloplacha.2015.05.013, 2015.

Zhang, T., Wang, W., and An, B.: A conceptual model for glacial
lake bathymetric distribution, The Cryosphere, 17, 5137–5154,
https://doi.org/10.5194/tc-17-5137-2023, 2023a.

Zhang, T., Wang, W., An, B., and Wei, L.: Enhanced glacial
lake activity threatens numerous communities and infras-
tructure in the Third Pole, Nat. Commun., 14, 8250,
https://doi.org/10.1038/s41467-023-44123-z, 2023b.

Zhao, J. and Liang, Q.: Novel variable reconstruction and fric-
tion term discretisation schemes for hydrodynamic modelling of
overland flow and surface water flooding, Adv. Water Resour.,
163, 104187, https://doi.org/10.1016/j.advwatres.2022.104187,
2022.

Zheng, G., Allen, S. K., Bao, A., Ballesteros-Cánovas, J. A., Huss,
M., Zhang, G., Li, J., Yuan, Y., Jiang, L., Yu, T., and Chen,
W.: Increasing risk of glacial lake outburst floods from fu-
ture Third Pole deglaciation, Nat. Clim. Change, 11, 411–417,
https://doi.org/10.1038/s41558-021-01028-3, 2021.

Hydrol. Earth Syst. Sci., 29, 733–752, 2025 https://doi.org/10.5194/hess-29-733-2025

https://doi.org/10.1016/j.isprsjprs.2010.08.003
https://doi.org/10.1016/j.gloplacha.2015.05.013
https://doi.org/10.5194/tc-17-5137-2023
https://doi.org/10.1038/s41467-023-44123-z
https://doi.org/10.1016/j.advwatres.2022.104187
https://doi.org/10.1038/s41558-021-01028-3

	Abstract
	Introduction
	Methodology and data
	Glacial lake water surface extraction
	Acquisition of satellite imagery
	Random forest model

	GLOF dynamic inundation process simulation
	Estimating volumes and peak discharges of glacial lakes
	Two-dimensional hydrodynamic modelling

	GLOF exposure and impact assessment
	Data

	Study area and glacial lakes
	Results
	Glacial lake water surface extraction
	Lake volumes and peak discharge prediction
	Flood inundation simulation
	Inundation areas
	Exposure assessment
	Damage assessment


	Discussion
	Conclusion
	Appendix A: List of abbreviations used in this study
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Financial support
	Review statement
	References

