Articles | Volume 29, issue 22
https://doi.org/10.5194/hess-29-6333-2025
https://doi.org/10.5194/hess-29-6333-2025
Research article
 | 
17 Nov 2025
Research article |  | 17 Nov 2025

Improving model calibrations in a changing world: controlling for nonstationarity after mega disturbance reduces hydrological uncertainty

Elijah N. Boardman, Gabrielle F. S. Boisramé, Mark S. Wigmosta, Robert K. Shriver, and Adrian A. Harpold

Related authors

Wind and topography underlie correlation between seasonal snowpack, mountain glaciers, and late-summer streamflow
Elijah N. Boardman, Andrew G. Fountain, Joseph W. Boardman, Thomas H. Painter, Evan W. Burgess, Laura Wilson, and Adrian A. Harpold
The Cryosphere, 19, 3193–3225, https://doi.org/10.5194/tc-19-3193-2025,https://doi.org/10.5194/tc-19-3193-2025, 2025
Short summary

Cited articles

Abatzoglou, J. T.: Development of gridded surface meteorological data for ecological applications and modelling, International Journal of Climatology, 33, 121–131, https://doi.org/10.1002/joc.3413, 2013. 
Abolafia-Rosenzweig, R., Gochis, D., Schwarz, A., Painter, T. H., Deems, J., Dugger, A., Casali, M., and He, C.: Quantifying the Impacts of Fire-Related Perturbations in WRF-Hydro Terrestrial Water Budget Simulations in California's Feather River Basin, Hydrological Processes, 38, e15314, https://doi.org/10.1002/hyp.15314, 2024. 
Airborne Snow Observatories, Inc.: Data Portal [data set], https://data.airbornesnowobservatories.com/ (last access: 27 August 2025), 2025. 
Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., and Mané, D.: Concrete Problems in AI Safety [preprint], https://doi.org/10.48550/arXiv.1606.06565, 25 July 2016. 
Ardabili, S., Mosavi, A., Dehghani, M., and Várkonyi-Kóczy, A. R.: Deep Learning and Machine Learning in Hydrological Processes Climate Change and Earth Systems a Systematic Review, in: Engineering for Sustainable Future, Springer, Cham, 52–62, https://doi.org/10.1007/978-3-030-36841-8_5, 2020. 
Download
Short summary
Environmental changes can cause hydrological model biases that vary over time (nonstationarity). We demonstrate a new calibration framework to detect and correct nonstationary streamflow biases after a large wildfire, which reduces predictive uncertainty and constrains parameter equifinality.
Share