Articles | Volume 29, issue 22
https://doi.org/10.5194/hess-29-6333-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-6333-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improving model calibrations in a changing world: controlling for nonstationarity after mega disturbance reduces hydrological uncertainty
Elijah N. Boardman
CORRESPONDING AUTHOR
Graduate Program of Hydrologic Sciences, University of Nevada, Reno, Reno, Nevada, 89557, USA
Mountain Hydrology LLC, Reno, Nevada, 89503, USA
Gabrielle F. S. Boisramé
Hydrologic Sciences Division, Desert Research Institute, Reno, Nevada, 89512, USA
Mark S. Wigmosta
Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99354, USA
Robert K. Shriver
Department of Natural Resources and Environmental Science, University of Nevada, Reno, Reno, Nevada, 89557, USA
Adrian A. Harpold
Graduate Program of Hydrologic Sciences, University of Nevada, Reno, Reno, Nevada, 89557, USA
Department of Natural Resources and Environmental Science, University of Nevada, Reno, Reno, Nevada, 89557, USA
Related authors
Elijah N. Boardman, Andrew G. Fountain, Joseph W. Boardman, Thomas H. Painter, Evan W. Burgess, Laura Wilson, and Adrian A. Harpold
The Cryosphere, 19, 3193–3225, https://doi.org/10.5194/tc-19-3193-2025, https://doi.org/10.5194/tc-19-3193-2025, 2025
Short summary
Short summary
Watersheds on the downwind side of a mountain range have deeper seasonal snow and more abundant glaciers due to topographic controls that favor wind drifting. Despite receiving less total snow, these drift-prone watersheds produce relatively more late-summer streamflow due to a combination of slow-melting snow drifts and mass loss from glaciers (and other perennial snow/ice features).
Elias C. Massoud, Nathan Collier, Yaoping Wang, Jiafu Mao, Adrian Harpold, Steven A. Kannenberg, Gerbrand Koren, Mukesh Kumar, Pushpendra Raghav, Pallav Ray, Mingjie Shi, Jing Tao, Sreedevi P. Vasu, Huiqi Wang, Qing Zhu, and Forrest M. Hoffman
EGUsphere, https://doi.org/10.5194/egusphere-2025-3517, https://doi.org/10.5194/egusphere-2025-3517, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We studied how well Earth System Models simulate soil moisture and its connection to plant growth and water use. Using a model evaluation tool and real-world data, we found that models generally perform well at the surface but struggle deeper in the soil. These issues vary by region, especially in colder regions. Our results can help improve future model development and support better predictions of how ecosystems respond to a changing environment.
Elijah N. Boardman, Andrew G. Fountain, Joseph W. Boardman, Thomas H. Painter, Evan W. Burgess, Laura Wilson, and Adrian A. Harpold
The Cryosphere, 19, 3193–3225, https://doi.org/10.5194/tc-19-3193-2025, https://doi.org/10.5194/tc-19-3193-2025, 2025
Short summary
Short summary
Watersheds on the downwind side of a mountain range have deeper seasonal snow and more abundant glaciers due to topographic controls that favor wind drifting. Despite receiving less total snow, these drift-prone watersheds produce relatively more late-summer streamflow due to a combination of slow-melting snow drifts and mass loss from glaciers (and other perennial snow/ice features).
Esteban Alonso-González, Adrian Harpold, Jessica D. Lundquist, Cara Piske, Laura Sourp, Kristoffer Aalstad, and Simon Gascoin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2347, https://doi.org/10.5194/egusphere-2025-2347, 2025
Short summary
Short summary
Simulating the snowpack is challenging, as there are several sources of uncertainty due to e.g. the meteorological forcing. Using data assimilation techniques, it is possible to improve the simulations by fusing models and snow observations. However in forests, observations are difficult to obtain, because they cannot be retrieved through the canopy. Here, we explore the possibility of propagating the information obtained in forest clearings to areas covered by the canopy.
Gary Sterle, Julia Perdrial, Dustin W. Kincaid, Kristen L. Underwood, Donna M. Rizzo, Ijaz Ul Haq, Li Li, Byung Suk Lee, Thomas Adler, Hang Wen, Helena Middleton, and Adrian A. Harpold
Hydrol. Earth Syst. Sci., 28, 611–630, https://doi.org/10.5194/hess-28-611-2024, https://doi.org/10.5194/hess-28-611-2024, 2024
Short summary
Short summary
We develop stream water chemistry to pair with the existing CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) dataset. The newly developed dataset, termed CAMELS-Chem, includes common stream water chemistry constituents and wet deposition chemistry in 516 catchments. Examples show the value of CAMELS-Chem to trend and spatial analyses, as well as its limitations in sampling length and consistency.
Sebastian A. Krogh, Lucia Scaff, James W. Kirchner, Beatrice Gordon, Gary Sterle, and Adrian Harpold
Hydrol. Earth Syst. Sci., 26, 3393–3417, https://doi.org/10.5194/hess-26-3393-2022, https://doi.org/10.5194/hess-26-3393-2022, 2022
Short summary
Short summary
We present a new way to detect snowmelt using daily cycles in streamflow driven by solar radiation. Results show that warmer sites have earlier and more intermittent snowmelt than colder sites, and the timing of early snowmelt events is strongly correlated with the timing of streamflow volume. A space-for-time substitution shows greater sensitivity of streamflow timing to climate change in colder rather than in warmer places, which is then contrasted with land surface simulations.
Cited articles
Abatzoglou, J. T.: Development of gridded surface meteorological data for ecological applications and modelling, International Journal of Climatology, 33, 121–131, https://doi.org/10.1002/joc.3413, 2013.
Abolafia-Rosenzweig, R., Gochis, D., Schwarz, A., Painter, T. H., Deems, J., Dugger, A., Casali, M., and He, C.: Quantifying the Impacts of Fire-Related Perturbations in WRF-Hydro Terrestrial Water Budget Simulations in California's Feather River Basin, Hydrological Processes, 38, e15314, https://doi.org/10.1002/hyp.15314, 2024.
Airborne Snow Observatories, Inc.: Data Portal [data set], https://data.airbornesnowobservatories.com/ (last access: 27 August 2025), 2025.
Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., and Mané, D.: Concrete Problems in AI Safety [preprint], https://doi.org/10.48550/arXiv.1606.06565, 25 July 2016.
Ardabili, S., Mosavi, A., Dehghani, M., and Várkonyi-Kóczy, A. R.: Deep Learning and Machine Learning in Hydrological Processes Climate Change and Earth Systems a Systematic Review, in: Engineering for Sustainable Future, Springer, Cham, 52–62, https://doi.org/10.1007/978-3-030-36841-8_5, 2020.
Ayars, J., Kramer, H. A., and Jones, G. M.: The 2020 to 2021 California megafires and their impacts on wildlife habitat, Proc. Natl. Acad. Sci. USA, 120, e2312909120, https://doi.org/10.1073/pnas.2312909120, 2023.
Bart, R. R.: A regional estimate of postfire streamflow change in California, Water Resources Research, 52, 1465–1478, https://doi.org/10.1002/2014WR016553, 2016.
Bart, R. R., Tague, C. L., and Moritz, M. A.: Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow, PLOS ONE, 11, e0161805, https://doi.org/10.1371/journal.pone.0161805, 2016.
Bennett, A., Hamman, J., and Nijssen, B.: MetSim: A Python package for estimation and disaggregation of meteorological data, JOSS, 5, 2042, https://doi.org/10.21105/joss.02042, 2020.
Beven, K.: Prophecy, reality and uncertainty in distributed hydrological modelling, Advances in Water Resources, 16, 41–51, https://doi.org/10.1016/0309-1708(93)90028-E, 1993.
Beven, K.: A manifesto for the equifinality thesis, Journal of Hydrology, 320, 18–36, https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006.
Beven, K. and Binley, A.: The future of distributed models: Model calibration and uncertainty prediction, Hydrological Processes, 6, 279–298, https://doi.org/10.1002/hyp.3360060305, 1992.
Bieger, K., Rathjens, H., Allen, P. M., and Arnold, J. G.: Development and Evaluation of Bankfull Hydraulic Geometry Relationships for the Physiographic Regions of the United States, JAWRA Journal of the American Water Resources Association, 51, 842–858, https://doi.org/10.1111/jawr.12282, 2015.
Binois, M. and Picheny, V.: GPareto: An R Package for Gaussian-Process-Based Multi-Objective Optimization and Analysis, Journal of Statistical Software, 89, https://doi.org/10.18637/jss.v089.i08, 2019.
Birkel, C., Arciniega-Esparza, S., Maneta, M. P., Boll, J., Stevenson, J. L., Benegas-Negri, L., Tetzlaff, D., and Soulsby, C.: Importance of measured transpiration fluxes for modelled ecohydrological partitioning in a tropical agroforestry system, Agricultural and Forest Meteorology, 346, 109870, https://doi.org/10.1016/j.agrformet.2023.109870, 2024.
Boardman, E.: Data and Code for Megafire Disturbance Hydrological Model Calibration Study, Zenodo [data set], https://doi.org/10.5281/zenodo.16972670, 2025.
Boardman, E. N., Renshaw, C. E., Shriver, R. K., Walters, R., McGurk, B., Painter, T. H., Deems, J. S., Bormann, K. J., Lewis, G. M., Dethier, E. N., and Harpold, A. A.: Sources of seasonal water supply forecast uncertainty during snow drought in the Sierra Nevada, JAWRA Journal of the American Water Resources Association, 60, 972–990, https://doi.org/10.1111/1752-1688.13221, 2024.
Boardman, E. N., Duan, Z., Wigmosta, M. S., Flake, S. W., Sloggy, M. R., Tarricone, J., and Harpold, A. A.: Restoring Historic Forest Disturbance Frequency Would Partially Mitigate Droughts in the Central Sierra Nevada Mountains, Water Resources Research, 61, e2024WR039227, https://doi.org/10.1029/2024WR039227, 2025.
Boisramé, G. F. S., Thompson, S. E., Tague, C. (Naomi), and Stephens, S. L.: Restoring a Natural Fire Regime Alters the Water Balance of a Sierra Nevada Catchment, Water Resources Research, 55, 5751–5769, https://doi.org/10.1029/2018WR024098, 2019.
Breiman, L., Cutler, A., Liaw, A., and Wiener, M.: randomForest: Breiman and Cutlers Random Forests for Classification and Regression [code], https://doi.org/10.32614/CRAN.package.randomForest, 2002.
Buma, B.: Disturbance interactions: characterization, prediction, and the potential for cascading effects, Ecosphere, 6, art70, https://doi.org/10.1890/ES15-00058.1, 2015.
California DWR: Water Year 2021: An Extreme Year, https://water.ca.gov/-/media/DWR-Website/Web-Pages/Water-Basics/Drought/Files/Publications-And-Reports/091521-Water-Year-2021-broch_v2.pdf (last access: 4 February 2025), 2021.
California DWR: Water Year 2023: Weather Whiplash, From Drought To Deluge, https://water.ca.gov/-/media/DWR-Website/Web-Pages/Water-Basics/Drought/Files/Publications-And-Reports/Water-Year-2023-wrap-up-brochure_01.pdf (last access: 4 February 2025), 2023.
California DWR: Database of full natural flow records for the SBF station [data set], https://cdec.water.ca.gov/dynamicapp/staMeta?station_id=SBF (last access: 27 August 2025), 2024.
Clark, M. P., Vogel, R. M., Lamontagne, J. R., Mizukami, N., Knoben, W. J. M., Tang, G., Gharari, S., Freer, J. E., Whitfield, P. H., Shook, K. R., and Papalexiou, S. M.: The Abuse of Popular Performance Metrics in Hydrologic Modeling, Water Resources Research, 57, e2020WR029001, https://doi.org/10.1029/2020WR029001, 2021.
Cuo, L., Giambelluca, T. W., and Ziegler, A. D.: Lumped parameter sensitivity analysis of a distributed hydrological model within tropical and temperate catchments, Hydrological Processes, 25, 2405–2421, https://doi.org/10.1002/hyp.8017, 2011.
Dewitz, J. and U.S. Geological Survey: National Land Cover Database (NLCD) 2019 Products [data set], https://doi.org/10.5066/P9JZ7AO3, 2019.
Dolman, A. J. and Blyth, E. M.: Patch scale aggregation of heterogeneous land surface cover for mesoscale meteorological models, Journal of Hydrology, 190, 252–268, https://doi.org/10.1016/S0022-1694(96)03129-0, 1997.
Du, E., Link, T. E., Gravelle, J. A., and Hubbart, J. A.: Validation and sensitivity test of the distributed hydrology soil-vegetation model (DHSVM) in a forested mountain watershed, Hydrol. Process., 28, 6196–6210, https://doi.org/10.1002/hyp.10110, 2014.
Dupuy, D., Helbert, C., and Franco, J.: DiceDesign and DiceEval: Two R Packages for Design and Analysis of Computer Experiments, Journal of Statistical Software, 65, 1–38, https://doi.org/10.18637/jss.v065.i11, 2015.
Ebel, B. A. and Loague, K.: Physics-based hydrologic-response simulation: Seeing through the fog of equifinality, Hydrological Processes, 20, 2887–2900, https://doi.org/10.1002/hyp.6388, 2006.
Ebel, B. A. and Mirus, B. B.: Disturbance hydrology: challenges and opportunities, Hydrological Processes, 28, 5140–5148, https://doi.org/10.1002/hyp.10256, 2014.
Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z.-L., Quayle, B., and Howard, S.: A Project for Monitoring Trends in Burn Severity, Fire Ecol., 3, 3–21, https://doi.org/10.4996/fireecology.0301003, 2007.
Elsner, M. M., Gangopadhyay, S., Pruitt, T., Brekke, L. D., Mizukami, N., and Clark, M. P.: How Does the Choice of Distributed Meteorological Data Affect Hydrologic Model Calibration and Streamflow Simulations?, Journal of Hydrometeorology, 15, 1384–1403, https://doi.org/10.1175/JHM-D-13-083.1, 2014.
Emmerich, M. T. M., Deutz, A. H., and Klinkenberg, J. W.: Hypervolume-based expected improvement: Monotonicity properties and exact computation, in: 2011 IEEE Congress of Evolutionary Computation (CEC), https://doi.org/10.1109/CEC.2011.5949880, 2147–2154, 2011.
Fan, Y. and Miguez-Macho, G.: A simple hydrologic framework for simulating wetlands in climate and earth system models, Clim. Dynam., 37, 253–278, https://doi.org/10.1007/s00382-010-0829-8, 2011.
Fatichi, S., Vivoni, E. R., Ogden, F. L., Ivanov, V. Y., Mirus, B., Gochis, D., Downer, C. W., Camporese, M., Davison, J. H., Ebel, B., Jones, N., Kim, J., Mascaro, G., Niswonger, R., Restrepo, P., Rigon, R., Shen, C., Sulis, M., and Tarboton, D.: An overview of current applications, challenges, and future trends in distributed process-based models in hydrology, Journal of Hydrology, 537, 45–60, https://doi.org/10.1016/j.jhydrol.2016.03.026, 2016.
Fisher, R. A. and Koven, C. D.: Perspectives on the Future of Land Surface Models and the Challenges of Representing Complex Terrestrial Systems, Journal of Advances in Modeling Earth Systems, 12, e2018MS001453, https://doi.org/10.1029/2018MS001453, 2020.
Franks, S. W., Beven, K. J., Quinn, P. F., and Wright, I. R.: On the sensitivity of soil-vegetation-atmosphere transfer (SVAT) schemes: equifinality and the problem of robust calibration, Agricultural and Forest Meteorology, 86, 63–75, https://doi.org/10.1016/S0168-1923(96)02421-5, 1997.
Furniss, T. J., Povak, N. A., Hessburg, P. F., Salter, R. B., Duan, Z., and Wigmosta, M.: Informing climate adaptation strategies using ecological simulation models and spatial decision support tools, Front. For. Glob. Change, 6, https://doi.org/10.3389/ffgc.2023.1269081, 2023.
Garrigues, S., Lacaze, R., Baret, F., Morisette, J. T., Weiss, M., Nickeson, J. E., Fernandes, R., Plummer, S., Shabanov, N. V., Myneni, R. B., Knyazikhin, Y., and Yang, W.: Validation and intercomparison of global Leaf Area Index products derived from remote sensing data, Journal of Geophysical Research-Biogeosciences, 113, https://doi.org/10.1029/2007JG000635, 2008.
Goeking, S. A. and Tarboton, D. G.: Forests and Water Yield: A Synthesis of Disturbance Effects on Streamflow and Snowpack in Western Coniferous Forests, Journal of Forestry, 118, 172–192, https://doi.org/10.1093/jofore/fvz069, 2020.
Goeking, S. A. and Tarboton, D. G.: Spatially Distributed Overstory and Understory Leaf Area Index Estimated from Forest Inventory Data, Water, 14, 2414, https://doi.org/10.3390/w14152414, 2022a.
Goeking, S. A. and Tarboton, D. G.: Variable Streamflow Response to Forest Disturbance in the Western US: A Large-Sample Hydrology Approach, Water Resources Research, 58, e2021WR031575, https://doi.org/10.1029/2021WR031575, 2022b.
Grayson, R. B., Moore, I. D., and McMahon, T. A.: Physically based hydrologic modeling: 1. A terrain-based model for investigative purposes, Water Resources Research, 28, 2639–2658, https://doi.org/10.1029/92WR01258, 1992.
Gupta, S., Papritz, A., Lehmann, P., Hengl, T., Bonetti, S., and Or, D.: Global Mapping of Soil Water Characteristics Parameters — Fusing Curated Data with Machine Learning and Environmental Covariates, Remote Sensing, 14, 1947, https://doi.org/10.3390/rs14081947, 2022.
Hampton, T. B. and Basu, N. B.: A novel Budyko-based approach to quantify post-forest-fire streamflow response and recovery timescales, Journal of Hydrology, 608, 127685, https://doi.org/10.1016/j.jhydrol.2022.127685, 2022.
Henn, B., Newman, A. J., Livneh, B., Daly, C., and Lundquist, J. D.: An assessment of differences in gridded precipitation datasets in complex terrain, Journal of Hydrology, 556, 1205–1219, https://doi.org/10.1016/j.jhydrol.2017.03.008, 2018.
Her, Y. and Chaubey, I.: Impact of the numbers of observations and calibration parameters on equifinality, model performance, and output and parameter uncertainty: Parameters, Observations, and Uncertainty, Hydrol. Process., 29, 4220–4237, https://doi.org/10.1002/hyp.10487, 2015.
Hirsch, R. M.: A Perspective on Nonstationarity and Water Management, JAWRA Journal of the American Water Resources Association, 47, 436–446, https://doi.org/10.1111/j.1752-1688.2011.00539.x, 2011.
Huang, G. and Kadir, T.: Estimates of Natural and Unimpaired Flows for the Central Valley of California: Water Years 1922–2014, Department of Water Resources, Bay-Delta Office, 2016.
Huang, X. and Swain, D. L.: Climate change is increasing the risk of a California megaflood, Science Advances, 8, eabq0995, https://doi.org/10.1126/sciadv.abq0995, 2022.
Johnson, R. S. H. and Alila, Y.: Nonstationary stochastic paired watershed approach: Investigating forest harvesting effects on floods in two large, nested, and snow-dominated watersheds in British Columbia, Canada, Journal of Hydrology, 625, 129970, https://doi.org/10.1016/j.jhydrol.2023.129970, 2023.
Johnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B. J., Higuera, P. E., Mack, M. C., Meentemeyer, R. K., Metz, M. R., Perry, G. L., Schoennagel, T., and Turner, M. G.: Changing disturbance regimes, ecological memory, and forest resilience, Frontiers in Ecology and the Environment, 14, 369–378, https://doi.org/10.1002/fee.1311, 2016.
Jones, D. R., Schonlau, M., and Welch, W. J.: Efficient Global Optimization of Expensive Black-Box Functions, Journal of Global Optimization, 13, 455–492, https://doi.org/10.1023/A:1008306431147, 1998.
Kang, T.-H. and Sharma, A.: A state-controlled hypothesis test for paired-watershed experiments, Journal of Hydrology, 640, 131664, https://doi.org/10.1016/j.jhydrol.2024.131664, 2024.
Kavetski, D., Franks, S. W., and Kuczera, G.: Confronting input uncertainty in environmental modelling, in: Water Science and Application, vol. 6, edited by: Duan, Q., Gupta, H. V., Sorooshian, S., Rousseau, A. N., and Turcotte, R., American Geophysical Union, Washington, DC, https://doi.org/10.1029/WS006p0049, 49–68, 2003.
Kelleher, C., McGlynn, B., and Wagener, T.: Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding, Hydrol. Earth Syst. Sci., 21, 3325–3352, https://doi.org/10.5194/hess-21-3325-2017, 2017.
Kennedy, J. and Eberhart, R.: Particle swarm optimization, in: Proceedings of ICNN'95 – International Conference on Neural Networks, vol. 4, https://doi.org/10.1109/ICNN.1995.488968, 1942–1948, 1995.
Khatami, S., Peel, M. C., Peterson, T. J., and Western, A. W.: Equifinality and Flux Mapping: A New Approach to Model Evaluation and Process Representation Under Uncertainty, Water Resources Research, 55, 8922–8941, https://doi.org/10.1029/2018WR023750, 2019.
LANDFIRE: LANDFIRE 2022 Existing Vegetation Type (EVT) [data set], 2022.
Lundquist, J. D., Abel, M. R., Henn, B., Gutmann, E. D., Livneh, B., Dozier, J., and Neiman, P.: High-Elevation Precipitation Patterns: Using Snow Measurements to Assess Daily Gridded Datasets across the Sierra Nevada, California, Journal of Hydrometeorology, 16, 1773–1792, https://doi.org/10.1175/JHM-D-15-0019.1, 2015.
Manning, A. L., Harpold, A., and Csank, A.: Spruce Beetle Outbreak Increases Streamflow From Snow-Dominated Basins in Southwest Colorado, USA, Water Resources Research, 58, e2021WR029964, https://doi.org/10.1029/2021WR029964, 2022.
Mantovan, P. and Todini, E.: Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology, Journal of Hydrology, 330, 368–381, https://doi.org/10.1016/j.jhydrol.2006.04.046, 2006.
Marshall, A. M., Abatzoglou, J. T., Rahimi, S., Lettenmaier, D. P., and Hall, A.: California's 2023 snow deluge: Contextualizing an extreme snow year against future climate change, Proc. Natl. Acad. Sci. USA, 121, e2320600121, https://doi.org/10.1073/pnas.2320600121, 2024.
Meili, N., Beringer, J., Zhao, J., and Fatichi, S.: Aerodynamic effects cause higher forest evapotranspiration and water yield reductions after wildfires in tall forests, Global Change Biology, 30, e16995, https://doi.org/10.1111/gcb.16995, 2024.
Melsen, L. A., Addor, N., Mizukami, N., Newman, A. J., Torfs, P. J. J. F., Clark, M. P., Uijlenhoet, R., and Teuling, A. J.: Mapping (dis)agreement in hydrologic projections, Hydrol. Earth Syst. Sci., 22, 1775–1791, https://doi.org/10.5194/hess-22-1775-2018, 2018.
Meyer, C., Weigelt, P., and Kreft, H.: Multidimensional biases, gaps and uncertainties in global plant occurrence information, Ecology Letters, 19, 992–1006, https://doi.org/10.1111/ele.12624, 2016.
Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Stationarity Is Dead: Whither Water Management?, Science, 319, 573–574, https://doi.org/10.1126/science.1151915, 2008.
Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., Stouffer, R. J., Dettinger, M. D., and Krysanova, V.: On Critiques of “Stationarity is Dead: Whither Water Management?”, Water Resources Research, 51, 7785–7789, https://doi.org/10.1002/2015WR017408, 2015.
Moreno, H. A., Gupta, H. V., White, D. D., and Sampson, D. A.: Modeling the distributed effects of forest thinning on the long-term water balance and streamflow extremes for a semi-arid basin in the southwestern US, Hydrol. Earth Syst. Sci., 20, 1241–1267, https://doi.org/10.5194/hess-20-1241-2016, 2016.
MTBS Project (USDA Forest Service/U.S. Geological Survey): MTBS Data Access: Fire Level Geospatial Data [data set], 2022.
Pagano, T., Garen, D., and Sorooshian, S.: Evaluation of Official Western U. S. Seasonal Water Supply Outlooks, 1922–2002, Journal of Hydrometeorology, 5, 896–909, https://doi.org/10.1175/1525-7541(2004)005<0896:EOOWUS>2.0.CO;2, 2004.
Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, R., Marks, D., Mattmann, C., McGurk, B., Ramirez, P., Richardson, M., Skiles, S. M., Seidel, F. C., and Winstral, A.: The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo, Remote Sensing of Environment, 184, 139–152, https://doi.org/10.1016/j.rse.2016.06.018, 2016.
Pomeroy, J. W., Gray, D. M., Hedstrom, N. R., and Janowicz, J. R.: Physically Based Estimation of Seasonal Snow Accumulation in the Boreal Forest, in: Proceedings of the 59th Eastern Snow Conference, https://www.researchgate.net/publication/242188889_Physically_Based_Estimation_of_Seasonal_Snow_Accumulation_in_the_Boreal_Forest (last access: 12 November 2025), 93–108, 2002.
Pongratz, J., Dolman, H., Don, A., Erb, K.-H., Fuchs, R., Herold, M., Jones, C., Kuemmerle, T., Luyssaert, S., Meyfroidt, P., and Naudts, K.: Models meet data: Challenges and opportunities in implementing land management in Earth system models, Global Change Biology, 24, 1470–1487, https://doi.org/10.1111/gcb.13988, 2018.
Rigge, M., Homer, C., Shi, H., Meyer, D., Bunde, B., Granneman, B., Postma, K., Danielson, P., Case, A., and Xian, G.: Rangeland Fractional Components Across the Western United States from 1985 to 2018, Remote Sensing, 13, 813, https://doi.org/10.3390/rs13040813, 2021a.
Rigge, M. B., Bunde, B., Shi, H., and Postma, K.: Rangeland Condition Monitoring Assessment and Projection (RCMAP) Fractional Component Time-Series Across the Western U. S. 1985–2020 (2.0, October 2021) [data set], https://doi.org/10.5066/P95IQ4BT, 2021b.
Roustant, O., Ginsbourger, D., and Deville, Y.: DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization, Journal of Statistical Software, 51, 1–55, https://doi.org/10.18637/jss.v051.i01, 2012.
Saksa, P. C., Conklin, M. H., Battles, J. J., Tague, C. L., and Bales, R. C.: Forest thinning impacts on the water balance of Sierra Nevada mixed-conifer headwater basins, Water Resources Research, 53, 5364–5381, https://doi.org/10.1002/2016WR019240, 2017.
Salas, J. D., Rajagopalan, B., Saito, L., and Brown, C.: Special Section on Climate Change and Water Resources: Climate Nonstationarity and Water Resources Management, Journal of Water Resources Planning and Management, 138, 385–388, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000279, 2012.
Schreiner-McGraw, A. P. and Ajami, H.: Combined impacts of uncertainty in precipitation and air temperature on simulated mountain system recharge from an integrated hydrologic model, Hydrol. Earth Syst. Sci., 26, 1145–1164, https://doi.org/10.5194/hess-26-1145-2022, 2022.
Seibert, J. and McDonnell, J. J.: Land-cover impacts on streamflow: a change-detection modelling approach that incorporates parameter uncertainty, Hydrological Sciences Journal, 55, 316–332. https://doi.org/10.1080/02626661003683264, 2010.
Shields, C. A. and Tague, C. L.: Assessing the Role of Parameter and Input Uncertainty in Ecohydrologic Modeling: Implications for a Semi-arid and Urbanizing Coastal California Catchment, Ecosystems, 15, 775–791, https://doi.org/10.1007/s10021-012-9545-z, 2012.
Slater, L. J., Anderson, B., Buechel, M., Dadson, S., Han, S., Harrigan, S., Kelder, T., Kowal, K., Lees, T., Matthews, T., Murphy, C., and Wilby, R. L.: Nonstationary weather and water extremes: a review of methods for their detection, attribution, and management, Hydrol. Earth Syst. Sci., 25, 3897–3935, https://doi.org/10.5194/hess-25-3897-2021, 2021.
Soil Survey Staff: Soil Survey Geographic (SSURGO) Database [data set], https://sdmdataaccess.sc.egov.usda.gov (last access: 27 August 2025), 2022.
Spear, R. C. and Hornberger, G. M.: Eutrophication in peel inlet—II. Identification of critical uncertainties via generalized sensitivity analysis, Water Research, 14, 43–49, https://doi.org/10.1016/0043-1354(80)90040-8, 1980.
Stan Development Team: Stan Modeling Language Users Guide and Reference Manual, 2.32.5 [code], 2023.
Stedinger, J. R., Vogel, R. M., Lee, S. U., and Batchelder, R.: Appraisal of the generalized likelihood uncertainty estimation (GLUE) method, Water Resources Research, 44, https://doi.org/10.1029/2008WR006822, 2008.
Stephens, S. L., Bernal, A. A., Collins, B. M., Finney, M. A., Lautenberger, C., and Saah, D.: Mass fire behavior created by extensive tree mortality and high tree density not predicted by operational fire behavior models in the southern Sierra Nevada, Forest Ecology and Management, 518, 120258, https://doi.org/10.1016/j.foreco.2022.120258, 2022.
Sun, N., Yan, H., Wigmosta, M. S., Leung, L. R., Skaggs, R., and Hou, Z.: Regional Snow Parameters Estimation for Large-Domain Hydrological Applications in the Western United States, Journal of Geophysical Research-Atmospheres, 124, 5296–5313, https://doi.org/10.1029/2018JD030140, 2019.
Tague, C., Seaby, L., and Hope, A.: Modeling the eco-hydrologic response of a Mediterranean type ecosystem to the combined impacts of projected climate change and altered fire frequencies, Climatic Change, 93, 137–155, https://doi.org/10.1007/s10584-008-9497-7, 2009.
Tang, H., Song, X.-P., Zhao, F. A., Strahler, A. H., Schaaf, C. L., Goetz, S., Huang, C., Hansen, M. C., and Dubayah, R.: Definition and measurement of tree cover: A comparative analysis of field-, lidar- and landsat-based tree cover estimations in the Sierra national forests, USA, Agricultural and Forest Meteorology, 268, 258–268, https://doi.org/10.1016/j.agrformet.2019.01.024, 2019.
U.S. Geological Survey: USGS TNM Hydrography (NHD) [data set], 2019.
Vázquez, R. F.: Effect of potential evapotranspiration estimates on effective parameters and performance of the MIKE SHE-code applied to a medium-size catchment, Journal of Hydrology, 270, 309–327, https://doi.org/10.1016/S0022-1694(02)00308-6, 2003.
Vögeli, C., Lehning, M., Wever, N., and Bavay, M.: Scaling Precipitation Input to Spatially Distributed Hydrological Models by Measured Snow Distribution, Front. Earth Sci., 4, https://doi.org/10.3389/feart.2016.00108, 2016.
Vrugt, J. A. and Beven, K. J.: Embracing equifinality with efficiency: Limits of Acceptability sampling using the DREAM(LOA) algorithm, Journal of Hydrology, 559, 954–971, https://doi.org/10.1016/j.jhydrol.2018.02.026, 2018.
Were, A., Villagarcía, L., Domingo, F., Alados-Arboledas, L., and Puigdefábregas, J.: Analysis of effective resistance calculation methods and their effect on modelling evapotranspiration in two different patches of vegetation in semi-arid SE Spain, Hydrol. Earth Syst. Sci., 11, 1529–1542, https://doi.org/10.5194/hess-11-1529-2007, 2007.
Wigmosta, M. S., Vail, L. W., and Lettenmaier, D. P.: A distributed hydrology-vegetation model for complex terrain, Water Resour. Res., 30, 1665–1679, https://doi.org/10.1029/94WR00436, 1994.
Williams, A. P., Livneh, B., McKinnon, K. A., Hansen, W. D., Mankin, J. S., Cook, B. I., Smerdon, J. E., Varuolo-Clarke, A. M., Bjarke, N. R., Juang, C. S., and Lettenmaier, D. P.: Growing impact of wildfire on western US water supply, Proc. Natl. Acad. Sci. USA, 119, e2114069119, https://doi.org/10.1073/pnas.2114069119, 2022.
Winsemius, S., Babcock, C., Kane, V. R., Bormann, K. J., Safford, H. D., and Jin, Y.: Improved aboveground biomass estimation and regional assessment with aerial lidar in California's subalpine forests, Carbon Balance Manage, 19, 41, https://doi.org/10.1186/s13021-024-00286-w, 2024.
Xu, T. and Liang, F.: Machine learning for hydrologic sciences: An introductory overview, WIREs Water, 8, e1533, https://doi.org/10.1002/wat2.1533, 2021.
Yang, Y., Roderick, M. L., Yang, D., Wang, Z., Ruan, F., McVicar, T. R., Zhang, S., and Beck, H. E.: Streamflow stationarity in a changing world, Environ. Res. Lett., 16, 064096, https://doi.org/10.1088/1748-9326/ac08c1, 2021.
Zambrano-Bigiarini, M., Rojas, and R.: A model-independent Particle Swarm Optimisation software for model calibration, Environmental Modelling & Software, 43, 5–25, https://doi.org/10.1016/j.envsoft.2013.01.004, 2013.
Zehe, E. and Sivapalan, M.: Threshold behaviour in hydrological systems as (human) geo-ecosystems: manifestations, controls, implications, Hydrol. Earth Syst. Sci., 13, 1273–1297, https://doi.org/10.5194/hess-13-1273-2009, 2009.
Zolkos, S. G., Goetz, S. J., and Dubayah, R.: A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing, Remote Sensing of Environment, 128, 289–298, https://doi.org/10.1016/j.rse.2012.10.017, 2013.
Short summary
Environmental changes can cause hydrological model biases that vary over time (nonstationarity). We demonstrate a new calibration framework to detect and correct nonstationary streamflow biases after a large wildfire, which reduces predictive uncertainty and constrains parameter equifinality.
Environmental changes can cause hydrological model biases that vary over time (nonstationarity)....