Articles | Volume 29, issue 22
https://doi.org/10.5194/hess-29-6333-2025
https://doi.org/10.5194/hess-29-6333-2025
Research article
 | 
17 Nov 2025
Research article |  | 17 Nov 2025

Improving model calibrations in a changing world: controlling for nonstationarity after mega disturbance reduces hydrological uncertainty

Elijah N. Boardman, Gabrielle F. S. Boisramé, Mark S. Wigmosta, Robert K. Shriver, and Adrian A. Harpold

Data sets

Data and Code for Megafire Disturbance Hydrological Model Calibration Study Elijah N. Boardman https://doi.org/10.5281/zenodo.16972670

Data Portal Airborne Snow Observatories, Inc. https://data.airbornesnowobservatories.com/

Database of full natural flow records for the SBF station California DWR https://cdec.water.ca.gov/dynamicapp/staMeta?station_id=SBF

National Land Cover Database (NLCD) 2019 Products Dewitz, J. and U.S. Geological Survey https://doi.org/10.5066/P9JZ7AO3

Rangeland Condition Monitoring Assessment and Projection (RCMAP) Fractional Component Time-Series Across the Western U. S. 1985--2020 Rigge, M. B., Bunde, B., Shi, H., and Postma, K. https://doi.org/10.5066/P95IQ4BT

Soil Survey Staff Soil Survey Geographic (SSURGO) Database https://sdmdataaccess.sc.egov.usda.gov

Model code and software

randomForest: Breiman and Cutlers Random Forests for Classification and Regression Breiman, L., Cutler, A., Liaw, A., and Wiener, M. https://doi.org/10.32614/CRAN.package.randomForest

Download
Short summary
Environmental changes can cause hydrological model biases that vary over time (nonstationarity). We demonstrate a new calibration framework to detect and correct nonstationary streamflow biases after a large wildfire, which reduces predictive uncertainty and constrains parameter equifinality.
Share