Articles | Volume 29, issue 21
https://doi.org/10.5194/hess-29-6003-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-6003-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Divergent water balance trajectories under two dominant tree species in montane forest catchment shifting from energy- to water-limitation
Nikol Zelíková
Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, Prague, 160 00, Czech Republic
Department of Water Resources and Environmental Modelling, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00, Czech Republic
Jitka Toušková
Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, Prague, 160 00, Czech Republic
Jiří Kocum
Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, Prague, 160 00, Czech Republic
Department of Physical Geography and Geoecology, Faculty of Science, Charles University in Prague, Albertov 6, Prague, 120 00, Czech Republic
Lukáš Vlček
Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, Prague, 160 00, Czech Republic
Miroslav Tesař
Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, Prague, 160 00, Czech Republic
Martin Bouda
Department of Plant Ecophysiology, University of Hohenheim, Garbenstraße 30, Stuttgart 70599, Germany
Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, Prague, 160 00, Czech Republic
Related authors
No articles found.
Jiri Kocum, Kristyna Falatkova, Vaclav Sipek, Karel Patek, Jan Hnilica, Michal Jenicek, Martin Sanda, Lukas Trakal, and Lukas Vlcek
EGUsphere, https://doi.org/10.5194/egusphere-2025-3922, https://doi.org/10.5194/egusphere-2025-3922, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The study employed a uniquely designed experimental setup to investigate how the dynamics of distinct soil water pools vary along an elevational gradient and how reduced snow accumulation at lower elevations influences soil water distribution compared to higher-altitude sites. A novel methodological approach was used to separate individual soil water pools, enabling a more precise characterization of the seasonal origin of soil water, potentially benefiting future research on plant water uptake.
Jiri Kocum, Jan Haidl, Ondrej Gebousky, Kristyna Falatkova, Vaclav Sipek, Martin Sanda, Natalie Orlowski, and Lukas Vlcek
Hydrol. Earth Syst. Sci., 29, 2863–2880, https://doi.org/10.5194/hess-29-2863-2025, https://doi.org/10.5194/hess-29-2863-2025, 2025
Short summary
Short summary
We present a novel method for soil water extraction – circulating-air soil water extraction – together with a newly developed apparatus specifically designed for its purposes. The method has been tested across a range of soil types, demonstrating an accuracy level that matches or surpasses that of conventional extraction techniques. The apparatus is optimized for small-scale, high-precision studies in which an unambiguous determination of the water origin is required.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Jan Vanderborght, Valentin Couvreur, Felicien Meunier, Andrea Schnepf, Harry Vereecken, Martin Bouda, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 25, 4835–4860, https://doi.org/10.5194/hess-25-4835-2021, https://doi.org/10.5194/hess-25-4835-2021, 2021
Short summary
Short summary
Root water uptake is an important process in the terrestrial water cycle. How this process depends on soil water content, root distributions, and root properties is a soil–root hydraulic problem. We compare different approaches to implementing root hydraulics in macroscopic soil water flow and land surface models.
Cited articles
Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., amd Neitsch, S. L.: Soil and Water Assessment Tool Input/Output Documentation: Version 2012, Texas Water Resources Institute, College Station, https://swat.tamu.edu/docs/ (last access: 30 October 2025), 2012.
Braden, H.: Ein Energiehaushalts-und Verdunstungsmodell for Wasser und Stoffhaushaltsuntersuchungen landwirtschaftlich genutzer Einzugsgebiete, Mittelungen Deutsche Bodenkundliche Geselschaft, 42, 294–299, 1985.
Brázdil, R., Zahradníček, P., Dobrovolný, P., Štěpánek, P., and Trnka, M.: Observed changes in precipitation during recent warming: The Czech Republic, 1961–2019, Int. J. Climatol., 41, 3881–3902, https://doi.org/10.1002/joc.7048, 2021.
Brázdil, R., Dobrovolný, P., Mikšovský, J., Pišoft, P., Trnka, M., Možný, M., and Balek, J.: Documentary-based climate reconstructions in the Czech Lands 1501–2020 CE and their European context, Clim. Past, 18, 935–959, https://doi.org/10.5194/cp-18-935-2022, 2022.
Brinkmann, N., Eugster, W., Zweifel, R., Buchmann, N., and Kahmen, A.: Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying, Tree Physiol., 36, 1508–1519, https://doi.org/10.1093/treephys/tpw062, 2016.
Brocca, L., Melone, F., and Moramarco, T.: On the estimation of antecedent wetness conditions in rainfall-runoff modelling, Hydrol. Process., 2274, 2267–2274, https://doi.org/10.1002/hyp.6629, 2008.
Brocca, L., Camici, S., Melone, F., Moramarco, T., Martínez-Fernández, J., Didon-Lescot, J. F., and Morbidelli, R.: Improving the representation of soil moisture by using a semi-analytical infiltration model, Hydrol. Process., 28, 2103–2115, https://doi.org/10.1002/hyp.9766, 2014.
Burgess, S. S. O., Adams, M. A., Turner, N. C., and Ong, C. K.: The redistribution of soil water by tree root systems, Oecologia, 115, 306–311, https://doi.org/10.1007/s004420050521, 1998.
Cejpek, J., Kuráž, V., Vindušková, O., and Frouz, J.: Water regime of reclaimed and unreclaimed post-mining sites, Ecohydrology, 11, 1–9, https://doi.org/10.1002/eco.1911, 2018.
Čermák, J., Cienciala, E., Kučera, J., Lindroth, A., and Bednářová, E.: Individual variation of sap-flow rate in large pine and spruce trees and stand transpiration: a pilot study at the central NOPEX site, J. Hydrol., 168, 17–27, https://doi.org/10.1016/0022-1694(94)02657-W, 1995.
Daněk, P., Šmaonil, P., and Vrška, T.: Four decades of the coexistence of beech and spruce in a Central European old-growth forest, Which succeeds on what soils and why?, Plant Soil, 437, 254–272, https://doi.org/10.1007/s11104-019-03968-4, 2019.
Denissen, J. M. C., Teuling, A. J., Pitman, A. J., Koirala, S., Migliavacca, M., Reichstein, M., Winkler, A. J., Zhan, C., and Orth, R.: Widespread shift from ecosystem energy to water limitation with climate change, Nature Climate Change, 12, 677–684, https://doi.org/10.1038/s41558-022-01403-8, 2022.
Dingman, S. L.: Physical hydrology, 3rd edn., Waveland Press, Inc., Long Grove, https://doi.org/10.1177/030913338901300106, 2015.
Feddes, R. A. and Rijtema, P. E.: Water withdrawal by plant roots, J. Hydrol., 17, 33–59, https://doi.org/10.1016/0022-1694(72)90065-0, 1972.
Floriancic, M. G., Allen, S. T., Meier, R., Truniger, L., Kirchner, J. W., and Molnar, P.: Potential for significant precipitation cycling by forest-floor litter and deadwood, Ecohydrology, 16, 1–16, https://doi.org/10.1002/eco.2493, 2022.
Gebauer, T., Horna, V., and Leuschner, C.: Canopy transpiration of pure and mixed forest stands with variable abundance of European beech, J. Hydrol., 442–443, 2–14, https://doi.org/10.1016/j.jhydrol.2012.03.009, 2012.
Gebhardt, T., Hesse, B. D., Hikino, K., Kolovrat, K., Hafner, B. D., Grams, T. E. E., and Häberle, K. H.: Repeated summer drought changes the radial xylem sap flow profile in mature Norway spruce but not in European beech, Agric. For. Meteorol., 329, 109285, https://doi.org/10.1016/j.agrformet.2022.109285, 2023.
Gerrits, A. M. J., Pfister, L., and Savenije, H. H. G.: Spatial and temporal variability of canopy and forest floor interception in a beech forest, Hydrol. Process., 24, 3011–3025, https://doi.org/10.1002/hyp.7712, 2010.
Girons Lopez, M., Vis, M. J. P., Jenicek, M., Griessinger, N., and Seibert, J.: Assessing the degree of detail of temperature-based snow routines for runoff modelling in mountainous areas in central Europe, Hydrol. Earth Syst. Sci., 24, 4441–4461, https://doi.org/10.5194/hess-24-4441-2020, 2020.
Green, J. K., Seneviratne, S. I., Berg, Am. M., Findell, K. L., Hagemann, S., Lawrence, D. M., and Gentine, P.: Large influence of soil moisture on long-term terrestrial carbon uptake, Nature, 565, 476–479, https://doi.org/10.1038/s41586-018-0848-x, 2019.
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., and McDowell, N. G.: Plant responses to rising vapor pressure deficit, New Phytol., 226, 1550–1556, https://doi.org/10.1111/nph.16485, 2020.
Gupta, R. S.: Hydrology and hydraulic systems, Waveland Press, Long Grove, ISBN 978-157766-030-9, 2001.
Hari, V., Rakovec, O., Markonis, Y., Hanel, M., and Kumar, R.: Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming, Sci. Rep.-UK, 10, 12207, https://doi.org/10.1038/s41598-020-68872-9, 2020.
Hochberg, U., Rockwell, F. E., Holbrook, N. M., and Cochard, H.: Iso/Anisohydry: A Plant–Environment Interaction Rather Than a Simple Hydraulic Trait, Trends Plant Sci., 23, 112–120, https://doi.org/10.1016/j.tplants.2017.11.002, 2018.
Hrkal, Z., Milický, M., and Tesař, M.: Climate change in central Europe and the sensitivity of the hard rock aquifer in the Bohemian Massif to decline of recharge: Case study from the Bohemian Massif, Environ. Earth Sci., 59, 703–713, https://doi.org/10.1007/s12665-009-0067-8, 2009.
Huang, X., Shi, Z. H., Zhu, H. D., Zhang, H. Y., Ai, L., and Yin, W.: Soil moisture dynamics within soil profiles and associated environmental controls, Catena, 136, 189–196, https://doi.org/10.1016/J.Catena.2015.01.014, 2016.
Humphrey, V., Berg, A., Ciais, P., Gentine, P., Jung, M., Reichstein, M., Seneviratne, S. I., and Frankenberg, C.: Soil-moisture–atmosphere feedback dominates land carbon uptake variability, Nature, 592, 65–69, https://doi.org/10.1038/s41586-021-03325-5, 2021.
Huntingford, C., Marsh, T., Scaife, A., Kendon, E. J., Hannaford, J., Kay, A. L., Lockwood, M., Prudhomme, C., Reynard, N. S., Parry, S., Lowe, J. A., Screen, J. A., Ward, H. C., Roberts, M., Stott, P. A., Bell, V. A., Bailey, M., Jenkins, A., Legg, T., Otto, F. E. L., Massey, N., Schaller, N., Slingo, J., and Allen, M. R.: Potential influences on the United Kingdom's floods of winter 2013/14, Nat. Clim. Change, 4, 769–777, https://doi.org/10.1038/nclimate2314, 2014.
Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M., Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink, P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter, T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, A. B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.: Importance and vulnerability of the world's water towers, Nature, 577, 364–369, https://doi.org/10.1038/s41586-019-1822-y, 2020.
IUSS Working Group WRB: World Reference Base for Soil Resources 2014, Update 2015, International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106, FAO, Rome, ISBN 978-92-5-108369-7, 2015.
Jačka, L., Walmsley, A., Kovář, M., and Frouz, J.: Effects of different tree species on infiltration and preferential flow in soils developing at a clayey spoil heap, Geoderma, 403, 115372, https://doi.org/10.1016/j.geoderma.2021.115372, 2021.
Jost, G., Schume, H., Hager, H., Markart, G., and Kohl, B.: A hillslope scale comparison of tree species influence on soil moisture dynamics and runoff processes during intense rainfall, J. Hydrol., 420–421, 112–124, https://doi.org/10.1016/j.jhydrol.2011.11.057, 2012.
Kofroňová, J., Šípek, V., Hnilica, J., Vlček, L., and Tesař, M.: Canopy interception estimates in a Norway spruce forest and their importance for hydrological modelling, Hydrol. Sci. J., 66, 1233–1247, https://doi.org/10.1080/02626667.2021.1922691, 2021.
Korres, W., Reichenau, T. G., Fiener, P., Koyama, C. N., Bogena, H. R., Cornelissen, T., Baatz, R., Herbst, M., Diekkrüger, B., Vereecken, H., and Schneider, K.: Spatio-temporal soil moisture patterns – A meta-analysis using plot to catchment scale data, J. Hydrol., 520, 326–341, https://doi.org/10.1016/j.jhydrol.2014.11.042, 2015.
Kuželková, M., Jačka, L., Kovář, M., Hradilek, V., and Máca, P.: Tree trait-mediated differences in soil moisture regimes: a comparative study of beech, spruce, and larch in a drought-prone area of Central Europe, Eur. J. Forest Res., 143, 319–332, https://doi.org/10.1007/s10342-023-01628-y, 2024.
Kyselý, J., Gaál, L., Beranová, R., and Plavcová, E.: Climate change scenarios of precipitation extremes in Central Europe from ENSEMBLES regional climate models, Theor. Appl. Climatol., 104, 529–542, https://doi.org/10.1007/s00704-010-0362-z, 2011.
Legates, D. R., Mahmood, R., Levia, D. F., DeLiberty, T. L., Quiring, S. M., Houser, C., and Nelson, F. E.: Soil moisture: A central and unifying theme in physical geography, Prog. Phys. Geogr., 35, 65–86, https://doi.org/10.1177/0309133310386514, 2011.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple hydrologically based model of land surface water and energy fluxes for general circulation model, J. Geophys. Res., 99, 2063, https://doi.org/10.1143/jjap.39.2063, 1994.
Maxwell, T. M., Silva, L. C. R., and Horwath, W . R.: Integrating effects of species composition and soil properties to predict shifts in montane forest carbon–water relations, P. Natl. Acad. Sci. USA, 115, E4219–E4226, https://doi.org/10.1073/pnas.1718864115, 2018.
Mianabadi, A., Davary, K., Pourreza-Bilondi, M., and Coenders-Gerrits, A. M. J.: Budyko framework; towards non-steady state conditions, J. Hydrol., 588, 125089, https://doi.org/10.1016/j.jhydrol.2020.125089, 2020.
Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., Stouffer, R. J., Dettinger, M. D., and Krysanova, V.: On critiques of “Stationarity is dead: Whither water management?”, Water Resour. Res., 51, 7785–7789, https://doi.org/10.1002/2015WR017408, 2015.
Monteith, J. L.: Evaporation and environment, Symposia of the Society for Experimental Biology, 19, 205–234, 1965.
Možný, M., Trnka, M., Vlach, V., Vizina, A., Potopová, V., Zahradníček, P., Štěpánek, P., Hajková, L., Staponites, L., and Žalud, Z.: Past (1971–2018) and future (2021–2100) pan evaporation rates in the Czech Republic, J. Hydrol., 590, 125390, https://doi.org/10.1016/j.jhydrol.2020.125390, 2020.
Novick, K. A., Ficklin, D. L., Baldocchi, D., Davis, K. J., Ghezzehei, T. A, Konings, A. G., MacBean, N., Raoult, N., Scott, R. L., Shi, Y., Sulman, B. N., and Wood, J. D.: Confronting the water potential information gap, Nat. Geosci., 15, 158–164, https://doi.org/10.1038/s41561-022-00909-2, 2022.
Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., and Loumagne, C.: Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 2 – Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling, J. Hydrol., 303, 290–306, https://doi.org/10.1016/j.jhydrol.2004.08.026, 2005.
Qing, Y., Ancell, B. C., and Yang, Z.-L.: Accelerating flash droughts induced by the joint influence of soil moisture depletion and atmospheric aridity, Nat. Commun., 13, 1139, https://doi.org/10.1038/s41467-022-28752-4, 2022.
Renner, M., Brust, K., Schwärzel, K., Volk, M., and Bernhofer, C.: Separating the effects of changes in land cover and climate: a hydro-meteorological analysis of the past 60 yr in Saxony, Germany, Hydrol. Earth Syst. Sci., 18, 389–405, https://doi.org/10.5194/hess-18-389-2014, 2014.
Rötzer, T., Häberle, K. H., Kallenbach, C., Matyssek, R., Schütze, G., and Pretzsch, H.: Tree species and size drive water consumption of beech/spruce forests – a simulation study highlighting growth under water limitation, Plant Soil, 418, 337–356, https://doi.org/10.1007/s11104-017-3306-x, 2017.
Savenije, H. H. G.: The importance of interception and why we should delete the term evapotranspiration from our vocabulary, Hydrol. Process., 18, 1507–1511, https://doi.org/10.1002/hyp.5563, 2004.
Schafstall, N., Svitavská-Svobodová, H., Kadlec, M., Gałka, M., Kuneš, P., Bobek, P., Goliáš, V., Pech, P., Nývlt, D., Hubený, P., Kuosmanen, N., Carter, V. A., and Florescu, F.: The absence of disturbances promoted Late Holocene expansion of silver fir (Abies alba) in the Bohemian Forest, Palaeogeogr. Palaeoclimatol. Palaeoecol., 635, 111950, https://doi.org/10.1016/j.palaeo.2023.111950, 2024.
Schume, H., Jost, G., and Hager, H.: Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce, J. Hydrol., 289, 258–274, https://doi.org/10.1016/j.jhydrol.2003.11.036, 2004.
Schwärzel, K., Menzer, A., Clausnitzer, F., Spank, U., Häntzschel, J., Grünwald, T., Köstner, B., Bernhofer, C., and Feger, K. H.: Soil water content measurements deliver reliable estimates of water fluxes: A comparative study in a beech and a spruce stand in the Tharandt forest (Saxony, Germany), Agric. For. Meteorol., 149, 1994–2006, https://doi.org/10.1016/j.agrformet.2009.07.006, 2009.
Seibert, J. and Vis, M. J. P.: Teaching hydrological modeling with a user-friendly catchment-runoff-model software package, Hydrol. Earth Syst. Sci., 16, 3315–3325, https://doi.org/10.5194/hess-16-3315-2012, 2012.
Šípek, V. and Tesař, M.: Seasonal snow accumulation in the mid-latitude forested catchment, Biologia, 69, 1562–1569, https://doi.org/10.2478/s11756-014-0468-3, 2014.
Šípek, V. and Tesař, M.: Year-round estimation of soil moisture content using temporally variable soil hydraulic parameters, Hydrol. Process., 31, 1438–1452, https://doi.org/10.1002/hyp.11121, 2017.
Šípek, V., Hnilica, J., Vlček, L., Hnilicová, S., and Tesař, M.: Influence of vegetation type and soil properties on soil water dynamics in the Šumava Mountains (Southern Bohemia), J. Hydrol., 582, 124285, https://doi.org/10.1016/j.jhydrol.2019.124285, 2020.
Svoboda, V., Hanel, M., Máca, P., and Kyselý, J.: Characteristics of rainfall events in regional climate model simulations for the Czech Republic, Hydrol. Earth Syst. Sci., 21, 963–980, https://doi.org/10.5194/hess-21-963-2017, 2017.
Tesař, M., Šípek, V., Zelíková, N., Toušková, J., and Vlček, L.: Hydrometeorological data from the Liz basin, Knihovna Akademie Věd ČR [data set], https://doi.org/10.57680/asep.0640388, 2025.
Tolasz, R., Míková, T., Valeriánová, A., et al.: Climate Atlas of Czechia, Czech Hydrometeorological Institute, Prague, ISBN 978-80-86690-26-1, 2007.
Toušková, J., Falátková, K., and Šípek, V.: Estimating potential evapotranspiration in a temperate zone: The challenge of model selection, Water Res. Manag., 39, 5911–5927, https://doi.org/10.1007/s11269-025-04233-3, 2025.
Trugman, A. T., Medvigy, D., Mankin, J. S., and Andregg W. R. L.: Soil moisture as a major driver of carbon cycle uncertainty, Geophys. Res. Lett., 45, 6495–6503, https://doi.org/10.1029/2018GL078131, 2018.
Tyree, M. T. and Zimmermann, M. H.: Xylem structure and the Ascent of Sap, Springer, Heidelberg, https://doi.org/10.1007/978-3-662-04931-0, 2002.
Van Genuchten, M. T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., and Weingarten, R.: Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res., 43, 1–13, https://doi.org/10.1029/2006WR005653, 2007.
Vondráková, A., Vávra, A., and Voženílek, V.: Climatic regions of the Czech Republic, J. Maps, 9, 425–430, https://doi.org/10.1080/17445647.2013.800827, 2013.
von-Hoyningen-Huene, J.: Die interzeption des Niederschlages in landwirtschaftlichen Pflanzenbeständen, DVWK, 57, 3–51, 1983.
Wang, H., Tetzlaff, D., and Soulsby, C.: Modelling the effects of land cover and climate change on soil water partitioning in a boreal headwater catchment, J. Hydrol., 558, 520–531, https://doi.org/10.1016/j.jhydrol.2018.02.002, 2018.
Yue, S., Pilon, P., Phinney, B., and Cavadias, G.: The influence of autocorrelation on the ability to detect trend in hydrological series, Hydrol. Process., 16, 1807–1829, https://doi.org/10.1002/hyp.1095, 2002.
Zahradníček, P., Brázdil, R., Štěpánek, P., and Trnka, M.: Reflections of global warming in trends of temperature characteristics in the Czech Republic, 1961–2019, Int. J. Climatol., 41, 1211–1229, https://doi.org/10.1002/joc.6791, 2020.
Zucco, G., Brocca, L., Moramarco, T., and Morbidelli, R.: Influence of land use on soil moisture spatial-temporal variability and monitoring, J. Hydrol., 516, 193–199, https://doi.org/10.1016/j.jhydrol.2014.01.043, 2014.
Zweifel, R., Böhm, J. P., and Häsler, R.: Midday stomatal closure in Norway spruce – Reactions in the upper and lower crown, Tree Physiol., 22, 1125–1136, https://doi.org/10.1093/treephys/22.15-16.1125, 2002.
Short summary
Climate change in Central Europe results in the gradual replacement of spruce trees with beech. To model its potential impact, we used 22-year data of soil moisture under both tree species. The drier the summer season, the greater the difference between the two: the main reason was the higher transpiration of beech canopy compared to spruce. An accelerating transition of the Central European montane forest water balance from a fully energy-limited state towards water-limitation was documented.
Climate change in Central Europe results in the gradual replacement of spruce trees with beech....