Articles | Volume 29, issue 20
https://doi.org/10.5194/hess-29-5737-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-5737-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Interdecadal rainfall cycles in spatially coherent global regions and their relationship to the climate modes
Tobias F. Selkirk
CORRESPONDING AUTHOR
Department of Infrastructure Engineering, University of Melbourne, Parkville, 3010, Australia
Andrew W. Western
Department of Infrastructure Engineering, University of Melbourne, Parkville, 3010, Australia
J. Angus Webb
Department of Infrastructure Engineering, University of Melbourne, Parkville, 3010, Australia
Related authors
Tobias F. Selkirk, Andrew W. Western, and J. Angus Webb
Hydrol. Earth Syst. Sci., 29, 2167–2184, https://doi.org/10.5194/hess-29-2167-2025, https://doi.org/10.5194/hess-29-2167-2025, 2025
Short summary
Short summary
This study investigated rainfall in eastern Australia to search for patterns that may aid in predicting flood and drought. The current popular consensus is that such cycles do not exist. We analysed 130 years of rainfall using a very modern technique for identifying cycles in complex signals. The results showed strong evidence of three clear cycles of 12.9, 20.4 and 29.1 years with a confidence of 99.99 %. When combined, they showed an 80 % alignment with years of extremely high and low rainfall.
Olaleye Babatunde, Meenakshi Arora, Siva Naga Venkat Nara, Danlu Guo, Ian Cartwright, and Andrew W. Western
EGUsphere, https://doi.org/10.5194/egusphere-2025-2456, https://doi.org/10.5194/egusphere-2025-2456, 2025
Short summary
Short summary
Nitrogen inputs can pollute streams and degrade water quality. We estimated fertiliser nitrogen inputs across different land uses and assessed their relationship with stream nitrogen concentrations. Only a small fraction of the applied nitrogen was exported, with most retained within the landscape. Land use, rainfall, and flow patterns strongly influenced nitrogen dynamics and export. These findings support strategies to reduce stream pollution and protect water quality in agricultural areas.
Tobias F. Selkirk, Andrew W. Western, and J. Angus Webb
Hydrol. Earth Syst. Sci., 29, 2167–2184, https://doi.org/10.5194/hess-29-2167-2025, https://doi.org/10.5194/hess-29-2167-2025, 2025
Short summary
Short summary
This study investigated rainfall in eastern Australia to search for patterns that may aid in predicting flood and drought. The current popular consensus is that such cycles do not exist. We analysed 130 years of rainfall using a very modern technique for identifying cycles in complex signals. The results showed strong evidence of three clear cycles of 12.9, 20.4 and 29.1 years with a confidence of 99.99 %. When combined, they showed an 80 % alignment with years of extremely high and low rainfall.
Theresa Boas, Heye Reemt Bogena, Dongryeol Ryu, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023, https://doi.org/10.5194/hess-27-3143-2023, 2023
Short summary
Short summary
In our study, we tested the utility and skill of a state-of-the-art forecasting product for the prediction of regional crop productivity using a land surface model. Our results illustrate the potential value and skill of combining seasonal forecasts with modelling applications to generate variables of interest for stakeholders, such as annual crop yield for specific cash crops and regions. In addition, this study provides useful insights for future technical model evaluations and improvements.
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120, https://doi.org/10.5194/hess-26-6073-2022, https://doi.org/10.5194/hess-26-6073-2022, 2022
Short summary
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Qichun Yang, Quan J. Wang, Andrew W. Western, Wenyan Wu, Yawen Shao, and Kirsti Hakala
Hydrol. Earth Syst. Sci., 26, 941–954, https://doi.org/10.5194/hess-26-941-2022, https://doi.org/10.5194/hess-26-941-2022, 2022
Short summary
Short summary
Forecasts of evaporative water loss in the future are highly valuable for water resource management. These forecasts are often produced using the outputs of climate models. We developed an innovative method to correct errors in these forecasts, particularly the errors caused by deficiencies of climate models in modeling the changing climate. We apply this method to seasonal forecasts of evaporative water loss across Australia and achieve significant improvements in the forecast quality.
Shuci Liu, Dongryeol Ryu, J. Angus Webb, Anna Lintern, Danlu Guo, David Waters, and Andrew W. Western
Hydrol. Earth Syst. Sci., 25, 2663–2683, https://doi.org/10.5194/hess-25-2663-2021, https://doi.org/10.5194/hess-25-2663-2021, 2021
Short summary
Short summary
Riverine water quality can change markedly at one particular location. This study developed predictive models to represent the temporal variation in stream water quality across the Great Barrier Reef catchments, Australia. The model structures were informed by a data-driven approach, which is useful for identifying important factors determining temporal changes in water quality and, in turn, providing critical information for developing management strategies.
Theresa Boas, Heye Bogena, Thomas Grünwald, Bernard Heinesch, Dongryeol Ryu, Marius Schmidt, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 14, 573–601, https://doi.org/10.5194/gmd-14-573-2021, https://doi.org/10.5194/gmd-14-573-2021, 2021
Short summary
Short summary
In this study we were able to significantly improve CLM5 model performance for European cropland sites by adding a winter wheat representation, specific plant parameterizations for important cash crops, and a cover-cropping and crop rotation subroutine to its crop module. Our modifications should be applied in future studies of CLM5 to improve regional yield predictions and to better understand large-scale impacts of agricultural management on carbon, water, and energy fluxes.
Cited articles
Amonkar, Y., Doss-Gollin, J., and Lall, U.: Compound Climate Risk: Diagnosing Clustered Regional Flooding at Inter-Annual and Longer Time Scales, Hydrology, 10, 67, https://doi.org/10.3390/hydrology10030067, 2023.
An, S.-I. and Wang, B.: Interdecadal Change of the Structure of the ENSO Mode and Its Impact on the ENSO Frequency, J. Climate, 13, 2044–2055, https://doi.org/10.1175/1520-0442(2000)013<2044:ICOTSO>2.0.CO;2, 2000.
Baines, P. G.: Patterns of decadal climate variability and their impact on global rainfall, Procedia Environmental Sciences, 6, 70–87, https://doi.org/10.1016/j.proenv.2011.05.008, 2011.
Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., and Ziese, M.: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present, Earth Syst. Sci. Data, 5, 71–99, https://doi.org/10.5194/essd-5-71-2013, 2013.
Cai, W., Rensch, P. van, Cowan, T., and Hendon, H. H.: Teleconnection Pathways of ENSO and the IOD and the Mechanisms for Impacts on Australian Rainfall, Journal of Climate, 24, 3910–3923, https://doi.org/10.1175/2011JCLI4129.1, 2011.
Cayan, D. R., Dettinger, M. D., Diaz, H. F., and Graham, N. E.: Decadal Variability of Precipitation over Western North America, Journal of Climate, 11, 3148–3166, https://doi.org/10.1175/1520-0442(1998)011<3148:DVOPOW>2.0.CO;2, 1998.
Chowdhury, R. K. and Beecham, S.: South Australian rainfall – trends and climate drivers, in: Water and Climate: Policy Implementation Challenges; Proceedings of the 2nd Practical Responses to Climate Change Conference, Water and Climate: Policy Implementation Challenges – 2nd Practical Responses to Climate Change Conference 2012, Canberra, Australia, 1–3 May 2012, ISBN 9780858259119, 2012.
Currie, R. G.: Detection of 18.6 year nodal induced drought in the Patagonian Andes, Geophysical Research Letters, 10, 1089–1092, https://doi.org/10.1029/GL010i011p01089, 1983.
Currie, R. G.: Evidence for 18.6-year lunar nodal drought in western North america during the past millennium, Journal of Geophysical Research: Atmospheres, 89, 1295–1308, https://doi.org/10.1029/JD089iD01p01295, 1984.
Currie, R. G.: Luni-solar 18.6- and 10–11-year solar cycle signals in South African rainfall, International Journal of Climatology, 13, 237–256, https://doi.org/10.1002/joc.3370130302, 1993.
Currie, R. G.: Luni-solar and solar cycle signals in lake Saki varves and further experiments, Int. J. Climatol., 15, 893–917, https://doi.org/10.1002/joc.3370150805, 1995.
Currie, R. G. and Vines, R. G.: Evidence For Luni–Solar Mn And Solar Cycle Sc Signals In Australian Rainfall Data, International Journal of Climatology, 16, 1243–1265, https://doi.org/10.1002/(SICI)1097-0088(199611)16:11<1243::AID-JOC85>3.0.CO;2-E, 1996.
Davi, N. K., Jacoby, G. C., Curtis, A. E., and Baatarbileg, N.: Extension of drought records for central Asia using tree rings: West-central Mongolia, J. Climate, 19, 288–299, https://doi.org/10.1175/JCLI3621.1, 2006.
Fedorov, A. V., Hu, S., Wittenberg, A. T., Levine, A. F. Z., and Deser, C.: ENSO Low-Frequency Modulation and Mean State Interactions, in: Geophysical Monograph Series, edited by: McPhaden, M. J., Santoso, A., and Cai, W., Wiley, 173–198, https://doi.org/10.1002/9781119548164.ch8, 2020.
Feldstein, S. B.: The Timescale, Power Spectra, and Climate Noise Properties of Teleconnection Patterns, J. Climate, 13, 4430–4440, https://doi.org/10.1175/1520-0442(2000)013<4430:TTPSAC>2.0.CO;2, 2000.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons, Journal of Climate, 30, 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1, 2017.
Jeffrey, S. J., Carter, J. O., Moodie, K. B., and Beswick, A. R.: Using spatial interpolation to construct a comprehensive archive of Australian climate data, Environmental Modelling & Software, 16, 309–330, https://doi.org/10.1016/S1364-8152(01)00008-1, 2001.
Kane, R. P.: Periodicities, ENSO effects and trends of some South African rainfall series: An update, South African Journal of Science, 105, 199–207, https://doi.org/10.4102/sajs.v105i5/6.90, 2009.
Lee, G. R., Gommers, R., Waselewski, F., Wohlfahrt, K., and O’Leary, A.: PyWavelets: A Python package for wavelet analysis, Journal of Open Source Software, 4, 1237, https://doi.org/10.21105/joss.01237, 2019.
Lee, G., Gommers, R., Wohlfahrt, K., Wasilewski, F., O'Leary, A., Holger, Khetarpal, A., Millman, J., Sauvé, A., Clauss, C., Agrawal, A., Pelt, D. M., Oliveira, H., Yu, F., Brett, M., Pelletier, M., SylvainLan, Tricoli, D., Margffoy Tuay, E. A., Burovski, E., Choudhary, S., Solak, A. C., asnt, Smith, A., rthr-rllr, Schneck, C., Goldberg, C., Goertzen, D., and Stephan, D.: PyWavelets/pywt: v1.7.0 (v1.7.0), Zenodo [code], https://doi.org/10.5281/zenodo.13306773, 2024.
Lorenzo, E. D., Xu, T., Zhao, Y., Newman, M., Capotondi, A., Stevenson, S., Amaya, D. J., Anderson, B. T., Ding, R., Furtado, J. C., Joh, Y., Liguori, G., Lou, J., Miller, A. J., Navarra, G., Schneider, N., Vimont, D. J., Wu, S., and Zhang, H.: Modes and Mechanisms of Pacific Decadal-Scale Variability, Annual Review of Marine Science, 15, 249–275, https://doi.org/10.1146/annurev-marine-040422-084555, 2023.
Ministry for the Environment: Interdecadal Pacific Oscillation, 1871–2016, MfE Data Service, Wellington, New Zealand [data set], https://data.mfe.govt.nz/table/89382-interdecadal-pacific-oscillation-18712016/ (last access: 16 December 2024), 2017.
Mitra, K. and Dutta, S. N.: 18.6-year luni-solar nodal and 10–11-year solar signals in rainfall in India, International Journal of Climatology, 12, 839–851, https://doi.org/10.1002/joc.3370120807, 1992.
Murumkar, A. R. and Arya, D. S.: Trend and Periodicity Analysis in Rainfall Pattern of Nira Basin, Central India, AJCC, 03, 60–70, https://doi.org/10.4236/ajcc.2014.31006, 2014.
NOAA National Centers for Environmental Information (NCEI): North Atlantic Oscillation (NAO) index, Climate Monitoring, NOAA, Asheville, North Carolina, USA [data set], https://www.ncei.noaa.gov/access/monitoring/nao/ (last access: 9 February 2025), 2025.
NOAA Physical Sciences Laboratory (PSL): Monthly Niño-3.4 Index Time Series (HadISST1.1-based), NOAA/ESRL, Boulder, USA [data set], https://psl.noaa.gov/data/timeseries/month/DS/Nino34/ (last access: 10 March 2025), 2025a.
NOAA Physical Sciences Laboratory (PSL): Monthly Dipole Mode Index (DMI) Time-Series (HadISST1.1-based), NOAA/ESRL Physical Sciences Laboratory, Boulder, USA [data set], https://psl.noaa.gov/data/timeseries/month/DMI/ (last access: 10 March 2025), 2025b.
Parker, D., Folland, C., Scaife, A., Knight, J., Colman, A., Baines, P., and Dong, B.: Decadal to multidecadal variability and the climate change background, Journal of Geophysical Research: Atmospheres, 112, https://doi.org/10.1029/2007JD008411, 2007.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.: Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, 12, 2825–2830, 2011.
Power, S. and Colman, R.: Multi-year predictability in a coupled general circulation model, Climate Dynamics, 26, https://doi.org/10.1007/s00382-005-0055-y, 2006.
Power, S., Casey, T., Folland, C., Colman, A., and Mehta, V.: Inter-decadal modulation of the impact of ENSO on Australia, Climate Dynamics, 15, 319–324, https://doi.org/10.1007/s003820050284, 1999.
Rayner, N. A., Parker, D. E. Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C. Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003.
Rayner, N. A., Parker, D. E. Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C. Kaplan, A.: Niño 3.4 SST Index from the HadISST1.1, NOAA [data set], https://psl.noaa.gov/data/timeseries/month/DS/Nino34/, last access: 12 December 2024.
Saji, N. H. and Yamagata, T.: Possible impacts of Indian Ocean Dipole mode events on global climate, Climate Res., 25, 151–169, 2003.
Saji, N. H. and Yamagata, T.: Dipole Mode Index (DMI) Monthly Time-series, NOAA [data set], https://psl.noaa.gov/data/timeseries/month/DS/DMI/, last access: 12 December 2024.
Sauvé, A. and Nowacki, D.: scaleogram: v0.9.5, GitHub [code], https://github.com/alsauve/scaleogram (last access: 31 October 2022), 2023.
Scaife, A. A. and Smith, D.: A signal-to-noise paradox in climate science, npj Clim. Atmos. Sci., 1, 28, https://doi.org/10.1038/s41612-018-0038-4, 2018.
Schneider, U., Hänsel, S., Finger, P., Rustemeier, E., and Ziese, M.: GPCC Full Data Monthly Version 2022 at 2.5°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data: Globally Gridded Monthly Totals, GPCC [data set], https://doi.org/10.5676/DWD_GPCC/FD_M_V2022_250, 2022.
Scientific Information for Land Owners (SILO): SILO Climate Data, Department of Environment, Science and Innovation, Queensland Government [data set], https://www.longpaddock.qld.gov.au/silo/view-point-data/ (last access: 29 September 2022), 2024.
Seabold, S. and Perktold, J.: Statsmodels: Econometric and Statistical Modeling with Python, Python in Science Conference, Austin, Texas, 92–96, https://doi.org/10.25080/Majora-92bf1922-011, 2010.
Selkirk, T. F., Western, A. W., and Webb, J. A.: Interdecadal cycles in Australian annual rainfall, Hydrol. Earth Syst. Sci., 29, 2167–2184, https://doi.org/10.5194/hess-29-2167-2025, 2025.
Stéphane, M. (Ed.): A Wavelet Tour of Signal Processing, Third Edition., Academic Press, Boston, https://doi.org/10.1016/B978-0-12-374370-1.50001-9, 2009.
Sun, C., Li, J., Feng, J., and Xie, F.: A Decadal-Scale Teleconnection between the North Atlantic Oscillation and Subtropical Eastern Australian Rainfall, Journal of Climate, 28, 1074–1092, https://doi.org/10.1175/JCLI-D-14-00372.1, 2015.
Sun, F. and Yu, J.-Y.: A 10–15-Yr Modulation Cycle of ENSO Intensity, Journal of Climate, 22, 1718–1735, https://doi.org/10.1175/2008JCLI2285.1, 2009.
Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu, K.-L.: A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons, Reviews of Geophysics, 56, 79–107, https://doi.org/10.1002/2017RG000574, 2018.
Timmermann, A., An, S.-I., Kug, J.-S., Jin, F.-F., Cai, W., Capotondi, A., Cobb, K. M., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Stein, K., Wittenberg, A. T., Yun, K.-S., Bayr, T., Chen, H.-C., Chikamoto, Y., Dewitte, B., Dommenget, D., Grothe, P., Guilyardi, E., Ham, Y.-G., Hayashi, M., Ineson, S., Kang, D., Kim, S., Kim, W., Lee, J.-Y., Li, T., Luo, J.-J., McGregor, S., Planton, Y., Power, S., Rashid, H., Ren, H.-L., Santoso, A., Takahashi, K., Todd, A., Wang, G., Wang, G., Xie, R., Yang, W.-H., Yeh, S.-W., Yoon, J., Zeller, E., and Zhang, X.: El Niño–Southern Oscillation complexity, Nature, 559, 535–545, https://doi.org/10.1038/s41586-018-0252-6, 2018.
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis, B. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., and van Mulbregt, P.: SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.
Williams, A. P., Anchukaitis, K. J., Woodhouse, C. A., Meko, D. M., Cook, B. I., Bolles, K., and Cook, E. R.: Tree Rings and Observations Suggest No Stable Cycles in Sierra Nevada Cool-Season Precipitation, Water Resources Research, 57, e2020WR028599, https://doi.org/10.1029/2020WR028599, 2021.
Yasuda, I.: The 18.6-year period moon-tidal cycle in Pacific Decadal Oscillation reconstructed from tree-rings in western North America, Geophysical Research Letters, 36, L05605, https://doi.org/10.1029/2008GL036880, 2009.
Yasuda, I.: Impact of the astronomical lunar 18.6-yr tidal cycle on El-Niño and Southern Oscillation, Sci. Rep., 8, 15206, https://doi.org/10.1038/s41598-018-33526-4, 2018.
Short summary
This study finds three cycles in yearly rainfall worldwide of approximately 13, 20 and 28 years. The cycles rise and fall together across continents and also appear in the El Niño–Southern Oscillation (ENSO), a major climate driver of rain. However the signal in ENSO is too small to explain the strong local influence, the results point to another, still-unknown force that may shape both the climate modes and global rainfall.
This study finds three cycles in yearly rainfall worldwide of approximately 13, 20 and 28 years....