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Abstract. Interdecadal cycles in rainfall influence long-term
hydrological variability, affecting water resource manage-
ment, agriculture, and flood or drought preparedness across
the globe. Previous studies have found evidence of cycles
over limited regions but the global distribution and relation-
ship to the major climate modes remain unclear. Using the
global GPCC v2022 2.5° gridded dataset (1891–2020), we
applied a Gaussian mixture model to detect significant clus-
tering of cycles in rainfall, derived from wavelet analysis of
individual grid points. Three Global Rainfall Cycles (GRCs)
emerged at 12.9, 19.9, and 28.2 years, were widespread, and
aligned in length and phase to previous research. Two longer
cycles (35.9 and 45.9 years) were also significant but inter-
preted cautiously due to their period relative to the dataset’s
length. The 12.9 and 19.9 year GRCs showed strong phase
coherence and spatial overlap with the El Niño-Southern Os-
cillation and Interdecadal Pacific Oscillation climate modes,
but not with the Indian Ocean Dipole or North Atlantic Os-
cillation. Notably, GRCs explained more rainfall variance
than expected from the effect of these climate modes alone,
suggesting another driver may influence rainfall directly and
via climate interactions. These findings are of significance
to global water management and rainfall modelling, offer-
ing the potential to enhance flood and drought forecasting in
strongly affected regions.

1 Introduction

Understanding long-term hydrological variability associated
with interdecadal cycles in global rainfall underpins effective
water resource management, agricultural planning, and re-
silience to floods and droughts. These cycles, in the range of

10–50 years, are often subtle and challenging to detect due to
their low amplitude relative to seasonal and interannual vari-
ability, as well as the limitations of historical rainfall datasets
(Sun et al., 2018).

Interdecadal periodicity in rainfall has been studied ex-
tensively, though mostly limited to specific regional areas
(Chowdhury and Beecham, 2012; Kane, 2009; Williams et
al., 2021; Selkirk et al. 2025), and within in the major cli-
mate modes (An and Wang, 2000; Sun and Yu, 2009; Ya-
suda, 2018). The global distribution of climate mode in-
fluence on rainfall is also well established (Baines, 2011;
Becker et al., 2013; Cayan et al., 1998). However, we are
aware of no studies that have attempted to identify domi-
nant periodicities in globally complete rainfall datasets and
their spatial relationship to the climate modes. This is likely
due to the complexity of separating interdecadal signals from
noise in diverse climate regimes, scarcity of long-term high-
quality global rainfall data and the challenges of process-
ing large datasets using existing signal decomposition tech-
niques. Consequently, the global extent of these cycles, their
spatial distribution, and their potential drivers remain poorly
understood.

A recent study in eastern Australia identified three dom-
inant interdecadal cycles (∼ 13, ∼ 20, and ∼ 28 years)
present at a majority of sites, demonstrating their regional
importance (Selkirk et al., 2025). The methodology used var-
ied from the traditional approach of defining significance by
the individual power of each cycle over random noise at a
single site (Grinsted et al., 2004; Murumkar and Arya, 2014;
Torrence and Compo, 1998). Instead, significance was de-
rived from clustering the number of sites at which common
cycles occurred across a large dataset. This allowed for the
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identification of cycles with a subtle influence, but present at
nearly all sites.

Many regional studies have identified interdecadal period-
icities in rainfall often clustered around∼ 13 and∼ 20 years.
These two cycles have often been attributed to the ∼ 11-year
Sunspot cycle, and the 18.6-year lunar nodal cycle (LNC)
correlated to rainfall in India (Mitra and Dutta, 1992), Aus-
tralia (Currie and Vines, 1996), the Americas (Currie, 1983,
1984), Africa (Currie, 1993), Mongolia (Davi et al., 2006)
and Russia (Currie, 1995). Synchronisation of rainfall to the
lunisolar drivers tended to fall out of alignment over time, re-
quiring a phase inversion roughly every 100 years. This gen-
erated scepticism and restricted broad academic acceptance
of the presence of these cycles in rainfall. Selkirk et al. (2025)
discovered that, in Australia at least, the need for phase in-
version was a result of focusing on the incorrect cycle length.
Alignment to slightly longer of 13.1 and 19.9 years were con-
sistent across the whole 130-year time series.

Cycles around this length continue to be observed in re-
gional rainfall, though are rarely ascribed to a stable driver.
They are often explained through the established climate
modes known to drive rainfall variability on interannual to
decadal scales. These include the El Niño-Southern Oscil-
lation (ENSO), Interdecadal Pacific Oscillation (IPO), the
Indian Ocean Dipole (IOD) and North Atlantic Oscillation
(NAO). Williams et al. (2021) identified a significant 13 to
15-year cycle in Sierra Nevada, accounting for 21 % of rain-
fall variability from 1902 to 2000. Tree ring reconstruction
dating back over 600 years also indicated 12.8- and 21.3-
year cycles with marked amplitude variance over time. How-
ever the authors did not believe these cycles were the tied
to ENSO variability. An 11 to 13-year cycle was identi-
fied in the Ohio River Basin, strongly correlated to ENSO
(Amonkar et al., 2023) and a ∼ 20-year oscillation in South
African rainfall has also been attributed to the climate mode
(Kane, 2009).

Most global rainfall analyses interpret interannual vari-
ability through the lens of the major climate modes (Baines,
2011). Sea Surface Temperatures (SST) often form the quan-
titative foundation of these modes, however they involve the
complex interactions of multiple dynamic atmospheric and
oceanic systems. This results in global influences tied to-
gether though the push and pull of atmospheric teleconnec-
tions. For example, during the La Niña phase of ENSO,
cooler SST in the Niño 3.4 region of the Pacific Ocean in-
tensify the Walker Circulation winds, leading to stronger
convection over the warmer western waters and driving in-
creased rainfall over eastern Australia. On the other side of
the Pacific, the sinking air inhibits cloud formation and pre-
cipitation leading to drier conditions along the west coast of
the Americas (Cai et al., 2011).

The interdecadal shifts in ENSO are more clearly repre-
sented in the IPO, which is generally understood to be a long
term modulator of its influence (Power et al., 1999). The in-
dex is derived from empirical orthogonal functions (EOFs)

of low-pass-filtered (11-year) SST anomalies in the pacific
(Parker et al., 2007). Variability within the 10–30-year band
is often assumed to be quasi-periodic and unstable, vary-
ing in amplitude and frequency over time (Lorenzo et al.,
2023). Some studies, however, suggest greater stability, iden-
tifying consistent ∼ 18.6-year cycles in the Pacific Decadal
Oscillation (PDO) and ENSO, potentially linked to the LNC
(Yasuda, 2009, 2018). Understanding the global influence of
these interdecadal cycles is essential for improving climate
models and predicting long-term hydrological trends, partic-
ularly in regions vulnerable to water scarcity and extreme
events.

This study sought to identify and quantify interdecadal
rainfall cycles globally, using the Gaussian Clustering of
Wavelet Amplitude Power Spectrum (GC-WAPS; Selkirk
et al., 2025) method applied to the GPCC v2022 dataset
(1891–2020). We aimed to identify Global Rainfall Cycles
(GRCs) and assess their spatial distribution, phase alignment,
and correlation with major climate modes. Our results re-
veal the global presence of the three cycles (∼ 13, ∼ 20 and
∼ 28 years), with coherent phase alignment in regions like
Australasia and the Americas driven partially by the El Niño
Southern Oscillation. However, the climate modes cannot
fully account for the scale of influence observed.

2 Study Area and Data

The global dataset used was from the Global Precipitation
Climatology Centre (GPCC), established by the World Me-
teorological Organization in 1989 and operated by Deutscher
Wetterdienst (National Meteorological Service of Germany).
The GPCC Full Data product is based on in situ rain gauge
data from over 85 000 stations and is the most commonly
used global precipitation dataset for climate variability re-
search as it incorporates many sources from international
regional projects (Sun et al., 2018). The GPCC Full Data
Monthly Product Version 2022 was used at a 2.5° gridded
resolution comprising 3638 land surface data points cover-
ing all years from 1891 to 2020. No independent homogene-
ity testing was performed in addition to the multi-stage qual-
ity control and harmonisation applied in the data preparation
(Becker et al., 2013). Annual rainfall at each grid point was
calculated by summing the monthly data for each calendar
year. The effect of spatial interpolation in eastern Australia
was tested against the infilled daily station data from 1889 to
2022 via the SILO database, hosted by the Queensland De-
partment of Environment and Science (Jeffrey et al., 2001),
also summed by calendar year.

GPCC v2022 makes substantial use of infilling by the in-
sertion of climatological normals where an entire 5° grid is
without station data. The dataset also includes monthly val-
ues on the number of gauges informing each grid point. To
determine the percentage of years with sufficient gauge cov-
erage for each grid point, we identified the percentage of
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Figure 1. GPCC v2022 dataset precipitation grid points coloured by the percentage of years in which all monthly time series measurements
are informed by at least one station gauge.

complete years where all months were informed by one or
more gauges (Fig. 1). GPCC identifies three dominant un-
certainty sources for the gridded analyses: systematic gauge
bias, stochastic sampling error from sparse/uneven station
density and residual errors (spatial and temporal discontinu-
ities of precipitation measurements). Uncertainty fields and
corrections are available but were not used in this analysis
as we sought to mitigate their influence by limiting the in-
puts by filtering gauge-informed months, reducing sampling
noise by aggregation to annual data, and comparison to in-
dependent point-gauge datasets over eastern Australia (see
Sect. 3.1).

Several indices were chosen to characterise various cli-
mate cycles. The Niño 3.4 index was chosen over composite
ENSO indices (e.g., Southern Oscillation Index) due to its
simpler, cleaner signal and stronger correlation with global
rainfall. It consists of area-averaged sea surface temperature
(SST) anomalies over the Niño 3.4 region (5° N–5° S, 170–
120° W) from 1870 to 2025. It was sourced from the NOAA
Physical Sciences Laboratory (2025a) and is calculated us-
ing the HadISST1.1 dataset (Rayner et al., 2003). Monthly
values were averaged by calendar year. The Interdecadal Pa-
cific Oscillation (IPO) index, representing annual variation
in decadal-scale Pacific SST variability (1871 to 2016) was
sourced from the New Zealand Ministry for the Environment
(2017).

The North Atlantic Oscillation (NAO) index represents
the atmospheric pressure variability between the Subtropi-
cal (Azores) High and the Subpolar Low. Monthly values
from 1950 to 2025 were sourced from the NOAA National
Centers for Environmental Information (2025) and averaged
by calendar year. The Indian Ocean Dipole (IOD) index is a
measure of the anomalous SST gradient between the west-
ern (50–70° E, 10° S–10° N) and south-eastern (90–110° E,
10° S–0°) Indian Ocean. Monthly values from January 1871

to January 2025 were sourced from the NOAA Physical Sci-
ences Laboratory (2025b), calculated using the HadISST1.1
dataset (Saji and Yamagata, 2003). Values were averaged by
calendar year and the time series was detrended using linear
regression.

3 Methods

3.1 Gaussian Clustering of Wavelet Amplitude Power
Spectrum (GC-WAPS)

To identify interdecadal cycles in global rainfall, we em-
ployed the Gaussian Clustering of Wavelet Amplitude Power
Spectrum (GC-WAPS) method, a novel approach for detect-
ing significant periodic signals in large sets of time series
data (Selkirk et al., 2025). GC-WAPS applies a continuous
wavelet transform to decompose rainfall time series into fre-
quency components and generates a global mean power spec-
trum (GMPS) by averaging the absolute wavelet coefficients
across the time series. Peaks in the GMPS at each site are au-
tomatically selected and collated. A Gaussian mixture model
(GMM) is used to identify clusters of periods with a density
higher than expected from generated red noise. Within each
cluster the values are subtracted from the cluster mean, and
the significance calculated as indication of spread relative to
red noise by t test.

The previous application of GC-WAPS was able to use
high-quality rain gauge data to detect subtle interdecadal cy-
cles in eastern Australia (Selkirk et al., 2025). In the current
study, the GPCC v2022 dataset includes substantial clima-
tological infilling (Fig. 1). Periods of missing data manifest
as flat segments in the time series and can hinder the detec-
tion of correct periodicity. To ensure reliable cycle identifica-
tion, we filtered the dataset to include only grid points with
at least 90 % of years from 1891 to 2020 (130 years) hav-
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ing all months informed by at least one gauge. This reduced
the number of usable grid points by 75 %, from 3638 to 909,
with coverage concentrated in Australia, Europe, India, and
North America (Fig. 1).

To ensure trends from the changing global climate did
not introduce harmonic distortion into the wavelet spectrum
(Stéphane, 2009), we applied the augmented Dickey-Fuller
test using the statsmodels package (Seabold and Perktold,
2010) to detect non-stationarity in the rainfall data at each
grid point. Sites with significant trends (p < 0.05) were de-
trended using a linear least-squares fit with the SciPy de-
trend function (Virtanen et al., 2020) before wavelet analy-
sis. The data were normalised by variance (1/σ 2) to ensure
the wavelet transforms at each site were directly comparable
(Torrence and Compo, 1998).

GC-WAPS applies a continuous wavelet transform using
the Morlet wavelet function, with a bandwidth of 6 and a cen-
tre frequency of 1. The PyWavelets package (Lee et al., 2019)
was used for signal decomposition, and the scaleogram pack-
age facilitated visualization of the wavelet transform. Cycle
periods were analyzed from 1 to 80 years in 0.1-year incre-
ments. The wavelet function extends past the analysed time-
series as it approaches the boundary and this extension is
padded with zeros in the data. This makes the magnitude of
the spectrum within this region less reliable, but periodicity
can still be identified. For a Morlet function, the COI short-
ening at each end of the series is proportional to the period by
a factor of

√
2 (Torrence and Compo, 1998) giving a ∼ 50-

year practical upper limit. An 80-year cycle is well beyond
the Cone of Influence (COI) for a 130-year time series how-
ever the extended range was used as a scan for longer periods
in global rainfall that may warrant further investigation.

Prominent cycles were extracted using the SciPy Signal
module Find Peaks function (Virtanen et al., 2020), clustered
with GMM using the scikit-learn package (Pedregosa et al.,
2011), and tested for significance against red noise using a
t test (Selkirk et al., 2025).

The GPCC v2022 dataset is derived from underlying
gauged data at individual sites, spatially interpolated to a
0.25° resolution using a modified SPHEREMAP empirical
interpolation method, and then aggregated to the 2.5° res-
olution used in this study via spatial averaging (Schneider
et al., 2022). To validate the GPCC v2022 data and assess
the impact of aggregating station data on cycle identification,
we filtered the gridded dataset to the eastern Australia region
and compared the results with those from the SILO gauged
dataset (Selkirk et al., 2025). Similarly, the GPCC data were
also tested across three longitudinal sectors: The Americas
(−150 to −30°), Europe and Africa (−30 to 60°), Australa-
sia (60 to 180°). The entire GC-WAPS method was repeated
on data filtered to these three sectors to test whether the pat-
terns were consistent between these regions.

A sliding-window Pearson correlation was computed be-
tween the observed signal and a reference cycle (sine wave
of matching period) across a range of lags. Within each pre-

defined window corresponding to a single period of the cy-
cle, the year yielding the highest correlation was recorded
as the best-fit offset. This approach identifies the lag that
maximizes linear similarity between the observed and ref-
erence signals, providing a localized phase estimate. Phase
offsets from all sites were aggregated into a histogram for
each cycle length. Each histogram typically exhibited two
peaks: one corresponding to signals in phase, and the other
approximately 180° out of phase (i.e., T/2 offset from the
reference period T ).The results of the optimised phase for
the Australasian region were compared to those of Selkirk et
al. (2025) for consistency. All analyses were undertaken in
Python.

3.2 Individual Site Analysis

Individual site analyses were conducted using the full GPCC
v2022 dataset (3638 grid points) to quantify the presence
and strength of the Global Rainfall Cycles (GRCs) at each
site, overcoming the limitations of the filtered dataset used in
GC-WAPS (Sect. 3.1). The filtered dataset (909 grid points)
was too restrictive for assessing global influence, and the GC-
WAPS method’s sensitivity to data quality posed challenges
with low-resolution data. In wavelet analysis, a time series
missing or infilled data can reduce cycle power, leading to
false negatives, while noise can broaden and merge peaks,
causing false positives in cycle length extraction. To address
this, we developed two complementary methods to detect and
characterize the GRCs across all sites.

First, we tested each site’s time series for non-stationarity
using the augmented Dickey-Fuller test from the statsmod-
els package (Seabold and Perktold, 2010), detrending sites
with significant trends (p < 0.05) using a linear least-squares
fit via the SciPy detrend function (Virtanen et al., 2020).
We then extracted the significant GRC periods (12.9-, 19.9-,
28.2-, 35.9-, 45.4-year; Sect. 4.1.1) from the wavelet trans-
form at each site. Second, to assess cycle consistency, we also
generated a sine wave for each GRC period, phase aligned to
the Australasian region.

The Pearson correlation coefficient (R) and associated
p value were calculated using the pearsonr function from
the SciPy stats package (Virtanen et al., 2020) to evaluate
cyclicity in three ways: (1) correlation between the extracted
wavelet and rainfall anomalies, providing a direct measure of
each cycle’s contribution to rainfall while accounting for fre-
quency and amplitude modulation; (2) correlation between
the fixed sine wave and rainfall anomalies, indicating the sta-
bility of the cycle’s influence on rainfall; and (3) correlation
between the fixed sine wave and the extracted wavelet, as-
sessing phase alignment and cycle stability. The null hypoth-
esis was that the distributions are uncorrelated and normally
distributed. The coefficient of determination (R2) was cal-
culated to estimate the variance in rainfall explained by each
cycle. Additionally, the signal-to-noise ratio (SNR) was com-
puted as the peak amplitude of the extracted wavelet divided
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by the site’s standard deviation (σ ), providing a measure of
cycle amplitude relative to background variability. This ap-
proach enabled detection of the GRCs even at sites with low
temporal coverage.

3.3 Global Distribution

To visualize and quantify the global distribution and spatial
clustering of the GRCs, we analyzed the full GPCC v2022
dataset, experimenting with various correlation thresholds to
optimize the representation of cycle influence. We filtered
sites based on the Pearson correlation coefficients (R) cal-
culated in Sect. 3.2, retaining only those exceeding specified
thresholds: 0.1 for rainfall correlations, representing at least
1 % of rainfall variance (R2

≥ 0.01), and 0.25 for wavelet
correlations, selected through experimentation to best visual-
ize spatial coherence and eliminate random phase mixtures.
This process largely removed regions with random mixtures
of positive and negative correlations in adjacent sites, high-
lighting areas of coherent phase alignment and high corre-
lation. For each GRC period, we calculated the number of
sites above the threshold, the mean variance explained by the
cycle (R2) from both the fixed sine wave (x̄var(fixed)) and ex-
tracted wavelet (x̄var(wavelet)), as well as the mean signal-to-
noise ratio (x̄SNR) across these sites, providing overall met-
rics of the cycles’ global influence.

3.4 Climate Modes

To visualize the global impact of climate modes, we applied
a method similar to that used for the GRCs in Sect. 3.2. The
Pearson correlation coefficient (R) and associated p value
were calculated between the annual rainfall anomaly at each
site and the annual time series of each climate mode index,
using the pearsonr function from the SciPy stats package
(Virtanen et al., 2020). Sites were filtered using the same cor-
relation thresholds as in Sect. 3.3. The Global Mean Power
Spectrum (GMPS) was generated for each climate mode in-
dex by averaging the absolute wavelet coefficients across
the time series, following the wavelet analysis procedure in
Sect. 3.1. Prominent cyclic components were identified us-
ing the SciPy Signal module’s find_peaks function (Virtanen
et al., 2020). For climate mode cycles with periods close to
the GRCs (12.9-, 19.9 and 28.2-years), the wavelet was ex-
tracted at those periods and compared to a fixed sine wave
phase aligned to the Australasian region.

4 Results

4.1 GMM Clusters of the Global Rainfall Cycles
(GRCs)

Three significant cycles (p < 0.05) were found in the global
data, with clusters centred around 12.9-, 19.9- and 28.2-year
(Fig. 2). These cycles are similar to those previously ob-

served in eastern Australia using the same method (13.1-,
20.4- and 29.1-year; Selkirk et al., 2025). However, the den-
sity of sites within each Gaussian distribution was not as
high, leading to less prominent clustering (Fig. S1b in the
Supplement). This is consistent with our expectations, as the
∼ 13- and∼ 20-year cycles were nearly ubiquitous across all
Australian sites, a pattern not assumed to hold globally.

The results of the red noise replication of GC-WAPS
method (grey outline, Fig. 2b) exhibit a gradual decline in
density with increasing cycle length, consistent with the ex-
pected spectral characteristics of a first-order autoregressive
AR(1) process. This indicates the clustering observed in the
GPCC data (filled grey, Fig. 2b) is not an artefact of the ana-
lytical method.

Two other cycles of longer periodicity emerge in the global
analysis with means centred at 35.9- and 45.4-year. Though
these two cycles are significant (p < 0.05) they appear at a
relatively small number of sites. They are also approaching
the upper limit of periodicity (∼ 50-year) that can be justified
by wavelet analysis from a 130-yeartime series. Although
their presence is noted, it is also treated with some caution.

Breaking the results down into three broad sectors (Fig. 3)
allowed us to test whether the patterns were consistent across
longitudinal geographic sectors. The ∼ 13-year cycle re-
mains significant (p < 0.05) across all three regions a with
slight variation in its mean (from 11.5 to 13.2-years). Such
variability is expected since wavelet analysis does not pro-
vide a high degree of precision with regard to cycles, espe-
cially in noisy data.

Clustering around the ∼ 20- and ∼ 28-year periods is ev-
ident in the underlying histograms (grey filled) for all re-
gions when compared to random red noise, but is sometimes
slightly below the significance threshold (p = 0.1, 0.14).
This suggests that while the cycles may be less dense in these
regions, they are nonetheless present. Regional comparison
reveals the highest cycle density in Australasia, with consis-
tent evidence of the same cycles across all regions and no
emergence of alternative periods.

4.2 Individual Site Analysis

We expanded the analysis to all sites using the precise mean
values for GRCs (12.9-, 19.9-, 28.2-year) phase aligned to
the Australasian region. An incomplete time series may ob-
scure significant peaks in the GMPS (Fig. 4), yet their pres-
ence can still be detected using more direct methods. By
way of example, wavelet analysis at one chosen site in South
America with only 26.2 % of gauge-informed monthly val-
ues reveals a broad concentration of power between 15 to
35-year periods, marked by a large red zone, with the GMPS
(Fig. 4b, d) showing its largest peak at 24.7-years. The auto-
mated peak finder, indicated by vertical red lines, identifies
only this single peak between 10 and 40 years. Yet, extract-
ing the 12.9-, 19.9-, and 28.2-year cycles (orange) reveals
they are closely in phase with those in the Australasian re-
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Figure 2. Results for the cycle selection from GC-WAPS at 909 sites. (a) location of all data points with≥ 90 % of time series informed by at
least one gauge record within each 2.5° grid cell. (b) GMM clustering of cycles significant against a red noise background (t test, p < 0.05).
The filled light grey histogram represents all periods extracted from the filtered GPCC v2022 annual rainfall data by wavelet analysis. The
grey outline is derived from the same process repeated on red noise, showing an even decay in power with no apparent clustering. Significant
clustering occurred around cycles highlighted in blue (12.9-year), red (19.9-year) and green (28.2-year). Two additional cycles of 35.9- and
45.4-years were also found to be significant (p < 0.05).

gion (green). The 19.9-year cycle exhibits a strong ampli-
tude, with a high signal-to-noise ratio (SNR) of 1.11 and
an extracted wavelet accounting for 16 % of annual rainfall
variance (R2). This demonstrates that, while incomplete time
series are unsuitable for GC-WAPS analysis, they can effec-
tively confirm the presence and phase of these cycles through
targeted extraction, enabling a clearer global distribution to
be found that is not limited to regions of high-quality data.

This can be contrasted with a second example using a
complete time series (100 % gauge-informed monthly val-
ues) from the Sierra Nevada in North America (Fig. 5). Here,
three cycles at 14.3-, 21.1-, and 29.6-year are identified in
the GMPS (Fig. 5d) but are 180° out of phase with the 12.9-
, 19.9-, and 28.2-year GRCs (Fig. 5e–g). The slight differ-
ences between these GMPS-derived periods and the GRC
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Figure 3. Separation of rainfall data into three longitudinal segments. (a) The Americas (−150 to −30°); the ∼ 13-year cycle is significant
(p < 0.05), with clustering of cycles (pale grey histogram) at ∼ 20- and ∼ 28-year marginally non-significant (p > 0.05). (b) Europe and
Africa (−30 to 60°); the ∼ 13-year cycle is significant (p < 0.05), with clustering at ∼ 20- and ∼ 28-year also marginally non-significant
(p > 0.05). (c) Australasia (60 to 180°); all three cycles (∼ 13-, ∼ 20-, and ∼ 28-year) are present and highly significant (p < 0.05).

periods are attributable to the relatively broad peaks in the
power spectrum.

Individual analyses was also performed on the 35.9-
and 45.4-year cycles identified in the GC-WAPS results
(Sect. 4.1.1). However, these cycles exhibit notably lower
signal-to-noise ratios (< 0.5) compared to the first three, oc-
cur less frequently across the dataset, and approach the upper
limit of what can be reliably resolved using wavelet analysis
given the length of the time series. As such, their interpreta-
tion carries greater uncertainty.

4.3 Spatial Distribution of the Global Rainfall Cycles
(GRCs)

This individual site analysis was conducted for all 3638 sites
in the GPCC v2022 dataset, with results aggregated to map
the global spatial distribution (Fig. 6). The influence of the
GRCs on rainfall at each site exhibits clear spatial coherence,
this influence is subtle, yet widespread. The left panels of
Fig. 6a–c show the correlation of the GRC’s directly to rain-
fall. However, since the signal of the cycles is often weak (ei-
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Figure 4. Single site analysis in South America near the border of Venezuela and Brazil. (a) Time series of annual rainfall (light blue),
overlaid with the combined waveform of the 12.9-, 19.9- and 28.2-year cycles. (b) The wavelet analysis spectrum. (c) Site location on a
global map. (d) The GMPS of the wavelet analysis with horizontal red lines showing the peaks automatically selected. (e–g) individual
analysis shown for three main cycles picked up in the global GMM showing annual rainfall anomaly (light blue), fixed cycle extracted
from wavelet analysis (orange), and a generated sine wave for each period (12.9-, 19.9-, 28.2-year) phase aligned to the Australasian region.
Although the 12.9- and 19.9-year cycles were not detected by the automated GMPS peak selection, the extracted wavelets exhibit near-perfect
phase alignment with the GRCs.

ther inherently or due to noisy and incomplete data) a more
generous distribution is shown where the extracted wavelet
for each cycle is correlated to the fixed sine wave (Fig. 6d–
f). This is more indicative of phase alignment than rainfall
contribution, broadly speaking it often shows a wider phase
coherence in the region surrounding the significant clusters.

For instance, the 12.9-year GRC shows its spread from
Australia through Indonesia into northern Asia, all in phase,
while disconnected clusters in northern Africa, Europe, and
the Middle East (Fig. 6a). As the threshold is relaxed these
disparate areas merge into a near-continuous region in the
opposite phase (Fig. 6d). In the conterminous United States,
we can see more detail as the east and west coasts align to op-
posite phases. The average annual rainfall variance explained
at significant 12.9-year GRC sites is 6.19 % using the fixed
sine wave, rising to 11.16 % with the extracted wavelet. An
average signal-to-noise ratio of 0.89 hints at a much larger
influence, indicating that the average amplitude of the cycle
is close to one standard deviation of annual rainfall.

The 19.9-year GRC (Fig. 6b, e) exhibits similar regions of
influence. Eastern Australia is in phase, with its influence ex-
tending into Asia and aligning with the east coast of the USA.
The west coast of the USA, along with Chile and Brazil, ap-
pears in the opposite phase. The average annual rainfall vari-
ance explained at significant 19.9-year GRC sites is 5.78 %
using the fixed sine wave, rising to 10.99 % with the extracted
wavelet. Again the SNR of 0.91 approaches one standard
deviation, indicating that while the interannual fluctuations
dominate the total variance, the underlying cycle still exerts
a substantial influence.

The 28.2-year GRC shows its greatest influence over Eu-
rope, central South America and in the opposite phase over
Greenland (Fig. 6c, f). The average annual rainfall variance
explained at significant sites is 7.62 % using the fixed sine
wave, rising to 9.53 % with the extracted wavelet. The influ-
ence on the Australasian region is notably weaker than the
12.9- and 19.9-year cycles and the in-phase signal clustered
closer to the eastern coastline.

Hydrol. Earth Syst. Sci., 29, 5737–5754, 2025 https://doi.org/10.5194/hess-29-5737-2025



T. F. Selkirk et al.: Interdecadal rainfall cycles in spatially coherent global regions 5745

Figure 5. Single site analysis in Sierra Nevada, America. (a) Time series of annual rainfall (light blue), overlayed with the combined
waveform of the 12.9-, 19.9- and 28.2-year cycles. (b) The wavelet analysis spectrum. (c) Site location on a global map. (d) The GMPS
of the wavelet analysis with horizontal red lines showing the peaks automatically selected. (e–g) Individual analysis shown for three main
cycles picked up in the global GMM showing annual rainfall anomaly (light blue), fixed cycle extracted from wavelet analysis (orange) and
a generated sine wave for the chosen period phase locked to the Australasian region. The alignment of the 12.9-, 19.9- and 28.2-year cycles
are all approximately 180° out of phase with GRCs.

Global distributions of the 35.9- and 45.4-year cycles are
included in the Supplement (Fig. S2). As noted previously
these are treated with some caution. The 35.9-year cycle
shows only small regions of significant clustering widely dis-
persed across the globe. The 45.4-year cycle shows particu-
larly strong influence in the Arctic region of Russia, and is
significant at 18 % of sites accounting for 11 %–12 % of rain-
fall variance.

4.4 Relationship to Climate Modes

To explore potential drivers of the Global Rainfall Cycles
(GRCs), we analysed their correlation with major climate
modes. Figure 7 displays the spatial distribution and cyclic
components while Fig. 8 directly compares the extracted
wavelets to evaluate phase alignment.

The IPO shows the strongest spectral alignment with the
GRCs, as GMPS peaks at 12.8- and 19.5-year (Fig. 7f),
closely match the 12.9- and 19.9-year GRCs. Its influ-
ence spans Australasia, North America, and South Amer-
ica (Fig. 7b), mirroring the GRC’s distribution (Fig. 6b, e).

Time series analysis confirms this, with the 12.9- and 19.9-
year GRCs showing high correlations (R = 0.93) with IPO-
derived wavelet cycles, although 180° out of phase (Fig. 8a,
b). This is to be expected as the IPO index is focussed on
the interdecadal component of SST. The 19.9-year compo-
nent of the Niño 3.4 index can be seen in the GMPS (Fig. 7e)
but the extracted wavelet (Fig. 8b) shows how weak the sig-
nal is, contributing only 4 % of temperature variance. This
weak signal may be related to the diminishing correlation of
the 19.9-year cycle after the 1960s (Fig. 8b) addressed in the
discussion. The effect of the Cone of Influence on wavelet
amplitude can be observed on the extracted 12.9- and 28.2-
year cycles (Fig. 8a, c) with a roll off in amplitude as they
approach the start and end boundaries. The 3 to 7-year quasi-
periodicity in the Niño 3.4 index is well established and can
be seen in the GMPS (Fig. 7e). However, these results show
a secondary peak of higher magnitude at 12.8-year, aligning
closely with the 12.9-year GRC. Its influence in Australa-
sia, South America, and Indonesia (Fig. 7a) overlaps with
the 12.9-year GRC’s distribution, and time series comparison
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Figure 6. Global distribution of the 12.9-, 19.9- and 28.2-year GRCs modelled as sine waves with phase offsets matching the Australasian
region. (a–c) The Pearson correlation coefficient (R) of the sine wave to rainfall anomaly at each site with significant sites (p < 0.05)
circled in black, and display threshold of 1 % of annual rainfall variance calculated by coefficient of determination (R2). (d–f) The Pearson
correlation coefficient (R) of the GRC sine wave to the corresponding extracted wavelet with a threshold of 0.25. Both methods show
clustering in the same regions for each cycle. Comparison to the wavelet allows a broader picture of the cycle influence by controlling the
masking effect of high frequency noise.

reveals a strong correlation (R = 0.96, inverted, Fig. 8a), in-
dicating that La Niña phases may amplify this cycle in these
regions.

We also find similar peaks to the 28.2-year GRC in Niño
3.4 (27.7-year) and the IPO (27.9-year). The correlation is
excellent (> 0.98), although it requires an ∼ 8-year shift of
the 28.2-year GRC, suggesting possible methodological arte-
facts in the phase calculation (see Sect. 5). The global distri-
bution of the 28.2-year GRC (Fig. 6c, f) shows several re-
gions of overlap with IPO including the east coast of Aus-
tralia, Indonesia, Africa and the American West Coast.

Although there are cycles in the NAO and IOD, these bear
little relationship to the GRCs. The IOD shows an 11.5-
year and the NAO a 14.1-year peak (Fig. 7f) but neither of
these align well to the 12.9-year GRC in phase or period
when directly compared (Fig. S3 in the Supplement). The
correlation between eastern Australian rainfall and the NAO
seems unexpected (Fig. 7d), while not a primary driver stud-

ies have shown a teleconnection between eastern Australian
rainfall and NAO over decadal timescales (Sun et al., 2015).
The cluster of IOD influence along the Great Australia Bight
(south coast) is not reflected in any of the GRC distributions.

There is a consistent ∼ 45-year cycle across the IPO, IOD
and NAO climate modes (Fig. 7f–h), similar to the 45.4-year
cycle identified by GC-WAPS (Fig. 2). The length of this
cycle relative to the time series (∼ 130 years) and its posi-
tion near the practical COI limit (∼ 50 years; Sect. 3.1) war-
rants caution, although it may merit future investigation with
longer datasets as it suggests the possibility of higher level
drivers which may be influencing the interdecadal compo-
nent of each.

5 Discussion and conclusions

This study has identified three Global Rainfall Cycles (12.9-,
19.9-, 28.2-year) with coherent phase alignment in regions
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Figure 7. Left panels (a–d) show the Pearson correlation (R) between rainfall and the relevant climate mode where it is over 0.1. Sites where
the correlation is significant (p < 0.05) are circled in black. The right panels (e–f) show the wavelet GMPS for each climate mode. Values
listed in the legends represent periods (in years) automatically selected.
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Figure 8. Comparison of the fixed 12.9-, 19.9-, and 28.2-year GRCs with the extracted cycle from wavelet analysis of the major climate
modes. (a) Strong phase alignment can be seen between the 12.9-year GRC, Niño 3.4 and IPO (R > 0.9). (b) The 19.9-year GRC aligns
well (R > 0.8), but with the correlation weakening post-1960. (c) The ∼ 28-year cycles in Niño 3.4 and IPO also fit closely to the 28.2 GRC
although offset by 8-year.

like Australasia and the Americas. Validation of our results
at individual sites aligns well with existing studies (Mitra
and Dutta, 1992; Williams et al., 2021). An overlap with the
spatial distribution and interdecadal frequency of Niño 3.4
index and Interdecadal Pacific Oscillation (IPO) was identi-
fied. However, the variance explained by the 12.9- and 19.9-
year GRCs at individual sites compared to the corresponding
variance in ENSO and IPO suggest that these climate modes
cannot fully account for the impact observed, pointing to the
potential influence of an unknown external driver.

5.1 Validation and alignment to previous research

The cycles presented here are consistent with previous re-
gional studies on periodicity. If we compare the findings of
Williams et al. (2021) in Sierra Nevada rainfall (significant
cycle of 13- to 15-years; 21 % of variance) to the nearest
GPCC grid point (36.25° N, 118.75° W; Fig. 5), the results
match closely. Here we see the 12.9-year GRC (Fig. 5e) with
a similar variance of 14 % and an SNR of 0.95. The cycle
is 180° out of phase with Australasia, which is consistent
with ENSO teleconnection where increased rainfall in Aus-
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tralia coincides with lower rainfall on the west coast of the
United States (Fig. 7a; Timmermann et al., 2018). The re-
gion also shows a cluster of significant sites on the global
maps, negatively correlated to the 12.9-year GRC (Fig. 6a,
d). This strongly supports the notion that the ∼ 13-year cy-
cle identified by Williams et al. (2021) is the 12.9-year GRC
identified here.

A similar consistency can be found for the 19.9-year GRC
in regions were a ∼ 20-year cycle was previously attributed
to the 18.6-year Lunar Nodal Cycle (LNC). Mitra and Dutta
(1992) analysed 115 years of summer monsoonal rainfall
(1871–1985) in the Assan macroregion of India. They at-
tributed the cyclic signal to the LNC, but this required a phase
inversion to stay aligned. In contrast, individual analysis of
the closest site in the GPCC dataset (26.25° N, 91.25° E,
Fig. S4 in the Supplement) shows the 19.9-year GRC consis-
tently in phase to the extracted wavelet (R = 0.85), account-
ing for 9 % of rainfall variance and an SNR of 0.63. The re-
gion also shows up as significant and positively correlated in
the global maps (Fig. 6b).

5.2 Relative contributions of the GRCs and climate
modes to rainfall

The observed GRCs show strong alignment with interdecadal
cycles in the Niño 3.4 region of the Pacific Ocean and the
IPO. Lower SST (i.e., La Niña conditions) and negative IPO
phases are typically associated with increased rainfall in Aus-
tralasia and reduced rainfall across specific regions in the
Americas, particularly in latitudes between the tropics and
the polar circles. This teleconnection is also evident in both
the 12.9- and 19.9-year GRCs, suggesting that ENSO and the
IPO are likely contributors to these rainfall patterns. How-
ever, the signal in rainfall at each site is far stronger than
we would expect if ENSO were the sole driver of this phe-
nomenon. The mean variance explained across significant
sites of the 19.9-year GRC and the total influence of Niño3.4
on rainfall show similar values (10.99 %, 10.62 % respec-
tively), even though the 19.9-year component of the climate
mode only accounts for roughly 4 % of variance. The same
is true for the 12.9-year GRC and Niño 3.4 variance ex-
plained at significant sites (11.16 %, 10.62 % respectively),
though the contribution of that cycle to the climate mode is
only 11 %. The coefficient of determination for the 12.9- and
19.9-year GRC in rainfall is equal to or exceeds that of the
corresponding cycles within the Niño 3.4 and IPO climate
modes. This indicates that their direct influence on rainfall is
at least as strong as their contribution to these modes, which
themselves explain only a portion of rainfall variance, and
suggests they are not the sole drivers of these cycles.

Choosing a site with a strong ENSO signal allows us to
visualise the discrepancy more clearly. Figure 9 compares
the direct influence of the ENSO (Niño 3.4 index) to rain-
fall at a single site in north-eastern Australia. For this site the
normalised 19.9-year GRC has a markedly smaller influence

in the Niño 3.4 index than directly in the rainfall anomaly
(Fig. 9d–f). If the sole mechanism of action was through the
climate mode, we would expect the scale of rainfall anomaly
to be approximately proportional to the cycle within ENSO,
but we find the opposite. The 19.9-year GRC has a stable
amplitude and periodicity as well as a strong SNR (0.81) in
explaining the direct rainfall anomaly (Fig. 9d), whereas the
signal in Niño 3.4 shows a decreasing amplitude, with a mean
SNR of 0.34 (Figs. 8b, 9e). Recent studies demonstrated a
marked increase in ENSO variability (standard deviation and
amplitude) over the 1950s–1990s, followed by a sharp fall
post 2000 (Fedorov et al., 2020). The authors suggested that
changes such as the warming of the Indian Ocean and At-
lantic multi-decadal variability can strengthen the Walker cir-
culation and dampen ENSO along with internal modulation
producing multi-decadal swings in amplitude. The weaken-
ing signal in ESNO may be an indication of the possible ef-
fects of the changing global climate on these cycles, even
though it is not observed directly in rainfall. The Pearson cor-
relation of the 19.9-year cycle to Niño 3.4 (0.20) and rainfall
at the site (0.24) are reasonably similar, and yet ENSO only
accounts for 24 % of the total rainfall variance (R2). Hence,
the 19.9-year GRC effect is stronger and cleaner in explain-
ing rainfall than it is for Niño 3.4. We can expand this by
looking at the spatial distributions of each.

The 12.9-year GRC shows clear overlap with the Niño 3.4
but notable divergences in their spatial distributions are also
evident. The 12.9- and 28.2-year GRCs show clusters of sig-
nificant spatial coherence in northern Canada and Green-
land where the ENSO influence is weak or non-existent. The
19.9-year GRC also shows strong agreement with the IPO
(Fig. 7b), which is easier to identify in the correlation to the
extracted wavelet (Fig. 6e) due to the strength of the signal.
South America, Africa, the western USA, northern Canada
and Alaska all show consistent spatial and phase coherence.
However, the 19.9-year GRC cycle also shows clustering
around the American east coast, the Australian west coast,
Brazil, and up through eastern Asia. This reinforces the inter-
pretation that a direct mechanism may be acting on rainfall
as well as the climate modes where the influence would be
amplified.

Climate modes are complex phenomena, defined by
chaotic interactions of multiple drivers such as surface air
temperatures, wind patterns, solar insolation, subsurface
temperature anomalies, the thermocline, humidity distribu-
tion, ocean currents and salinity. The interdecadal variability
within them has long been thought to be quasi-periodic and
essentially unpredictable (Power and Colman, 2006; Tim-
mermann et al., 2018). This research suggests that the rel-
atively weak but stable 12.9-, 19.9- and 28.2-year cycles
within the El Niño Southern Oscillation are having a more
significant and consistent impact on global rainfall than cur-
rently assumed.
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Figure 9. Comparison of contributions of the relative strength of the 19.9-year cycle in rainfall at a selected site in Australia and the Niño 3.4
SST. (a) Normalised (z-score) rainfall anomaly for the site, complete time series with no infilling. (b) Site location on a global map. (c) The
wavelet spectrum of annual rainfall. (d) The rainfall anomaly with the 19.9-year cycle extracted by wavelet analysis (orange), and the fixed
19.9-year GRC (green). (e) The rainfall anomaly shown with theNiño 3.4 SST time series (orange) scaled by linear regression to visualise
contribution to rainfall, and the 19.9-year component of the Niño 3.4 SST time series (green). (f) the rainfall anomaly with the 19.9-year
cycle extracted from rainfall (orange) and the theNiño 3.4 SST time series (green). Though the two cycles are mostly in phase, the GRC in
rainfall has a much higher SNR (0.81 versus 0.34) as well a consistent amplitude and period.

5.3 Limitations of traditional significance testing in
large-scale cycle detection

The GC-WAPS method allowed for the identification of sub-
tle cyclic influence across a large number of sites. However,
our results suggest that the common practice of using sig-
nificance over red noise to detect individual cycles may be
overly stringent for this type of analysis. The current method
of identifying statistically significant frequencies was devel-
oped largely in response to the criticism that wavelet analy-
sis was susceptible to bias in subjective visual analysis of the
spectra (Torrence and Compo, 1998), albeit with a focus on
individual time series. However, when looking at large sets
of data, there are other means to test whether specific cycles
are occurring randomly – namely the number of sites show-

ing cycles, their phase, and spatial distribution. These meth-
ods are of critical importance when dealing with climate sys-
tems where the global data are frequently spread across mul-
tiple sites, noisy and incomplete. For example, if we filter the
GPCC v2022 dataset by the Torrence and Compo (1998) test
for significance at 95 %, exceeding the threshold for at least
half the time span (60 years), at each individual site for the
12.9-year cycle, we end up with only 15 significant sites of
the full 3639. These would be dismissed as Type I errors and
cause us to miss the other lines of evidence presented above.
For an individual time series, the significance test is still the
most rigorous, but these results should also make us aware of
its limitations and the risk of Type II errors.

The GC-WAPS method provides an approximate overview
of dominant cycles in large datasets but also requires follow-
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up analysis due to inherent limitations. The automated peak
selection from GMPS is sensitive to missing peaks that may
have a broad power, or a low signal to noise ratio. Regional
comparison revealed the highest cycle density in Australasia,
with consistent evidence of the same cycles across all regions
and no emergence of alternative periods. However a more
granular site by site analysis was still required to verify these
cycles and the scale of their influence (Sect. 4.2, 4.3).

5.4 Gridded versus gauged datasets

A validation of the method was also performed to assess
whether transitioning from a purely gauged dataset to grid-
ded would substantially affect the results. Much work around
periodicity in rainfall derived from the research of Robert
Currie, and he was adamant that any form of spatial av-
eraging would mask the periodic signal (Currie and Vines,
1996). This also helped to address the uncertainties arising
from the spatial interpolation of the gauge observations in
GPCC v2022. We repeated the GC-WAPS analysis of the
gridded GPCC dataset but limited to the region of eastern
Australia studied by Selkirk et al. (2025) using the SILO
gauged dataset. The results were nearly identical for the three
significant cycles at ∼ 13-, ∼ 20- and ∼ 30-year (Fig. S1 in
the Supplement). The GPCC data provided even clearer clus-
tering of these cycles than did Selkirk et al. (2025), with re-
duced spread (σ ) and increased density of the Gaussian dis-
tributions while remaining highly significant (p < 0.0001)
over red noise. The improved clarity from evenly spaced
gridded points, rather than a loss of signal, was a positive
outcome and suggested that the cycle detection is not sig-
nificantly disrupted by spatial interpolation, or its inherent
uncertainty, at this scale using the GC-WAPS method.

5.5 Quantifying the influence

Accurately quantifying the global influence of interdecadal
cycles is challenging. One the most common methods for
estimating the contribution of a cycle or driver to time se-
ries variance is the coefficient of determination (R2) (Power
et al., 1999; Torrence and Compo, 1998). However, caution
must be used in the interpretation for evaluating long-period
signals in high-variance fields like rainfall. The dominance
of interannual noise can obscure the contribution of lower-
frequency oscillations, even when they have spatial coher-
ence, a strong amplitude and climatic relevance. This can
result in underestimating the importance of meaningful sig-
nals, particularly in short or noisy records. Accordingly, re-
liance on R2 alone risks Type II errors, and should be com-
plemented by other metrics to gain a more complete picture.

Using the extracted wavelet for a given period can give
a clear indication of the cyclic influence at a particular site,
yet this too can be misleading. Wavelet analysis combines
truncated sine waves across the time series, capturing fre-
quency modulation inherent in natural cycles and potentially

providing a clearer variance estimate. However, if these com-
ponents consistently drift from the mean frequency toward
longer or shorter periods, it may misrepresent the true cy-
cle length. Thus, comparing the fixed sine wave with the
extracted wavelet (Fig. 6d–f) offers a more reliable indica-
tor of regions where the GRC periods remain stable over
time. For the 12.9- and 19.9-year GRC the variance from
extracted wavelet averaged over all significant sites was
nearly double that of the fixed wavelet (6.19 % : 11.16 %, and
5.78 % : 10.99 % respectively), indicating the marked differ-
ence between the two methods. We can assume the true vari-
ance may lie somewhere in-between these two values, though
neither give an indication of the cycle amplitude. Even large
amplitude cycles can yield low R2 values when overshad-
owed by interannual noise. Metrics like signal-to-noise ratio
(SNR) are therefore useful complements, capturing the mag-
nitude of the signal relative to background variability.

The influence of the GRCs becomes far more apparent
when assessed by amplitude rather than variance. Across all
significant sites, the average SNR for the three cycles ranges
from 0.83 to 0.91, which is nearly as large as the standard
deviation of the underlying rainfall anomaly. SNR can be
interpreted as a reflection of the strength of external forc-
ing relative to internal variability(Feldstein, 2000). The ob-
served disparity between the high SNR (∼ 0.87) and low
explained variance (∼ 8 %) mirrors the signal-to-noise para-
dox where real-world signals can exhibit coherent and cli-
matically meaningful patterns despite appearing statistically
weak due to being embedded in noisy systems (Scaife and
Smith, 2018). This reinforces the findings of Sect. 5.1, indi-
cating the probable presence of an unknown external driver,
acting on both ENSO (through SST) and directly at the site.

5.6 Implications and future research

The implications of these findings are significant for the de-
velopment of large-scale climate models and global rain-
fall forecasting. Collaborative frameworks like the Coupled
Model Intercomparison Project Phase 6 (CMIP6) underpin
much of our understanding of climate behaviour, informing
the work of scientists, policymakers, and organizations such
as the Intergovernmental Panel on Climate Change (IPCC).
If the 12.9- and 19.9-year cycles, in particular, are as spatially
coherent and globally distributed as the analysis suggests,
they offer a potential new dimension to improve the fidelity
of these models. Even modest periodicities, when persistent,
can shape multi-year drought and flood risks, modulate re-
gional climate modes, and influence the likelihood of rain-
fall extremes. Their inclusion could specifically strengthen
seasonal-to-decadal rainfall forecasts in the regions of great-
est GRCs influence. However, before they can be incorpo-
rated into such forecasting a viable driver and mechanism
would need to be proposed. The next step would be to try and
observe these cycles in connected climate variables which
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may lend weight to their effect and provide a pathway to their
source.

The practical implications extend beyond academic re-
search. Better characterisation of low-frequency rainfall cy-
cles could inform agricultural planning, water resource man-
agement, and even insurance and reinsurance industries,
where understanding the timing and recurrence of rainfall ex-
tremes is critical for managing risk. Although the mechanism
behind these periodicities remains unknown, their consis-
tency suggests they may be the result of as-yet-unrecognized
forcing in the climate system. Future research should adopt
a broader systems-level perspective to explore their origins.
Regardless of their source, these cycles merit integration into
both the scientific understanding and practical management
of global rainfall variability.

Code availability. The PyWavelets package was used for decom-
posing the annual rainfall signal and is available though a Zen-
odo repository (https://doi.org/10.5281/zenodo.13306773; Lee et
al., 2024). Visualisation of the wavelet spectrum was generated us-
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National Centers for Environmental Information, 2025). The In-
terdecadal Pacific Oscillation data (https://data.mfe.govt.nz/table/
89382-interdecadal-pacific-oscillation-18712016) was accessed
through the Ministry for the Environment (2017) of the New
Zealand Government.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/hess-29-5737-2025-supplement.

Author contributions. All authors contributed to the conceptualisa-
tion of the study. TFS was responsible for developing code, con-
ducting data analysis, and creating the visualizations. JAW provided

guidance on the statistical methodology and interpretation of re-
sults, while AWW offered insights into the theoretical framework
and the direction of the study. TFS drafted the manuscript, with all
authors contributing to its revision and final approval.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors. Also, please note that this paper has not re-
ceived English language copy-editing. Views expressed in the text
are those of the authors and do not necessarily reflect the views of
the publisher.

Financial support. This research was supported by an Australian
Government Research Training Program (RTP) Scholarship.

Review statement. This paper was edited by Nadia Ursino and re-
viewed by two anonymous referees.

References

Amonkar, Y., Doss-Gollin, J., and Lall, U.: Compound Cli-
mate Risk: Diagnosing Clustered Regional Flooding at
Inter-Annual and Longer Time Scales, Hydrology, 10, 67,
https://doi.org/10.3390/hydrology10030067, 2023.

An, S.-I. and Wang, B.: Interdecadal Change of the Structure
of the ENSO Mode and Its Impact on the ENSO Frequency,
J. Climate, 13, 2044–2055, https://doi.org/10.1175/1520-
0442(2000)013<2044:ICOTSO>2.0.CO;2, 2000.

Baines, P. G.: Patterns of decadal climate variability and their im-
pact on global rainfall, Procedia Environmental Sciences, 6, 70–
87, https://doi.org/10.1016/j.proenv.2011.05.008, 2011.

Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm,
K., Schneider, U., and Ziese, M.: A description of the global
land-surface precipitation data products of the Global Precipita-
tion Climatology Centre with sample applications including cen-
tennial (trend) analysis from 1901–present, Earth Syst. Sci. Data,
5, 71–99, https://doi.org/10.5194/essd-5-71-2013, 2013.

Cai, W., Rensch, P. van, Cowan, T., and Hendon, H. H.: Telecon-
nection Pathways of ENSO and the IOD and the Mechanisms for
Impacts on Australian Rainfall, Journal of Climate, 24, 3910–
3923, https://doi.org/10.1175/2011JCLI4129.1, 2011.

Cayan, D. R., Dettinger, M. D., Diaz, H. F., and
Graham, N. E.: Decadal Variability of Precipita-
tion over Western North America, Journal of Cli-
mate, 11, 3148–3166, https://doi.org/10.1175/1520-
0442(1998)011<3148:DVOPOW>2.0.CO;2, 1998.

Hydrol. Earth Syst. Sci., 29, 5737–5754, 2025 https://doi.org/10.5194/hess-29-5737-2025

https://doi.org/10.5281/zenodo.13306773
https://github.com/alsauve/scaleogram
https://opendata.dwd.de/climate_environment/GPCC/
https://opendata.dwd.de/climate_environment/GPCC/
https://doi.org/10.5676/DWD_GPCC/FD_M_V2022_250
https://www.longpaddock.qld.gov.au/silo/view-point-data/
https://www.longpaddock.qld.gov.au/silo/view-point-data/
https://psl.noaa.gov/data/timeseries/month/
https://psl.noaa.gov/data/timeseries/month/DS/Nino34/
https://psl.noaa.gov/data/timeseries/month/DS/DMI/
https://psl.noaa.gov/data/timeseries/month/DS/DMI/
https://www.ncei.noaa.gov/access/monitoring/nao/
https://data.mfe.govt.nz/table/89382-interdecadal-pacific-oscillation-18712016
https://data.mfe.govt.nz/table/89382-interdecadal-pacific-oscillation-18712016
https://doi.org/10.5194/hess-29-5737-2025-supplement
https://doi.org/10.3390/hydrology10030067
https://doi.org/10.1175/1520-0442(2000)013<2044:ICOTSO>2.0.CO;2
https://doi.org/10.1175/1520-0442(2000)013<2044:ICOTSO>2.0.CO;2
https://doi.org/10.1016/j.proenv.2011.05.008
https://doi.org/10.5194/essd-5-71-2013
https://doi.org/10.1175/2011JCLI4129.1
https://doi.org/10.1175/1520-0442(1998)011<3148:DVOPOW>2.0.CO;2
https://doi.org/10.1175/1520-0442(1998)011<3148:DVOPOW>2.0.CO;2


T. F. Selkirk et al.: Interdecadal rainfall cycles in spatially coherent global regions 5753

Chowdhury, R. K. and Beecham, S.: South Australian rainfall –
trends and climate drivers, in: Water and Climate: Policy Im-
plementation Challenges; Proceedings of the 2nd Practical Re-
sponses to Climate Change Conference, Water and Climate: Pol-
icy Implementation Challenges – 2nd Practical Responses to Cli-
mate Change Conference 2012, Canberra, Australia, 1–3 May
2012, ISBN 9780858259119, 2012.

Currie, R. G.: Detection of 18.6 year nodal induced drought in
the Patagonian Andes, Geophysical Research Letters, 10, 1089–
1092, https://doi.org/10.1029/GL010i011p01089, 1983.

Currie, R. G.: Evidence for 18.6-year lunar nodal drought in
western North america during the past millennium, Jour-
nal of Geophysical Research: Atmospheres, 89, 1295–1308,
https://doi.org/10.1029/JD089iD01p01295, 1984.

Currie, R. G.: Luni-solar 18.6- and 10–11-year solar cycle signals
in South African rainfall, International Journal of Climatology,
13, 237–256, https://doi.org/10.1002/joc.3370130302, 1993.

Currie, R. G.: Luni-solar and solar cycle signals in lake Saki
varves and further experiments, Int. J. Climatol., 15, 893–917,
https://doi.org/10.1002/joc.3370150805, 1995.

Currie, R. G. and Vines, R. G.: Evidence For Luni–
Solar Mn And Solar Cycle Sc Signals In Australian
Rainfall Data, International Journal of Climatology,
16, 1243–1265, https://doi.org/10.1002/(SICI)1097-
0088(199611)16:11<1243::AID-JOC85>3.0.CO;2-E, 1996.

Davi, N. K., Jacoby, G. C., Curtis, A. E., and Baatarbileg,
N.: Extension of drought records for central Asia using
tree rings: West-central Mongolia, J. Climate, 19, 288–299,
https://doi.org/10.1175/JCLI3621.1, 2006.

Fedorov, A. V., Hu, S., Wittenberg, A. T., Levine, A. F. Z.,
and Deser, C.: ENSO Low-Frequency Modulation and Mean
State Interactions, in: Geophysical Monograph Series, edited by:
McPhaden, M. J., Santoso, A., and Cai, W., Wiley, 173–198,
https://doi.org/10.1002/9781119548164.ch8, 2020.

Feldstein, S. B.: The Timescale, Power Spectra, and Cli-
mate Noise Properties of Teleconnection Patterns, J.
Climate, 13, 4430–4440, https://doi.org/10.1175/1520-
0442(2000)013<4430:TTPSAC>2.0.CO;2, 2000.

Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the
cross wavelet transform and wavelet coherence to geophys-
ical time series, Nonlin. Processes Geophys., 11, 561–566,
https://doi.org/10.5194/npg-11-561-2004, 2004.

Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin,
G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose,
R. S., and Zhang, H.-M.: Extended Reconstructed Sea Sur-
face Temperature, Version 5 (ERSSTv5): Upgrades, Valida-
tions, and Intercomparisons, Journal of Climate, 30, 8179–8205,
https://doi.org/10.1175/JCLI-D-16-0836.1, 2017.

Jeffrey, S. J., Carter, J. O., Moodie, K. B., and Beswick, A. R.: Us-
ing spatial interpolation to construct a comprehensive archive of
Australian climate data, Environmental Modelling & Software,
16, 309–330, https://doi.org/10.1016/S1364-8152(01)00008-1,
2001.

Kane, R. P.: Periodicities, ENSO effects and trends of some South
African rainfall series: An update, South African Journal of
Science, 105, 199–207, https://doi.org/10.4102/sajs.v105i5/6.90,
2009.

Lee, G. R., Gommers, R., Waselewski, F., Wohlfahrt, K., and
O’Leary, A.: PyWavelets: A Python package for wavelet

analysis, Journal of Open Source Software, 4, 1237,
https://doi.org/10.21105/joss.01237, 2019.

Lee, G., Gommers, R., Wohlfahrt, K., Wasilewski, F., O’Leary,
A., Holger, Khetarpal, A., Millman, J., Sauvé, A., Clauss,
C., Agrawal, A., Pelt, D. M., Oliveira, H., Yu, F., Brett,
M., Pelletier, M., SylvainLan, Tricoli, D., Margffoy Tuay, E.
A., Burovski, E., Choudhary, S., Solak, A. C., asnt, Smith,
A., rthr-rllr, Schneck, C., Goldberg, C., Goertzen, D., and
Stephan, D.: PyWavelets/pywt: v1.7.0 (v1.7.0), Zenodo [code],
https://doi.org/10.5281/zenodo.13306773, 2024.

Lorenzo, E. D., Xu, T., Zhao, Y., Newman, M., Capotondi,
A., Stevenson, S., Amaya, D. J., Anderson, B. T., Ding,
R., Furtado, J. C., Joh, Y., Liguori, G., Lou, J., Miller, A.
J., Navarra, G., Schneider, N., Vimont, D. J., Wu, S., and
Zhang, H.: Modes and Mechanisms of Pacific Decadal-Scale
Variability, Annual Review of Marine Science, 15, 249–275,
https://doi.org/10.1146/annurev-marine-040422-084555, 2023.

Ministry for the Environment: Interdecadal Pacific Os-
cillation, 1871–2016, MfE Data Service, Wellington,
New Zealand [data set], https://data.mfe.govt.nz/table/
89382-interdecadal-pacific-oscillation-18712016/ (last ac-
cess: 16 December 2024), 2017.

Mitra, K. and Dutta, S. N.: 18.6-year luni-solar nodal and 10–11-
year solar signals in rainfall in India, International Journal of Cli-
matology, 12, 839–851, https://doi.org/10.1002/joc.3370120807,
1992.

Murumkar, A. R. and Arya, D. S.: Trend and Periodicity Analysis in
Rainfall Pattern of Nira Basin, Central India, AJCC, 03, 60–70,
https://doi.org/10.4236/ajcc.2014.31006, 2014.

NOAA National Centers for Environmental Information (NCEI):
North Atlantic Oscillation (NAO) index, Climate Monitoring,
NOAA, Asheville, North Carolina, USA [data set], https://www.
ncei.noaa.gov/access/monitoring/nao/ (last access: 9 Febru-
ary 2025), 2025.

NOAA Physical Sciences Laboratory (PSL): Monthly Niño-3.4 In-
dex Time Series (HadISST1.1-based), NOAA/ESRL, Boulder,
USA [data set], https://psl.noaa.gov/data/timeseries/month/DS/
Nino34/ (last access: 10 March 2025), 2025a.

NOAA Physical Sciences Laboratory (PSL): Monthly Dipole Mode
Index (DMI) Time-Series (HadISST1.1-based), NOAA/ESRL
Physical Sciences Laboratory, Boulder, USA [data set], https://
psl.noaa.gov/data/timeseries/month/DMI/ (last access: 10 March
2025), 2025b.

Parker, D., Folland, C., Scaife, A., Knight, J., Colman, A., Baines,
P., and Dong, B.: Decadal to multidecadal variability and the cli-
mate change background, Journal of Geophysical Research: At-
mospheres, 112, https://doi.org/10.1029/2007JD008411, 2007.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Per-
rot, M., and Duchesnay, É.: Scikit-learn: Machine Learning in
Python, Journal of Machine Learning Research, 12, 2825–2830,
2011.

Power, S. and Colman, R.: Multi-year predictability in a
coupled general circulation model, Climate Dynamics, 26,
https://doi.org/10.1007/s00382-005-0055-y, 2006.

Power, S., Casey, T., Folland, C., Colman, A., and
Mehta, V.: Inter-decadal modulation of the impact of

https://doi.org/10.5194/hess-29-5737-2025 Hydrol. Earth Syst. Sci., 29, 5737–5754, 2025

https://doi.org/10.1029/GL010i011p01089
https://doi.org/10.1029/JD089iD01p01295
https://doi.org/10.1002/joc.3370130302
https://doi.org/10.1002/joc.3370150805
https://doi.org/10.1002/(SICI)1097-0088(199611)16:11<1243::AID-JOC85>3.0.CO;2-E
https://doi.org/10.1002/(SICI)1097-0088(199611)16:11<1243::AID-JOC85>3.0.CO;2-E
https://doi.org/10.1175/JCLI3621.1
https://doi.org/10.1002/9781119548164.ch8
https://doi.org/10.1175/1520-0442(2000)013<4430:TTPSAC>2.0.CO;2
https://doi.org/10.1175/1520-0442(2000)013<4430:TTPSAC>2.0.CO;2
https://doi.org/10.5194/npg-11-561-2004
https://doi.org/10.1175/JCLI-D-16-0836.1
https://doi.org/10.1016/S1364-8152(01)00008-1
https://doi.org/10.4102/sajs.v105i5/6.90
https://doi.org/10.21105/joss.01237
https://doi.org/10.5281/zenodo.13306773
https://doi.org/10.1146/annurev-marine-040422-084555
https://data.mfe.govt.nz/table/89382-interdecadal-pacific-oscillation-18712016/
https://data.mfe.govt.nz/table/89382-interdecadal-pacific-oscillation-18712016/
https://doi.org/10.1002/joc.3370120807
https://doi.org/10.4236/ajcc.2014.31006
https://www.ncei.noaa.gov/access/monitoring/nao/
https://www.ncei.noaa.gov/access/monitoring/nao/
https://psl.noaa.gov/data/timeseries/month/DS/Nino34/
https://psl.noaa.gov/data/timeseries/month/DS/Nino34/
https://psl.noaa.gov/data/timeseries/month/DMI/
https://psl.noaa.gov/data/timeseries/month/DMI/
https://doi.org/10.1029/2007JD008411
https://doi.org/10.1007/s00382-005-0055-y


5754 T. F. Selkirk et al.: Interdecadal rainfall cycles in spatially coherent global regions

ENSO on Australia, Climate Dynamics, 15, 319–324,
https://doi.org/10.1007/s003820050284, 1999.

Rayner, N. A., Parker, D. E. Horton, E. B., Folland, C. K., Alexan-
der, L. V., Rowell, D. P., Kent, E. C. Kaplan, A.: Global analyses
of sea surface temperature, sea ice, and night marine air tem-
perature since the late nineteenth century, J. Geophys. Res., 108,
4407, https://doi.org/10.1029/2002JD002670, 2003.

Rayner, N. A., Parker, D. E. Horton, E. B., Folland, C. K., Alexan-
der, L. V., Rowell, D. P., Kent, E. C. Kaplan, A.: Niño 3.4 SST
Index from the HadISST1.1, NOAA [data set], https://psl.noaa.
gov/data/timeseries/month/DS/Nino34/, last access: 12 Decem-
ber 2024.

Saji, N. H. and Yamagata, T.: Possible impacts of Indian Ocean
Dipole mode events on global climate, Climate Res., 25, 151–
169, 2003.

Saji, N. H. and Yamagata, T.: Dipole Mode Index (DMI)
Monthly Time-series, NOAA [data set], https://psl.noaa.gov/
data/timeseries/month/DS/DMI/, last access: 12 December 2024.

Sauvé, A. and Nowacki, D.: scaleogram: v0.9.5, GitHub [code],
https://github.com/alsauve/scaleogram (last access: 31 October
2022), 2023.

Scaife, A. A. and Smith, D.: A signal-to-noise para-
dox in climate science, npj Clim. Atmos. Sci., 1, 28,
https://doi.org/10.1038/s41612-018-0038-4, 2018.

Schneider, U., Hänsel, S., Finger, P., Rustemeier, E., and Ziese, M.:
GPCC Full Data Monthly Version 2022 at 2.5°: Monthly Land-
Surface Precipitation from Rain-Gauges built on GTS-based and
Historic Data: Globally Gridded Monthly Totals, GPCC [data
set], https://doi.org/10.5676/DWD_GPCC/FD_M_V2022_250,
2022.

Scientific Information for Land Owners (SILO): SILO
Climate Data, Department of Environment, Science
and Innovation, Queensland Government [data set],
https://www.longpaddock.qld.gov.au/silo/view-point-data/
(last access: 29 September 2022), 2024.

Seabold, S. and Perktold, J.: Statsmodels: Econometric and Sta-
tistical Modeling with Python, Python in Science Confer-
ence, Austin, Texas, 92–96, https://doi.org/10.25080/Majora-
92bf1922-011, 2010.

Selkirk, T. F., Western, A. W., and Webb, J. A.: Interdecadal cycles
in Australian annual rainfall, Hydrol. Earth Syst. Sci., 29, 2167–
2184, https://doi.org/10.5194/hess-29-2167-2025, 2025.

Stéphane, M. (Ed.): A Wavelet Tour of Signal Processing, Third
Edition., Academic Press, Boston, https://doi.org/10.1016/B978-
0-12-374370-1.50001-9, 2009.

Sun, C., Li, J., Feng, J., and Xie, F.: A Decadal-Scale Telecon-
nection between the North Atlantic Oscillation and Subtropical
Eastern Australian Rainfall, Journal of Climate, 28, 1074–1092,
https://doi.org/10.1175/JCLI-D-14-00372.1, 2015.

Sun, F. and Yu, J.-Y.: A 10–15-Yr Modulation Cycle of
ENSO Intensity, Journal of Climate, 22, 1718–1735,
https://doi.org/10.1175/2008JCLI2285.1, 2009.

Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu,
K.-L.: A Review of Global Precipitation Data Sets: Data Sources,
Estimation, and Intercomparisons, Reviews of Geophysics, 56,
79–107, https://doi.org/10.1002/2017RG000574, 2018.

Timmermann, A., An, S.-I., Kug, J.-S., Jin, F.-F., Cai, W., Capo-
tondi, A., Cobb, K. M., Lengaigne, M., McPhaden, M. J.,
Stuecker, M. F., Stein, K., Wittenberg, A. T., Yun, K.-S., Bayr,
T., Chen, H.-C., Chikamoto, Y., Dewitte, B., Dommenget, D.,
Grothe, P., Guilyardi, E., Ham, Y.-G., Hayashi, M., Ineson, S.,
Kang, D., Kim, S., Kim, W., Lee, J.-Y., Li, T., Luo, J.-J., Mc-
Gregor, S., Planton, Y., Power, S., Rashid, H., Ren, H.-L., San-
toso, A., Takahashi, K., Todd, A., Wang, G., Wang, G., Xie, R.,
Yang, W.-H., Yeh, S.-W., Yoon, J., Zeller, E., and Zhang, X.:
El Niño–Southern Oscillation complexity, Nature, 559, 535–545,
https://doi.org/10.1038/s41586-018-0252-6, 2018.

Torrence, C. and Compo, G. P.: A Practical
Guide to Wavelet Analysis, B. Am. Meteo-
rol. Soc., 79, 61–78, https://doi.org/10.1175/1520-
0477(1998)079<0061:APGTWA>2.0.CO;2, 1998.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy,
T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W.,
Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman,
K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Lar-
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