Articles | Volume 29, issue 19
https://doi.org/10.5194/hess-29-4913-2025
https://doi.org/10.5194/hess-29-4913-2025
Research article
 | 
01 Oct 2025
Research article |  | 01 Oct 2025

Combining uncertainty quantification and entropy-inspired concepts into a single objective function for rainfall-runoff model calibration

Alonso Pizarro, Demetris Koutsoyiannis, and Alberto Montanari

Related authors

Invited perspectives: Challenges and future directions in improving bridge flood resilience
Enrico Tubaldi, Christopher J. White, Edoardo Patelli, Stergios Aristoteles Mitoulis, Gustavo de Almeida, Jim Brown, Michael Cranston, Martin Hardman, Eftychia Koursari, Rob Lamb, Hazel McDonald, Richard Mathews, Richard Newell, Alonso Pizarro, Marta Roca, and Daniele Zonta
Nat. Hazards Earth Syst. Sci., 22, 795–812, https://doi.org/10.5194/nhess-22-795-2022,https://doi.org/10.5194/nhess-22-795-2022, 2022
Short summary
A comparison of tools and techniques for stabilising unmanned aerial system (UAS) imagery for surface flow observations
Robert Ljubičić, Dariia Strelnikova, Matthew T. Perks, Anette Eltner, Salvador Peña-Haro, Alonso Pizarro, Silvano Fortunato Dal Sasso, Ulf Scherling, Pietro Vuono, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 25, 5105–5132, https://doi.org/10.5194/hess-25-5105-2021,https://doi.org/10.5194/hess-25-5105-2021, 2021
Short summary
Identifying the optimal spatial distribution of tracers for optical sensing of stream surface flow
Alonso Pizarro, Silvano F. Dal Sasso, Matthew T. Perks, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 24, 5173–5185, https://doi.org/10.5194/hess-24-5173-2020,https://doi.org/10.5194/hess-24-5173-2020, 2020
Short summary

Cited articles

Acuña, P. and Pizarro, A.: Can continuous simulation be used as an alternative for flood regionalisation? A large sample example from Chile, J. Hydrol., 626, 130118, https://doi.org/10.1016/j.jhydrol.2023.130118, 2023. 
Alexander, A. A., Kumar, D. N., Knoben, W. J. M., and Clark, M. P.: Evaluating the parameter sensitivity and impact of hydrologic modeling decisions on flood simulations, Adv. Water Resour., 181, 104560, https://doi.org/10.1016/j.advwatres.2023.104560, 2023. 
Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset, Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, 2018a. 
Amorocho, J. and Espildora, B.: Entropy in the assessment of uncertainty in hydrologic systems and models, Water Resour. Res., 9, 1511–1522, 1973. 
Download
Short summary
We introduce the ratio of uncertainty to mutual information (RUMI), a new metric to improve rainfall-runoff simulations. RUMI better captures the link between observed and simulated stream flows by considering uncertainty at a core computation step. Tested on 99 catchments and with the GR4J model, it outperforms traditional metrics by providing more reliable and consistent results. RUMI paves the way for more accurate hydrological predictions.
Share