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Abstract. A novel metric for rainfall-runoff model calibra-
tion and performance assessment is proposed. By integrat-
ing entropy and mutual information concepts as well as
uncertainty quantification through the Brisk Local Uncer-
tainty Estimator for Hydrological Simulations and Predic-
tions (BLUECAT) (likelihood-free approach), the ratio of
uncertainty to mutual information (RUMI) offers a robust
framework for quantifying the shared information between
observed and simulated streamflows. RUMI’s capability to
calibrate rainfall-runoff models is demonstrated using the
GR4J rainfall-runoff model over 99 catchments from var-
ious macroclimatic zones, ensuring a comprehensive eval-
uation. Four additional performance metrics and 50 hydro-
logical signatures are also used for performance assessment.
Key findings indicate that RUMI-based simulations provide
more consistent and reliable results compared to the tradi-
tional Kling–Gupta efficiency (KGE), with improved perfor-
mance across multiple metrics and reduced variability. Addi-
tionally, RUMI includes uncertainty quantification as a core
computation step, offering a more holistic view of model per-
formance. This study highlights the potential of RUMI to
enhance hydrological modelling through better performance
metrics and uncertainty assessment, contributing to more ac-
curate and reliable hydrological predictions.

1 Introduction

1.1 Motivation

Rainfall-runoff models are valuable tools for studying catch-
ment responses to different hydrometeorological inputs and
variations in catchment characteristics. Rainfall-runoff mod-
elling considers various modelling choices that can signif-
icantly affect modelling results (see, e.g., Alexander et al.,
2023; Knoben et al., 2019; Melsen et al., 2019; Mendoza et
al., 2016; Thirel et al., 2024; Trotter et al., 2022). Among
these, it is worth mentioning the model structure, spatial and
temporal discretisation, input data, and calibration strategies.
The latter refers not only to the selection period for warm-
up, calibration, and validation but also to one or more hydro-
logical variable(s) considered for calibration purposes. The
adopted objective function, which quantifies the similarity
between observations and simulations, is also critical. Previ-
ous studies have highlighted the need for particular objective
functions to reproduce case-specific parts of the streamflow
time series (see, e.g., Acuña and Pizarro, 2023; Garcia et al.,
2017; Mizukami et al., 2019). For instance, if the modeller
intends to reproduce high flows (without caring too much
about low flows), specific objective functions for high flows
are recommended (Hundecha and Bárdossy, 2004; Mizukami
et al., 2019). The same can be said for low or middle flows
(Garcia et al., 2017).

The Nash–Sutcliffe efficiency (NSE; Nash and Sutcliffe,
1970) and the Kling–Gupta efficiency (KGE; Gupta et al.,
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2009) are two widely used objective functions for calibra-
tion purposes in rainfall-runoff modelling. Despite their pop-
ularity, alternatives are available in the literature (see, e.g.,
without intending to provide a comprehensive list, Kling et
al., 2012; Koutsoyiannis, 2025; Onyutha, 2022; Pechlivani-
dis et al., 2014; Pizarro and Jorquera, 2024; Pool et al.,
2018; Tang et al., 2021; Yilmaz et al., 2008). The reader is
also referred to the following studies: Bai et al. (2021); Bar-
ber et al. (2020); Clark et al. (2021); Jackson et al. (2019);
Lamontagne et al. (2020); Lin et al. (2017); Liu (2020);
Melsen et al. (2025); Pushpalatha et al. (2012); Vrugt and
de Oliveira (2022); and Ye et al. (2021). However, to the best
of our knowledge, only a small number of objective func-
tions – considering uncertainty quantification explicitly as
a core step in its computation – are available (even though
hydrology has witnessed a growing emphasis on uncertainty
quantification, driven by the need to enhance our understand-
ing of catchments and to provide decision-makers with ac-
curate model predictions). Advancements in the direction of
proposing a novel and easy-to-use objective function that
considers uncertainty quantification in its formulation is the
primary goal of this paper.

1.2 Uncertainty quantification methods

Various methodologies aimed at better treating uncertainty
are available, each differing in their underlying assump-
tions, mathematical rigour, and treatment of error sources
(see, e.g., Beven, 2018; Blazkova and Beven, 2002, 2004;
Krzysztofowicz, 2002). Among these approaches (see Gupta
and Govindaraju, 2023, for a recent review), we can men-
tion the additive Gaussian and generalised-Gaussian process,
the inference in the spectral domain, the time-varying model
parameters, and multi-model ensemble methods. Addition-
ally, two philosophies for uncertainty analysis are widely
recognised, following formal and informal Bayesian meth-
ods (Kennedy and O’Hagan, 2001; Kuczera et al., 2006).

Formal Bayesian methods offer robust frameworks for un-
certainty estimation, but they come with their own chal-
lenges. Identifying a suitable likelihood function for hydro-
logical models involves careful assumptions that must be
transparent and understandable to end users (Beven, 2024;
Vrugt et al., 2022). Statistical analysis of model errors and
likelihood-free approaches have also been proposed. For ex-
ample, Montanari and Koutsoyiannis (2012) proposed con-
verting deterministic models into stochastic predictors by fit-
ting model errors with meta-Gaussian probability distribu-
tions. Similarly, Sikorska et al. (2015) proposed the near-
est neighbouring method to estimate the conditional proba-
bility distribution of the error. More recently, Koutsoyiannis
and Montanari (2022a) introduced a simple method to simu-
late stochastic runoff responses called the Brisk Local Un-
certainty Estimator for Hydrological Simulations and Pre-
dictions (BLUECAT). BLUECAT is a likelihood-free ap-
proach that relies on data only. BLUECAT has recently

been applied coupled with climate extrapolations (Kout-
soyiannis and Montanari, 2022b), rainfall-runoff modelling
in a variety of different hydroclimatic conditions (Jorquera
and Pizarro, 2023), and comparisons with machine-learning
methods (Auer et al., 2024; Rozos et al., 2022).

Informal Bayesian methods are more flexible, but they
lack statistical rigour. A notable example of a relatively sim-
ple approach is the generalised likelihood uncertainty es-
timation (GLUE) method introduced by Beven and Bin-
ley (1992). GLUE operates within the framework of Monte
Carlo analysis coupled with Bayesian or fuzzy uncertainty
estimation and propagation. Since its introduction, GLUE
has seen widespread application across various fields, in-
cluding rainfall-runoff modelling (among others). Its pop-
ularity is mainly due to its conceptual simplicity and ease
of implementation. It can account for all causes of uncer-
tainty, either explicitly or implicitly, and allows for evalu-
ating multiple competing modelling approaches, embracing
the concept of equifinality (Beven, 1993). However, GLUE
has faced criticism in terms of the subjective decisions re-
quired in its application and how these affect prediction lim-
its (informal likelihood function, lack of maximum likeli-
hood parameter estimation, and omission of explicit model
error consideration). This subjectivity might lead to not be-
ing formally Bayesian (for that reason, GLUE includes the
term “generalised” in its name). Proponents of GLUE ar-
gue that it is a practical methodology for assessing uncer-
tainty in non-ideal cases (Beven, 2006), while critics ad-
vocate for coherent probabilistic approaches. This ongoing
debate underscores the need to establish common ground
between these perspectives. Under various conditions, both
Bayesian and informal Bayesian methods can yield simi-
lar estimates of predictive uncertainty. Building on previ-
ous work (see, e.g., Blasone et al., 2008), researchers have
compared GLUE with formal Bayesian approaches. In this
regard, both formal Bayesian approaches as well as GLUE
can be used with advanced Monte Carlo Markov chain
(MCMC) schemes such as the DiffeRential Evolution Adap-
tive Metropolis (DREAM, Vrugt et al., 2008). It is important
to note that defining likelihood functions and searching the
solution space during calibration are two independent issues.
One way to get around these problems relies on the limits of
acceptability that are typically used (but not mandatory) with
GLUE (see, e.g., Beven et al., 2024; Beven and Lane, 2022;
Freer et al., 2004; Page et al., 2023; Vrugt and Beven, 2018),
involving more thoughtful decisions about the data (although
still with subjectivity). Additionally, studies have addressed
these questions by assessing the uncertainty in synthetic
river flow data using GLUE (see, e.g., Montanari, 2005)
and introducing open-source software packages such as the
CREDIBLE uncertainty estimation toolbox (CURE; Page
et al., 2023), coded in MATLAB (https://www.lancaster.ac.
uk/lec/sites/qnfm/credible/default.htm, last access: 3 Decem-
ber 2024). CURE includes several methods, among them the
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forward uncertainty estimation, GLUE, and Bayesian statis-
tical methods.

In addition to these methods, information theory offers
valuable tools for quantifying information in hydrological
models. Shannon’s (1948) seminal work on information the-
ory introduced measures such as Shannon entropy, which
quantifies the expected surprise (or information) in a sam-
ple from a distribution of states. Shannon entropy can be ex-
tended to joint distributions of multiple variables, including
conditional dependencies. In hydrology, Shannon entropy
and mutual information have been used to assess the uncer-
tainty in discharge predictions, as demonstrated by Amoro-
cho and Espildora (1973) and Chapman (1986). More re-
cently, Weijs et al. (2010a, b), Gong et al. (2013, 2014), Pech-
livanidis et al. (2014, 2016), and Ruddell et al. (2019) used
information-theoretic objective functions for model evalua-
tion. Despite the challenges associated with accounting for
uncertainties and statistical dependencies in time series data,
information-theoretic objective functions have proven valu-
able for streamflow simulations, complementing traditional
measures such as the Nash–Sutcliffe efficiency (NSE; Nash
and Sutcliffe 1970) and the Kling–Gupta efficiency (KGE;
Gupta et al., 2009; Kling et al., 2012).

1.3 Paper’s goals

In this work, we study the combination of likelihood-free
(BLUECAT) and information theory approaches for rainfall-
runoff modelling over 99 catchments having different hydro-
climatic contexts, with the intention to quantify and reduce
uncertainty in hydrological predictions. The ratio of uncer-
tainty to mutual information (RUMI) is proposed as a dimen-
sionless metric to be adopted as an objective function for cal-
ibration purposes. The target aligns with the 20th of the 23
unsolved problems in hydrology (20. How can we disentan-
gle and reduce model structural/parameter/input uncertainty
in hydrological prediction?, Blöschl et al., 2019). In detail,
the following questions are herein addressed:

a. How can the calibration of deterministic model param-
eters be improved by using a stochastic formulation of
the deterministic model?

b. How can uncertainty resulting from the final stochastic
model be incorporated into the calibration process of the
deterministic model?

This paper is organised as follows: Sect. 2 presents the
used database (catchment properties and data availability),
rainfall-runoff model description, and calibration strategies.
Section 3 shows the calibration and validation results of
RUMI-based simulations (as well as KGE-based ones). Daily
runoff simulations and hydrological signatures are consid-
ered. Strengths and limitations are discussed in Sect. 4, and
conclusions are drawn at the end.

2 Methods

2.1 Data

Ninety-nine catchments were selected from the CAMELS-
CL database (Alvarez-Garreton et al., 2018a) to ensure that
only catchments with near-natural hydrological regimes were
included (see Fig. 1 for location and chosen catchment char-
acteristics; five macroclimatic zones are covered). The lat-
ter was achieved through eight specific criteria: first, the
daily discharge time series, though possibly non-consecutive,
had to have less than 25 % missing data for the period
1990–2018. Additionally, catchments with large dams were
excluded (big_dam = 0). Moreover, catchments with more
than 10 % of discharge allocated to consumptive uses were
excluded (i.e. interv_degree< 0.1 to be considered). Catch-
ments with glacier cover higher than 5 % were also excluded
(i.e. lc_glacier< 5 % to be considered). Furthermore, the se-
lected catchments had less than 5 % of their area classified as
urban (imp_frac< 5 %), and irrigation abstractions did not
exceed 20 % (crop_frac< 20 %). Areas with forest planta-
tions covering more than 20 % of the catchment area were
also excluded (fp_frac< 20 %). Finally, catchments show-
ing signs of artificial regulation in their hydrographs were
removed. It is worth mentioning that after each criterion
mentioned above, there is a description in the parentheses
that follows the CAMELS-CL nomenclature. For instance,
glacier cover is catalogued as “lc_glacier”, and large dams,
as “big_dam”.

The chosen catchments have diverse characteristics, re-
flecting significant variability. For instance, the smallest
catchment has a size of 35 km2, whereas the largest one has
a size of 11 137 km2 (median catchment size is 672 km3).
In terms of mean annual precipitation, it ranges from 94 to
3660 mm yr−1 (median value of 1393 mm yr−1). The arid-
ity index also covers a wide spectrum of values, ranging
from 0.3 (southern Chile) to 31.6 (northern Chile). Its me-
dian is 0.69. In terms of mean elevations, they range be-
tween 118 (western, Pacific Ocean) and 4270 (eastern, An-
des Mountains) metres above sea level (m a.s.l.). They have
a median elevation of 1052 m a.s.l. In terms of seasonality,
winter rainfall predominates, with a few exceptions in north-
ern catchments, where precipitation is concentrated dur-
ing the summer (Garreaud, 2009). Additionally, precipita-
tion usually increases from north to south, while tempera-
tures decrease (Sarricolea et al., 2017). Daily precipitation
and potential evapotranspiration data from the CAMELS-CL
database were used, with the primary output being simulated
daily streamflow. The analysis focuses on the period from
1990 to 2018, with a warm-up phase from 1990 to 1992, a
calibration phase from 1992 to 2005, and a validation phase
from 2005 to 2018.
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Figure 1. Locations and characteristics of analysed catchments. Coloured dots represent the catchment outlet locations. Five zones are ex-
plicitly presented (labelled in (f)) to highlight differences in the catchment climatic characteristics. From (a) to (c), mean annual precipitation,
runoff, and potential evapotranspiration (all of them in [mm]). (d) Mean annual temperature in [°C], (e) aridity index (dimensionless), and
(f) catchment outlet elevations in [m].

2.2 Rainfall-runoff model

The Modular Assessment of Rainfall-Runoff Models Tool-
box (MARRMoT; Knoben et al., 2019; Trotter et al., 2022)
was selected due to its open-source feature and modular
structure. Implemented in MATLAB, MARRMoT offers a
suite of 47 lumped models for simulating rainfall-runoff pro-
cesses.

MARRMoT version 2.1.2, with the GR4J model, was em-
ployed for this study. The GR4J model has four parameters
and two storage components. Its primary purpose is to rep-

resent processes such as vegetation interception, time delays
within the catchment, and water exchange with neighbouring
catchments (for detailed information of the GR4J model, see
Perrin et al., 2003, and the official website of the developers:
https://webgr.inrae.fr/eng/tools/hydrological-models, last
access: 22 September 2025). MARRMoT’s nomenclature
for rainfall-runoff models is “m_XX_YY_ZZp_KKs”,
where XX is the number of the models within MARRMoT,
YY is the model name, ZZ is the number of parameters,
and KK is the number of storages. As a consequence, the
GR4J model following the MARRMoT nomenclature is
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“m_07_gr4j_4p_2s”. For a comprehensive description, read-
ers are directed to the MARRMoT user manual, available
at https://github.com/wknoben/MARRMoT/blob/master/
MARRMoT/User%20manual/v2.-%20User%20manual%
20-%20Appendices.pdf (last access: 22 September 2025).

2.3 Ratio of uncertainty to mutual information
(RUMI) objective function

The primary goal of this paper is to introduce a new objec-
tive function that considers uncertainty quantification in its
formulation; therefore, it is expected to minimise this quan-
tified uncertainty in calibration. As a consequence, the ra-
tio of uncertainty to mutual information (RUMI) is proposed
(see Eq. 4 for the mathematical expression and Fig. 3 for the
RUMI computation flowchart). RUMI relies on BLUECAT
and mutual information (entropy-based computation), which
are briefly introduced in the following.

Koutsoyiannis and Montanari (2022a) proposed BLUE-
CAT with the intention of transforming a deterministic
prediction model into a stochastic one. BLUECAT’s pre-
decessor was introduced by Montanari and Koutsoyiannis
(2012). BLUECAT transforms deterministic simulations into
stochastic simulations (with confidence bands). Unlike deter-
ministic predictions, the confidence band represents a range
of possible outcomes, allowing the stochastic result to be
considered as a representative value of the sample (such as
the mean or median). It is worth mentioning that uncertainty
can be quantified as well. We use BLUECAT to transform
deterministic rainfall-runoff simulations to stochastic ones to
consider uncertainty quantification in model calibration.

BLUECAT’s flowchart starts with a deterministic simula-
tion and identifies the simulated variable (streamflow in our
case) at each time point (see Fig. 2 for a conceptual illustra-
tion of the BLUECAT methodology). For each point, a sam-
ple is established comprising neighbouring simulated river
flows (in magnitude), defined by m1 flows smaller and m2
flows larger than the point’s discharge, both with the smallest
differences.m1 andm2 were set at 20 because the lowest and
highest quantiles can be empirically estimated. The observed
data corresponding to these simulated flows form a sample of
streamflow values. The latter occurs at each time point. An
empirical distribution function of this sample is then used
to estimate uncertainty for a given confidence level, using
the mean or median as representative results of the stochas-
tic simulation. Alternative methods, such as the ones using a
theoretical probability distribution, can also manage the sam-
ple (e.g. Pareto–Burr–Feller with knowable moments).

In this work, BLUECAT is used with empirical computa-
tions with the intention of avoiding any additional assump-
tion. It is worth mentioning that BLUECAT allows uncer-
tainty quantification through an uncertainty measure. Monta-
nari and Koutsoyiannis (2025) proposed four measures based
on the distance between the confidence bands, for a given sig-
nificance level, and the mean value of the prediction. BLUE-

CAT was originally implemented in R (coupled with the HY-
MOD rainfall-runoff model; Koutsoyiannis and Montanari,
2022a), and Montanari and Koutsoyiannis (2025) recently
made available BLUECAT with multi-model usage in R and
Python. Codes in MATLAB are also available (see Jorquera
and Pizarro, 2023).

In information theory, the entropy of a random variable is a
measure of its uncertainty or the measure of the information
amount required, on average, to describe the random variable
itself (Thomas and Joy, 2006). The amount of information
one random variable contains about another random variable
is usually defined as mutual information (MI). MI is, indeed,
the reduction of one random variable uncertainty due to the
knowledge of the other. MI can be defined as a function of
marginal

(
H
(
Y
))

and conditional
(
H(Y/X)

)
entropies:

MI(Y ,X)=H
(
Y
)
−H(Y/X), (1)

where H
(
Y
)
=−E

[
log(p (Y ))

]
, H

(
Y/X

)
=

−E
[
log(p (Y/X))

]
, p(α) is the probability mass function

of a random variable α (or the probability density if the vari-
able is of the continuous type), and E[] denotes expectation.
Note that random variables are underlined, following the
Dutch convention (Hemelrijk, 1966).

Additionally, the normalised mutual information (also
called the uncertainty coefficient, entropy coefficient, or
Theil’s U ) can be computed as:

U
(
Y ,X

)
=

MI
(
Y ,X

)
H
(
Y
) = H (Y )−H(Y/X)

H
(
Y
) . (2)

Taking Y as the observed streamflow
(
Qobs

)
and X as

the simulated one with BLUECAT (Qsim, given by the
mean value of the distribution of the predictand),U

(
Y ,X

)
=

U
(
Qobs,Qsim

)
represents the normalised amount of infor-

mation that Qsim contains about Qobs. Note that Qsim can
also be estimated by the median value of the distribution
of the predictand (or another quantile). The decision to use
the mean value relies on Jorquera and Pizarro (2023) results
that showed higher KGE values using the mean rather than
the median value for all analysed catchments. Additionally,
and with the intention to avoid any additional assumption,
marginal and conditional entropies are computed empirically
with bins.

Furthermore, an uncertainty measure (in line with the Jor-
quera and Pizarro (2023) and Montanari and Koutsoyiannis
(2025) uncertainty quantification proposal) of the stochastic
model computed with BLUECAT can be defined as the width
of the confidence limits divided by its mean value and aver-
aged over the whole simulation period, i.e.:

u=

n∑
τ=1

1
n

∣∣∣∣Qτ,u−Qτ,l

Qτ,sim

∣∣∣∣ , (3)

where Qτ,u−Qτ,l are the upper and lower confidence limits
for the streamflow stochastic prediction at time step τ ,Qτ,sim
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Figure 2. Conceptual illustration of the BLUECAT methodology. Blue represents observed (streamflow) data, whereas red and pink denote
deterministic and stochastic predictions, respectively.

is its mean value at time step τ , and n is the total number of
time steps.

Notice that both u and U
(
Qobs,Qsim

)
are dimensionless

quantities, and, in ideal conditions, it is desirable that u is
minimised (i.e. low uncertainty), whereas U

(
Qobs,Qsim

)
is

maximised (i.e. high mutual information between simulated
and observed streamflows). Therefore, the ratio between u
and U

(
Qobs,Qsim

)
gives a measure of the simulation per-

formance. It is worth mentioning that the advantage of tak-
ing this ratio does rely not only on a mathematical function-
ality (i.e. the ratio should be minimised in calibration) but
also on the fact that it is possible to have narrow confidence
limits (i.e. low uncertainty) with a bad performance between
the stochastic model predictand and observed values (i.e. low
mutual information; see Fig. 3a). Additionally, it is also pos-
sible to have high mutual information (stochastic model pre-
dictand close to observed values) but with high uncertainty,
as shown in Fig. 3b. Therefore, the reason for taking the ra-
tio is 2-fold: (i) mathematical desire (i.e. optimisation) and
(ii) deductive conceptual reasoning. As a consequence, and
with the intention to provide a metric ranging between 0 and
1, the ratio of uncertainty to mutual information (RUMI) is
presented as follows:

RUMI=
1

1+φ
=

1
1+ u

U
(
Qobs,Qsim

) . (4)

Notice that RUMI follows common-efficiency notions (i.e.
perfect simulation means the highest metric value). Figure 3d
shows the core steps of the RUMI computation, whereas the
codes for RUMI in MATLAB and R are also made available
(see “Code and data availability” statement).

2.4 Calibration and validation strategies

The GR4J rainfall-runoff model calibration was conducted
using the covariance matrix adaptation evolution strategy
(CMA-ES) algorithm (Hansen et al., 2003; Hansen and Os-
termeier, 1996). Catchments were calibrated with two differ-
ent objective functions: KGE and RUMI. KGE (Kling et al.,
2012) – computed in this study with Eq. (5) – is the modified
version of the KGE proposed initially by Gupta et al. (2009):

KGE= 1−

√(
µs

µo
− 1

)2

+

(
(σs/µs)

(σo/µo)
− 1

)2

+ (ρ− 1)2, (5)

where µs is the mean value of deterministic streamflow sim-
ulations; µo is the mean value of streamflow observations;
σs is the standard deviation of deterministic streamflow sim-
ulations; σo is the standard deviation of streamflow observa-
tions; and ρ is the Pearson correlation coefficient between
the observed and deterministic simulations of streamflow.

Four additional metrics were used to assess the per-
formance of results: (i) Nash–Sutcliffe efficiency (NSE);
(ii) KGE knowable moments (KGEkm; Pizarro and Jorquera,
2024); (iii) normalised root mean squared error (NRMSE);
and (iv) mean absolute relative error (MARE). Equations
for NSE, KGEkm, NRMSE, and MARE are presented from
Eqs. (6) to (9):
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Figure 3. Illustration of possible modelling scenarios: (a) low uncertainty and low mutual information (i.e. low RUMI value); (b) high
uncertainty and high mutual information (i.e. low RUMI value); and (c) low uncertainty and high mutual information (i.e. high RUMI value).
(d) Flowchart of the RUMI computation. Marginal and conditional entropies are computed empirically with bins. The filled cyan band is the
area between the 97.5th and 2.5th percentiles of the simulation estimated by BLUECAT.

NSE= 1−
∑n
i=1(Oi − Si )

2∑n
i=1(Oi −µo)

2 , (6)

KGEkm= 1−√√√√√√(K1s

K1o

− 1
)2

+


(√
K2s/K1s

)
(√
K2o/K1o

) − 1

2

+ (ρ− 1)2, (7)

NRMSE=

√
1
n

(∑n
i=1(Si −Oi)

2)
max(O)−min(O)

, (8)

MARE=

∑n
i=1

∣∣∣ (Si−Oi )Oi

∣∣∣
n

, (9)

where K1s and K1o are the first knowable moments of the
simulated and observed streamflow time series and K2s and
K2o are dispersions relying on the second knowable moments
of the simulated and observed streamflow time series. Notice
that the square operator in K2 is not necessary in Eq. (7) but
intentionally used to be in line with classical statistics and
KGE formulation (see Eq. 5). S and O denote simulated and
observed streamflow time series, respectively. n is the length
of the analysed period (at daily scale). RMSE, NRMSE, and

MARE have 0 as the perfect ideal value, whereas their values
range from 0 to positive infinity. NSE and KGEkm have a
range from minus infinity to 1, with 1 being the ideal value.

Additionally, and with a particular focus on different
runoff characteristics, 50 hydrological signatures were com-
puted. Observed runoff, simulations with the model cali-
brated with KGE, and simulations with the model calibrated
with RUMI were considered. Hydrological signatures were
computed with the Toolbox for Streamflow Signatures in Hy-
drology (TOSSH; Gnann et al., 2021). Table 1 shows the
50 computed signatures.

3 Results

Figure 4 shows a graphical example of RUMI-based hy-
drological modelling of two of the catchments in calibra-
tion (Fig. 4a, catchment number: 8123001) and validation
(Fig. 4b, catchment number: 9437002) over the years 1996
and 2016, respectively. Additionally, it shows observed and
simulated streamflows, which were calibrated with KGE
(red continuous line) and RUMI (blue continuous line is the
mean of the stochastic simulation). The 97.5th and 2.5th per-
centiles (computed with BLUECAT and RUMI) are shown
with a violet band. Figure 4a.2 and 4b.2 show observed and
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Table 1. Fifty hydrological signatures computed with the Toolbox for Streamflow Signatures in Hydrology (TOSSH). The computed hydro-
logical signatures follow TOSSH nomenclature (e.g. TotalRR is the total runoff ratio). A description of the signatures is also included.

No. Hydrological signature (us-
ing TOSSH nomenclature)

Description

1 Q_mean Mean streamflow

2 TotalRR Total runoff ratio

3 QP_elasticity Streamflow-precipitation elasticity

4 FDC_slope Slope of the flow duration curve

5 BFI Baseflow index

6 HFD_mean Half flow date

7 Q5 5th streamflow percentile

8 Q95 95th streamflow percentile

9 high_Q_freq High flow frequency

10 high_Q_dur High flow duration

11 low_Q_freq Low flow frequency

12 low_Q_dur Low flow duration

13 AC1 Lag-1 autocorrelation

14 AC1_low Lag-1 autocorrelation for low flow period

15 RLD Rising limb density

16 PeakDistribution Slope of distribution of peaks

17 PeakDistribution_low Slope of distribution of peaks for low flow period

18 IE_effect Infiltration excess importance

19 SE_effect Saturation excess importance

20 IE_thresh_signif Infiltration excess threshold significance (in a plot of quickflow volume vs maximum intensity)

21 SE_thresh_signif Saturation excess threshold significance (in a plot of quickflow volume vs total precipitation)

22 IE_thresh Infiltration excess threshold location (in a plot of quickflow volume vs maximum intensity)

23 SE_thresh Saturation excess threshold location (in a plot of quickflow volume vs total precipitation)

24 SE_slope Saturation excess threshold above-threshold slope (in a plot of quickflow volume vs total pre-
cipitation)

25 Storage_thresh_signif Storage/saturation excess threshold significance (in a plot of quickflow volume vs antecedent
precipitation index + total precipitation)

26 Storage_thresh Storage/saturation excess threshold location (in a plot of quickflow volume vs antecedent pre-
cipitation index + total precipitation)

27 min_Qf_perc Minimum quickflow as a percentage of precipitation

28 EventRR Event runoff ratio

29 RR_Seasonality Runoff ratio seasonality

30 Recession_a_Seasonality Seasonal variations in recession parameters

31 AverageStorage Average storage from average baseflow and storage–discharge relationship

32 MRC_num_segments Number of different segments in master recession curve (MRC)
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Table 1. Continued.

No. Hydrological signature (us-
ing TOSSH nomenclature)

Description

33 BaseflowRecessionK Exponential recession constant

34 First_Recession_Slope Steep section of MRC= storage that is quickly depleted

35 Spearmans_rho Non-uniqueness in the storage–discharge relationship

36 EventRR_TotalRR_ratio Ratio between event and total runoff ratio

37 VariabilityIndex Variability index of flow

38 BaseflowMagnitude Difference between maximum and minimum of annual baseflow regime

39 FlashinessIndex Richards–Baker flashiness index

40 HFI_mean Half flow interval

41 Q_CoV Coefficient of variation

42 Q_mean_monthly Mean monthly streamflow

43 Q_7_day_max 7 d maximum streamflow

44 Q_7_day_min 7 d minimum streamflow

45 Q_skew Skewness of streamflow

46 Q_var Variance of streamflow

47 RecessionK_part Recession constant of early/late (exponential) recessions

48 ResponseTime Catchment response time

49 SnowStorage Snow storage derived from cumulative P -Q regime curve

50 StorageFromBaseflow Average storage from average baseflow and storage–discharge relationship

simulated streamflows over the complete period of analysis
(the performance of KGE-based simulations was 0.89 (0.80)
and 0.95 (0.91) in calibration (validation), and the perfor-
mance of RUMI-based simulations was 0.27 (0.20) and 0.46
(0.48) in calibration (validation), respectively). Note that the
observed streamflow was between the 97.5th and 2.5th per-
centiles (i.e. the violet band) all the time except for 4.93 %
and 0.19 % of the time, where higher and lower observed
streamflow, respectively, were presented (see, e.g., one event
in June 1996 in Fig. 3a and one event in July 2016 in Fig. 3b).

In terms of other performance metrics, Fig. 5 shows NSE
(a.1, b.1), KGEkm (a.2, b.2), NRMSE (a.3, b.3), and MARE
(a.4, b.4) in calibration (a.1, a.2, a.3, a.4) and validation (b.1,
b.2, b.3, b.4). Red markers are outliers, and grey dots rep-
resent the mean values (as a function of RUMI- and KGE-
based simulations), which are linked with a grey line.

Remarkably, the RUMI-based simulations outperform the
KGE-based ones in both calibration and validation and for
the four performance metrics analysed. The latter is in terms
of variability (e.g. the interquartile range – IQR), median of
boxplots, and number of outliers for both the calibration and
validation periods. Table 2 summarises the four considered
performance metrics in terms of (a) calibration and valida-

tion; (b) RUMI and KGE; and (c) minimum, maximum, me-
dian, IQR, and mean values.

Based on Fig. 4 and Table 2, the RUMI-based simula-
tions showed more stable and consistent performance than
KGE in the calibration and validation phases. While KGE
can achieve high accuracy (see, e.g., the maximum value of
NSE for RUMI and KGE), it exhibits more variability and
more extreme outliers (see, e.g., the minimum values of NSE:
−14.11 vs −299 732 for RUMI and KGE; the mean values
of NSE: 0.34 vs −3027 for RUMI and KGE; the minimum
values of KGEkm: −0.69 vs −616 for RUMI and KGE; the
maximum values of NRMSE: 0.23 vs 12.58 for RUMI and
KGE; and the maximum values of MARE: 5.56 vs 1755 for
RUMI and KGE). The latter, particularly during validation,
indicates a lack of robustness. On the other hand, RUMI pre-
sented lower variability, more consistent results, and the op-
portunity to consider the confidence intervals in calibration.

Table 3 shows the Pearson’s correlation coefficient for
the 50 computed hydrological signatures considering ob-
served and simulated streamflow data (“Obs vs KGE” means
the Pearson’s correlation coefficient using observed and
simulated-with-KGE streamflows to compute any hydrolog-
ical signature; “Obs vs RUMI” means the Pearson’s corre-
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Figure 4. Observed and simulated streamflows for the hydrological years 1996–1997 (a) and 2016–2017 (b). (a.1) Catchment ID: 8123001
in calibration; (b.1) catchment ID: 9437002 in validation. Black: observed streamflow; red: simulated by the deterministic model calibrated
with KGE; blue: simulated with the model calibrated with RUMI (mean stochastic simulation). The filled violet band is the area between the
97.5th and 2.5th percentiles of the simulation estimated by BLUECAT. The dashed line represents perfect agreement between the observed
and simulated streamflows.

Figure 5. Performance metrics in calibration (a.1, a.2, a.3, a.4) and validation (b.1, b.2, b.3, b.4). Red markers denote outliers. Grey dots
represent the mean values computed with RUMI and KGE, which are linked by grey lines. Note that the y-axis limits are truncated for
visualisation purposes.
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Table 2. Statistical summary of the boxplot results (see also Fig. 5).

Calibration Validation

NSE KGEkm NRMSE MARE NSE KGEkm NRMSE MARE

Min RUMI −0.59 −0.89 0.02 0.12 −14.11 −0.69 0.02 0.12
KGE −1.80 −0.51 0.02 0.14 −299 732 −616 0.02 0.15

Max RUMI 0.91 0.95 0.14 7.81 0.92 0.95 0.23 5.56
KGE 0.91 0.95 0.22 3.90 0.92 0.96 12.58 1755

Median RUMI 0.63 0.79 0.04 0.38 0.53 0.71 0.04 0.44
KGE 0.58 0.79 0.05 0.48 0.41 0.70 0.05 0.53

IQR RUMI 0.43 0.27 0.03 0.36 0.56 0.34 0.04 0.41
KGE 0.63 0.41 0.05 0.51 0.62 0.39 0.06 0.61

Mean RUMI 0.57 0.72 0.05 0.59 0.34 0.67 0.06 0.71
KGE 0.38 0.67 0.06 0.72 −3027 −5.67 0.19 18.76

lation coefficient using observed and simulated-with-RUMI
streamflows to compute any hydrological signature). On av-
erage, RUMI outperforms the KGE-based simulations (av-
erage values: 0.72 vs 0.48; minimum and maximum values:
−0.07 vs −0.10 and 1.00 vs 0.96, respectively). The RUMI-
based simulations outperform the KGE-based ones by 82 %
for the considered hydrologic signatures. Figure 6 shows
four examples of this comparison in terms of the runoff
ratio (TotalRR; Fig. 6a), streamflow-precipitation elasticity
(QP_elasticity; Fig. 6b), 5th flow percentile of the stream-
flow (Q5; Fig. 6c), and 95th flow percentile of the streamflow
(Q95; Fig. 6d). The colours of the dots are related to the five
different defined macroclimatic zones depicted in Fig. 1.

4 Strengths and limitations

One of the main strengths of this study was the proposal of
a new dimensionless metric to be used as an objective func-
tion for rainfall-runoff model calibration. The proposed ap-
proach provides a comprehensive measure of the shared in-
formation between observed and simulated streamflows, nor-
malises this measure for comparability, and integrates uncer-
tainty quantification in the calibration process. The rescal-
ing of the performance metric ensures intuitive interpreta-
tion (RUMI ranges between 0 and 1, the latter being the op-
timal value), aligning with standard efficiency metrics and
making it easy to understand. This study presented a large-
sample rainfall-runoff modelling experiment, analysing 99
catchments in a pseudo-natural hydrologic regime that cov-
ers five different macroclimatic zones and, therefore, giving
robustness to the analysis. The latter ensures a diverse rep-
resentation of hydrological characteristics and a broad eval-
uation of the RUMI-based modelling approach. The sim-
plicity of the approach and its capacity to quantify confi-
dence intervals and, therefore, to carry out uncertainty quan-
tification are significant strengths. As demonstrated by the

IQR, the median of results, and outliers (see Table 2), sim-
ulations during validation are also seen to improve (along-
side the calibration results). Also, using the 50 hydrologi-
cal signatures, the RUMI-based approach was compared by
considering different runoff dynamics characteristics, show-
ing improvements for most (82 % of the analysed signatures
showed a better correlation with observed data compared
to KGE). RUMI-based performances rely on the combina-
tion of available information (in terms of observed quanti-
ties) and physically based consistency of modelled hydro-
logical processes (BLUECAT alongside entropy-based com-
putations and the deterministic rainfall-runoff model). The
RUMI-based modelling implementation is also facilitated by
the codes provided in this paper (see “Code and data avail-
ability” statement), which enhances the reproducibility of the
methodology.

In terms of limitations – and considering that RUMI con-
siders uncertainty quantification in its computing process –
we emphasise the fact that other methodologies for such pur-
poses should be tested (such as multi-model ensemble meth-
ods or time-varying model parameters; see Gupta and Govin-
daraju (2023) for a recent review in this regard) – the lat-
ter with the intention to quantify the sensibility of RUMI
as a function of those additional methodologies. Addition-
ally, RUMI calculations can be computationally intensive.
The method’s accuracy depends on high-quality input data
and the length of the time series (BLUECAT assumes that
the calibration dataset is extended enough to upgrade from
the deterministic to the stochastic model). It also assumes
that observed and simulated streamflows can be effectively
described by these measures, which may not capture all de-
pendencies and non-linearities. Finally, entropy and mutual
information might be sensitive to outliers.
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Figure 6. Observed and simulated hydrological signatures for each case (a.1, b.1, c.1, d.1: simulated with KGE; a.2, b.2, c.2, d.2: simulated
with RUMI). (a) Runoff ratio (TotalRR); (b) streamflow-precipitation elasticity (QP_elasticity); (c) 5th flow percentile of the streamflow
(Q5); and (d) 95th flow percentile of the streamflow (Q95). Colours of dots are related to the five considered macroclimatic zones. The
dashed line represents perfect agreement between the observed and simulated hydrological signatures. Note that the y-axis limits for the
(a.1) plot are truncated for visualisation purposes (original y-axis range: [0, 30]).

5 Conclusions

The RUMI-based hydrological modelling approach outper-
forms KGE-based modelling in both the calibration and
validation phases across various performance metrics. This
method demonstrates lower variability and a consistent per-
formance improvement. RUMI’s capability to quantify un-
certainty and incorporate it into the calibration process en-
sures more reliable predictions. The analysis of hydrologi-
cal signatures further confirms the superiority of RUMI, with
82 % of the signatures showing a better correlation with ob-
served data compared to KGE. RUMI offers a valuable tool
for hydrological modelling, enhancing the understanding and
prediction of streamflow under different hydrological condi-
tions. Even though the data used followed quality control,
there are still some potential issues in terms of time dis-
cretisation or input variable interpolation. Additionally, some
catchments in northern Chile have low annual precipitation
and, therefore, a high aridity index. In such catchments, the
modelling results were deficient. The latter is probably due
to an inconsistency between catchment characteristics, data
availability and quality, and model structure.

Possible additional research is as follows: (a) testing
the RUMI-based approach with other rainfall-runoff mod-
els (lumped, semi-distributed, and distributed hydrologi-
cal models); (b) testing the RUMI-based approach under
other hydro-climatological catchment characteristics and in
a higher number of catchments; (c) testing alternative un-
certainty quantification methods; (d) exploring the impact
of varying data quality on RUMI performance to establish
guidelines for data requirements; (e) testing with higher-
resolution data to reduce discretisation issues; and (f) ex-
ploring the applicability of RUMI in other disciplines such
as meteorology, environmental science, and ecology, where
modelling and uncertainty quantification are critical.
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Table 3. The 50 used hydrological signatures. Performance was as-
sessed using Pearson’s correlation coefficient. Hydrological signa-
tures were computed with TOSSH. “Obs vs KGE” means the Pear-
son’s correlation coefficient using observed and simulated-with-
KGE streamflows to compute any hydrological signature. “Obs vs
RUMI” means the Pearson’s correlation coefficient using observed
and simulated-with-RUMI streamflows to compute any hydrologi-
cal signature. The average, minimum, and maximum values were
computed and are added at the end of the list.

Hydrological signature Obs vs Obs vs
KGE RUMI

Q_mean 0.90 1.00
TotalRR −0.06 1.00
QP_elasticity 0.30 0.63
FDC_slope 0.30 0.86
BFI 0.74 0.83
HFD_mean 0.75 0.94
Q5 0.96 0.99
Q95 0.41 0.99
high_Q_freq 0.52 0.91
high_Q_dur 0.27 0.28
low_Q_freq 0.56 0.95
low_Q_dur −0.09 0.61
AC1 0.67 0.69
AC1_low 0.61 0.59
RLD 0.16 0.15
PeakDistribution 0.28 0.76
PeakDistribution_low 0.07 0.57
IE_effect 0.53 0.51
SE_effect 0.68 0.67
IE_thresh_signif 0.63 0.50
SE_thresh_signif 0.51 0.41
IE_thresh −0.04 0.53
SE_thresh −0.06 0.65
SE_slope 0.71 0.72
Storage_thresh_signif 0.49 0.53
Storage_thresh −0.04 0.70
min_Qf_perc −0.02 0.63
EventRR 0.96 0.98
RR_Seasonality 0.83 0.86
Recession_a_Seasonality 0.20 0.37
AverageStorage 0.72 0.87
MRC_num_segments −0.10 −0.07
BaseflowRecessionK 0.33 0.65
First_Recession_Slope 0.34 0.40
Spearmans_rho 0.48 0.65
EventRR_TotalRR_ratio 0.85 0.97
VariabilityIndex 0.06 0.91
BaseflowMagnitude 0.95 0.97
FlashinessIndex 0.86 0.91
HFI_mean 0.63 0.86
Q_CoV 0.89 0.82
Q_mean_monthly 0.74 0.99
Q_7_day_max 0.77 0.94
Q_7_day_min −0.04 0.95
Q_skew 0.45 0.58
Q_var 0.10 0.98
RecessionK_early 0.82 0.67
ResponseTime 0.42 0.25
SnowStorage 0.95 0.98
StorageFromBaseflow 0.79 0.84

Average 0.48 0.72

Min −0.10 −0.07

Max 0.96 1.00
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