Articles | Volume 29, issue 18
https://doi.org/10.5194/hess-29-4437-2025
https://doi.org/10.5194/hess-29-4437-2025
Research article
 | 
17 Sep 2025
Research article |  | 17 Sep 2025

Combining recurrent neural networks with variational mode decomposition and multifractals to predict rainfall time series

Hai Zhou, Daniel Schertzer, and Ioulia Tchiguirinskaia

Related authors

Multifractality of climate networks
Adarsh Jojo Thomas, Jürgen Kurths, and Daniel Schertzer
Nonlin. Processes Geophys., 32, 131–138, https://doi.org/10.5194/npg-32-131-2025,https://doi.org/10.5194/npg-32-131-2025, 2025
Short summary
Multifractal analysis of wind turbine power and rainfall from an operational wind farm – Part 1: Wind turbine power and the associated biases
Jerry Jose, Auguste Gires, Yelva Roustan, Ernani Schnorenberger, Ioulia Tchiguirinskaia, and Daniel Schertzer
Nonlin. Processes Geophys., 31, 587–602, https://doi.org/10.5194/npg-31-587-2024,https://doi.org/10.5194/npg-31-587-2024, 2024
Short summary
Multifractal analysis of wind turbine power and rainfall from an operational wind farm – Part 2: Joint analysis of available wind power and rain intensity
Jerry Jose, Auguste Gires, Ernani Schnorenberger, Yelva Roustan, Daniel Schertzer, and Ioulia Tchiguirinskaia
Nonlin. Processes Geophys., 31, 603–624, https://doi.org/10.5194/npg-31-603-2024,https://doi.org/10.5194/npg-31-603-2024, 2024
Short summary
Evapotranspiration evaluation using three different protocols on a large green roof in the greater Paris area
Pierre-Antoine Versini, Leydy Alejandra Castellanos-Diaz, David Ramier, and Ioulia Tchiguirinskaia
Earth Syst. Sci. Data, 16, 2351–2366, https://doi.org/10.5194/essd-16-2351-2024,https://doi.org/10.5194/essd-16-2351-2024, 2024
Short summary
Stochastic simulation of reference rainfall scenarios for hydrological applications using a universal multi-fractal approach
Arun Ramanathan, Pierre-Antoine Versini, Daniel Schertzer, Remi Perrin, Lionel Sindt, and Ioulia Tchiguirinskaia
Hydrol. Earth Syst. Sci., 26, 6477–6491, https://doi.org/10.5194/hess-26-6477-2022,https://doi.org/10.5194/hess-26-6477-2022, 2022
Short summary

Cited articles

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: {TensorFlow}: A System for {Large-Scale} Machine Learning, in: 12th USENIX symposium on operating systems design and implementation (OSDI 16), 265–283, https://doi.org/10.48550/arXiv.1605.08695, 2016. 
Barrera-Animas, A. Y., Oyedele, L. O., Bilal, M., Akinosho, T. D., Delgado, J. M. D., and Akanbi, L. A.: Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting, Machine Learning with Applications, 7, 100204, https://doi.org/10.1016/j.mlwa.2021.100204, 2022. 
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. 
Berne, A., Delrieu, G., Creutin, J.-D., and Obled, C.: Temporal and spatial resolution of rainfall measurements required for urban hydrology, J. Hydrol., 299, 166–179, https://doi.org/10.1016/j.jhydrol.2004.08.002, 2004. 
Beven, K. J.: Rainfall-runoff modelling: the primer, John Wiley & Sons, https://doi.org/10.1002/9781119951001, 2012. 
Download
Short summary
The hybrid variational mode decomposition–recurrent neural network (VMD-RNN) model provides a reliable one-step-ahead prediction, with better performance in predicting high and low values than the pure long short-term memory (LSTM) model. The universal multifractal technique is also introduced to evaluate prediction performance, thus validating the usefulness and applicability of the hybrid model.
Share