Articles | Volume 29, issue 18
https://doi.org/10.5194/hess-29-4437-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-4437-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Combining recurrent neural networks with variational mode decomposition and multifractals to predict rainfall time series
Hydrology Meteorology & Complexity (HM&Co), École des Ponts ParisTech, Champs-sur-Marne, France
Daniel Schertzer
Hydrology Meteorology & Complexity (HM&Co), École des Ponts ParisTech, Champs-sur-Marne, France
Ioulia Tchiguirinskaia
Hydrology Meteorology & Complexity (HM&Co), École des Ponts ParisTech, Champs-sur-Marne, France
Related authors
No articles found.
Adarsh Jojo Thomas, Jürgen Kurths, and Daniel Schertzer
Nonlin. Processes Geophys., 32, 131–138, https://doi.org/10.5194/npg-32-131-2025, https://doi.org/10.5194/npg-32-131-2025, 2025
Short summary
Short summary
We have developed a systematic approach to study the climate system at multiple scales using climate networks, which have been previously used to study correlations between time series in space at only a single scale. This new approach is used to upscale precipitation climate networks to study the Indian summer monsoon and to analyze strong dependencies between spatial regions, which change with changing scales.
Jerry Jose, Auguste Gires, Yelva Roustan, Ernani Schnorenberger, Ioulia Tchiguirinskaia, and Daniel Schertzer
Nonlin. Processes Geophys., 31, 587–602, https://doi.org/10.5194/npg-31-587-2024, https://doi.org/10.5194/npg-31-587-2024, 2024
Short summary
Short summary
Wind energy exhibits extreme variability in space and time. However, it also shows scaling properties (properties that remain similar across different times and spaces of measurement). This can be quantified using appropriate statistical tools. In this way, the scaling properties of power from a wind farm are analysed here. Since every turbine is manufactured by design for a rated power, this acts as an upper limit on the data. This bias is identified here using data and numerical simulations.
Jerry Jose, Auguste Gires, Ernani Schnorenberger, Yelva Roustan, Daniel Schertzer, and Ioulia Tchiguirinskaia
Nonlin. Processes Geophys., 31, 603–624, https://doi.org/10.5194/npg-31-603-2024, https://doi.org/10.5194/npg-31-603-2024, 2024
Short summary
Short summary
To understand the influence of rainfall on wind power production, turbine power and rainfall were measured simultaneously on an operational wind farm and analysed. The correlation between wind, wind power, air density, and other fields was obtained on various temporal scales under rainy and dry conditions. An increase in the correlation was observed with an increase in the rain; rain also influenced the correspondence between actual and expected values of power at various velocities.
Pierre-Antoine Versini, Leydy Alejandra Castellanos-Diaz, David Ramier, and Ioulia Tchiguirinskaia
Earth Syst. Sci. Data, 16, 2351–2366, https://doi.org/10.5194/essd-16-2351-2024, https://doi.org/10.5194/essd-16-2351-2024, 2024
Short summary
Short summary
Nature-based solutions (NBSs), such as green roofs, have appeared as relevant solutions to mitigate urban heat islands. The evapotranspiration (ET) process allows NBSs to cool the air. To improve our knowledge about ET assessment, this paper presents some experimental measurement campaigns carried out during three consecutive summers. Data are available for three different (large, small, and point-based) spatial scales.
Arun Ramanathan, Pierre-Antoine Versini, Daniel Schertzer, Remi Perrin, Lionel Sindt, and Ioulia Tchiguirinskaia
Hydrol. Earth Syst. Sci., 26, 6477–6491, https://doi.org/10.5194/hess-26-6477-2022, https://doi.org/10.5194/hess-26-6477-2022, 2022
Short summary
Short summary
Reference rainfall scenarios are indispensable for hydrological applications such as designing storm-water management infrastructure, including green roofs. Therefore, a new method is suggested for simulating rainfall scenarios of specified intensity, duration, and frequency, with realistic intermittency. Furthermore, novel comparison metrics are proposed to quantify the effectiveness of the presented simulation procedure.
Auguste Gires, Ioulia Tchiguirinskaia, and Daniel Schertzer
Atmos. Meas. Tech., 15, 5861–5875, https://doi.org/10.5194/amt-15-5861-2022, https://doi.org/10.5194/amt-15-5861-2022, 2022
Short summary
Short summary
Weather radars measure rainfall in altitude whereas hydro-meteorologists are mainly interested in rainfall at ground level. During their fall, drops are advected by the wind which affects the location of the measured field. Governing equation linking acceleration, gravity, buoyancy, and drag force is updated to account for oblateness of drops. Then multifractal wind is used as input to explore velocities and trajectories of drops. Finally consequence on radar rainfall estimation is discussed.
Auguste Gires, Jerry Jose, Ioulia Tchiguirinskaia, and Daniel Schertzer
Earth Syst. Sci. Data, 14, 3807–3819, https://doi.org/10.5194/essd-14-3807-2022, https://doi.org/10.5194/essd-14-3807-2022, 2022
Short summary
Short summary
The Hydrology Meteorology and Complexity laboratory of École des Ponts ParisTech (https://hmco.enpc.fr) has made a data set of high-resolution atmospheric measurements (rainfall, wind, temperature, pressure, and humidity) available. It comes from a campaign carried out on a meteorological mast located on a wind farm in the framework of the Rainfall Wind Turbine or Turbulence project (RW-Turb; supported by the French National Research Agency – ANR-19-CE05-0022).
Yangzi Qiu, Igor da Silva Rocha Paz, Feihu Chen, Pierre-Antoine Versini, Daniel Schertzer, and Ioulia Tchiguirinskaia
Hydrol. Earth Syst. Sci., 25, 3137–3162, https://doi.org/10.5194/hess-25-3137-2021, https://doi.org/10.5194/hess-25-3137-2021, 2021
Short summary
Short summary
Our original research objective is to investigate the uncertainties of the hydrological responses of nature-based solutions (NBSs) that result from the multiscale space variability in both the rainfall and the NBS distribution. Results show that the intersection effects of spatial variability in rainfall and the spatial arrangement of NBS can generate uncertainties of peak flow and total runoff volume estimations in NBS scenarios.
Cited articles
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: {TensorFlow}: A System for {Large-Scale} Machine Learning, in: 12th USENIX symposium on operating systems design and implementation (OSDI 16), 265–283, https://doi.org/10.48550/arXiv.1605.08695, 2016.
Barrera-Animas, A. Y., Oyedele, L. O., Bilal, M., Akinosho, T. D., Delgado, J. M. D., and Akanbi, L. A.: Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting, Machine Learning with Applications, 7, 100204, https://doi.org/10.1016/j.mlwa.2021.100204, 2022.
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015.
Berne, A., Delrieu, G., Creutin, J.-D., and Obled, C.: Temporal and spatial resolution of rainfall measurements required for urban hydrology, J. Hydrol., 299, 166–179, https://doi.org/10.1016/j.jhydrol.2004.08.002, 2004.
Beven, K. J.: Rainfall-runoff modelling: the primer, John Wiley & Sons, https://doi.org/10.1002/9781119951001, 2012.
Carvalho, V. R., Moraes, M. F., Braga, A. P., and Mendes, E. M.: Evaluating five different adaptive decomposition methods for EEG signal seizure detection and classification, Biomed. Signal Proces., 62, 102 073, https://doi.org/10.1016/j.bspc.2020.102073, 2020.
Chattopadhyay, S. and Chattopadhyay, G.: Univariate modelling of summer-monsoon rainfall time series: comparison between ARIMA and ARNN, Comptes Rendus Geoscience, 342, 100–107, https://doi.org/10.1016/j.crte.2009.10.016, 2010.
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation, In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1724–1734, Doha, Qatar. Association for Computational Linguistics, https://doi.org/10.3115/v1/D14-1179, 2014.
Chollet, F.: Keras: The python deep learning library, Astrophysics source code library, ascl–1806, https://github.com/fchollet/keras (last access: 14 September 2025), 2018.
Chung, J., Gulcehre, C., Cho, K., and Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling, arXiv [preprint], arXiv:1412.3555, https://doi.org/10.48550/arXiv.1412.3555, 2014.
Demeritt, D., Cloke, H., Pappenberger, F., Thielen, J., Bartholmes, J., and Ramos, M.-H.: Ensemble predictions and perceptions of risk, uncertainty, and error in flood forecasting, Environ. Hazards, 7, 115–127, https://doi.org/10.1016/j.envhaz.2007.05.001, 2007.
Devi, A. S., Maragatham, G., Boopathi, K., and Rangaraj, A.: Hourly day-ahead wind power forecasting with the EEMD-CSO-LSTM-EFG deep learning technique, Soft Comput., 24, 12391–12411, https://doi.org/10.1007/s00500-020-04680-7, 2020.
Ding, M., Zhou, H., Xie, H., Wu, M., Nakanishi, Y., and Yokoyama, R.: A gated recurrent unit neural networks based wind speed error correction model for short-term wind power forecasting, Neurocomputing, 365, 54–61, https://doi.org/10.1016/j.neucom.2019.07.058, 2019.
Dragomiretskiy, K. and Zosso, D.: Variational mode decomposition, IEEE T. Signal Proces., 62, 531–544, 2013.
Elman, J. L.: Finding structure in time, Cognitive Sci., 14, 179–211, https://doi.org/10.1207/s15516709cog1402_1, 1990.
Gardiya Weligamage, H., Fowler, K., Peterson, T. J., Saft, M., Peel, M. C., and Ryu, D.: Partitioning of precipitation into terrestrial water balance components under a drying climate, Water Resour. Res., 59, e2022WR033538, https://doi.org/10.1029/2022WR033538, 2023.
Gauch, M., Kratzert, F., Klotz, D., Nearing, G., Lin, J., and Hochreiter, S.: Rainfall–runoff prediction at multiple timescales with a single Long Short-Term Memory network, Hydrol. Earth Syst. Sci., 25, 2045–2062, https://doi.org/10.5194/hess-25-2045-2021, 2021.
Gires, A., Tchiguirinskaia, I., Schertzer, D., and Lovejoy, S.: Analyses multifractales et spatio-temporelles des précipitations du modèle Méso-NH et des données radar, Hydrol. Sci. J., 56, 380–396, https://doi.org/10.1080/02626667.2011.564174, 2011.
Gires, A., Tchiguirinskaia, I., Schertzer, D., and Lovejoy, S.: Influence of the zero-rainfall on the assessment of the multifractal parameters, Adv. Water Resour., 45, 13–25, https://doi.org/10.1016/j.advwatres.2012.03.026, 2012.
Gires, A., Tchiguirinskaia, I., Schertzer, D., and Lovejoy, S.: Development and analysis of a simple model to represent the zero rainfall in a universal multifractal framework, Nonlin. Processes Geophys., 20, 343–356, https://doi.org/10.5194/npg-20-343-2013, 2013.
Graves, A. and Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures, Neural networks, 18, 602–610, https://doi.org/10.1016/j.neunet.2005.06.042, 2005.
Graves, A., Jaitly, N., and Mohamed, A.-r.: Hybrid speech recognition with deep bidirectional LSTM, in: 2013 IEEE workshop on automatic speech recognition and understanding, 8–12 December 2013, Olomouc, Czech Republic, 273–278, IEEE, https://doi.org/10.1109/ASRU.2013.6707742, 2013.
Hadi, S. J. and Tombul, M.: Streamflow forecasting using four wavelet transformation combinations approaches with data-driven models: a comparative study, Water Resour. Manage., 32, 4661–4679, https://doi.org/10.1007/s11269-018-2077-3, 2018.
He, R., Zhang, L., and Chew, A. W. Z.: Modeling and predicting rainfall time series using seasonal-trend decomposition and machine learning, Knowledge-Based Systems, 251, 109125, https://doi.org/10.1016/j.knosys.2022.109125, 2022.
He, X., Luo, J., Zuo, G., and Xie, J.: Daily runoff forecasting using a hybrid model based on variational mode decomposition and deep neural networks, Water Resour. Manage., 33, 1571–1590, https://doi.org/10.1007/s11269-019-02212-z, 2019.
Hess, P. and Boers, N.: Deep learning for improving numerical weather prediction of heavy rainfall, J. Adv. Model. Earth Sy., 14, e2021MS002765, https://doi.org/10.1029/2021MS002765, 2022.
Hochreiter, S. and Schmidhuber, J.: Long short-term memory, Neural Computation, 9, 1735–1780, https://doi.org/10.1162/neco.1997.9.8.1735, 1997.
Huang, H., Chen, J., Huo, X., Qiao, Y., and Ma, L.: Effect of multi-scale decomposition on performance of neural networks in short-term traffic flow prediction, IEEE Access, 9, 50994–51004, https://doi.org/10.1109/ACCESS.2021.3068652, 2021.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., and Liu, H. H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, P. Roy. Soc. Lond. A, 454, 903–995, https://doi.org/10.1098/rspa.1998.0193, 1998.
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007.
Lara-Benítez, P., Carranza-García, M., and Riquelme, J. C.: An experimental review on deep learning architectures for time series forecasting, Int. J. Neur. Syst., 31, 2130001, https://doi.org/10.1142/S0129065721300011, 2021.
Lavallée, D., Lovejoy, S., Schertzer, D., and Ladoy, P.: Nonlinear variability and landscape topography: analysis and simulation, Fractals in geography, edited by: De Cola, L., and Lam, N., PTR, Prentice Hall, 8, 158–192, 1993.
Lin, J., Zhong, S.-h., and Fares, A.: Deep hierarchical LSTM networks with attention for video summarization, Comput. Electr. Eng., 97, 107618, https://doi.org/10.1016/j.compeleceng.2021.107618, 2022.
Liu, Y., Yang, C., Huang, K., and Gui, W.: Non-ferrous metals price forecasting based on variational mode decomposition and LSTM network, Knowledge-Based Systems, 188, 105006, https://doi.org/10.1016/j.knosys.2019.105006, 2020.
Lovejoy, S. and Schertzer, D.: Scale, scaling and multifractals in geophysics: twenty years on, in: Nonlinear dynamics in geosciences, 311–337, Springer, https://doi.org/10.1007/978-0-387-34918-3_18, 2007.
Lv, S.-X. and Wang, L.: Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization, Appl. Energ., 311, 118674, https://doi.org/10.1016/j.apenergy.2022.118674, 2022.
Lynch, P.: The origins of computer weather prediction and climate modeling, J. Computat. Phys., 227, 3431–3444, https://doi.org/10.1016/j.jcp.2007.02.034, 2008.
Ma, X., Tao, Z., Wang, Y., Yu, H., and Wang, Y.: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data, Transport. Res. C-Emer., 54, 187–197, https://doi.org/10.1016/j.trc.2015.02.014, 2015.
Marsan, D., Schertzer, D., and Lovejoy, S.: Causal space-time multifractal processes: Predictability and forecasting of rain fields, J. Geophys. Res.-Atmos., 101, 26333–26346, https://doi.org/10.1029/96JD02033, 1996.
McKinney, W.: pandas: a foundational Python library for data analysis and statistics, Python for high performance and scientific computing, 14, 1–9, 2011.
Ni, L., Wang, D., Singh, V. P., Wu, J., Wang, Y., Tao, Y., and Zhang, J.: Streamflow and rainfall forecasting by two long short-term memory-based models, J. Hydrol., 583, 124296, https://doi.org/10.1016/j.jhydrol.2020.124296, 2020.
Pati, Y. C., Rezaiifar, R., and Krishnaprasad, P. S.: Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition, in: Proceedings of 27th Asilomar conference on signals, systems and computers, 1–3 November 1993, Pacific Grove, CA, USA, 40–44, IEEE, https://doi.org/10.1109/ACSSC.1993.342465, 1993.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.: Scikit-learn: Machine learning in Python, the Journal of machine Learning research, 12, 2825–2830, https://doi.org/10.48550/arXiv.1201.0490, 2011.
Reichle, R. H., Liu, Q., Koster, R. D., Draper, C. S., Mahanama, S. P., and Partyka, G. S.: Land surface precipitation in MERRA-2, J. Climate, 30, 1643–1664, https://doi.org/10.1175/JCLI-D-16-0570.1, 2017.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., and Carvalhais, N.: Deep learning and process understanding for data-driven Earth system science, Nature, 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019.
Ruan, Y., Wang, G., Meng, H., and Qian, F.: A hybrid model for power consumption forecasting using VMD-based the long short-term memory neural network, Front. Energ. Res., 9, 772508, https://doi.org/10.3389/fenrg.2021.772508, 2022.
Schertzer, D. and Lovejoy, S.: Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes, J. Geophys. Res.-Atmos., 92, 9693–9714, https://doi.org/10.1029/JD092iD08p09693, 1987.
Schertzer, D. and Lovejoy, S.: Space–time complexity and multifractal predictability, Physica A, 338, 173–186, https://doi.org/10.1016/j.physa.2004.04.032, 2004.
Schertzer, D. and Lovejoy, S.: Multifractals, generalized scale invariance and complexity in geophysics, Int. J. Bifurcat. Chaos, 21, 3417–3456, https://doi.org/10.1142/S0218127411030647, 2011.
Schertzer, D., Lovejoy, S., Schmitt, F., Chigirinskaya, Y., and Marsan, D.: Multifractal cascade dynamics and turbulent intermittency, Fractals, 5, 427–471, https://doi.org/10.1142/S0218348X97000371, 1997.
Schultz, M., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L., Mozaffari, A., and Stadtler, S.: Can deep learning beat numerical weather prediction?, Philos. T. Roy. Soc. A, 379, 20200097, https://doi.org/10.1098/rsta.2020.0097, 2021.
Schuster, M. and Paliwal, K. K.: Bidirectional recurrent neural networks, IEEE T. Signal Proces., 45, 2673–2681, https://doi.org/10.1109/78.650093, 1997.
Su, C., Huang, H., Shi, S., Jian, P., and Shi, X.: Neural machine translation with Gumbel Tree-LSTM based encoder, J. Vis. Commun. Image R., 71, 102811, https://doi.org/10.1016/j.jvcir.2020.102811, 2020.
Tessier, Y., Lovejoy, S., and Schertzer, D.: Universal multifractals: Theory and observations for rain and clouds, J. Appl. Meteorol. Climatol., 32, 223–250, https://doi.org/10.1175/1520-0450(1993)032<0223:UMTAOF>2.0.CO;2, 1993.
Tessier, Y., Lovejoy, S., Hubert, P., Schertzer, D., and Pecknold, S.: Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions, J. Geophys. Res.-Atmos., 101, 26427–26440, https://doi.org/10.1029/96JD01799, 1996.
Van Der Walt, S., Colbert, S. C., and Varoquaux, G.: The NumPy array: a structure for efficient numerical computation, Comput. Sci. Eng., 13, 22–30, https://doi.org/10.1109/MCSE.2011.37, 2011.
White, J. W., Hoogenboom, G., Wilkens, P. W., Stackhouse, P. W., and Hoel, J. M.: Evaluation of Satellite-Based, Modeled-Derived Daily Solar Radiation Data for the Continental United States, Agronomy Journal, 103, 1242–1251, https://doi.org/10.2134/agronj2011.0038, 2011.
Wilks, D. S.: Statistical methods in the atmospheric sciences, vol. 100, International Geophysics, Academic press, https://doi.org/10.1016/B978-0-12-385022-5.00007-5, 2011.
Xie, T., Zhang, G., Hou, J., Xie, J., Lv, M., and Liu, F.: Hybrid forecasting model for non-stationary daily runoff series: a case study in the Han River Basin, China, J. Hydrol., 577, 123915, https://doi.org/10.1016/j.jhydrol.2019.123915, 2019.
Zhang, X., Peng, Y., Zhang, C., and Wang, B.: Are hybrid models integrated with data preprocessing techniques suitable for monthly streamflow forecasting? Some experiment evidences, J. Hydrol., 530, 137–152, https://doi.org/10.1016/j.jhydrol.2015.09.047, 2015.
Zhang, Z., Zeng, Y., and Yan, K.: A hybrid deep learning technology for PM 2.5 air quality forecasting, Environ. Sci. Pollut. R., 28, 39409–39422, https://doi.org/10.1007/s11356-021-14186-w, 2021.
Zuo, G., Luo, J., Wang, N., Lian, Y., and He, X.: Decomposition ensemble model based on variational mode decomposition and long short-term memory for streamflow forecasting, J. Hydrol., 585, 124776, https://doi.org/10.1016/j.jhydrol.2020.124776, 2020.
Short summary
The hybrid variational mode decomposition–recurrent neural network (VMD-RNN) model provides a reliable one-step-ahead prediction, with better performance in predicting high and low values than the pure long short-term memory (LSTM) model. The universal multifractal technique is also introduced to evaluate prediction performance, thus validating the usefulness and applicability of the hybrid model.
The hybrid variational mode decomposition–recurrent neural network (VMD-RNN) model provides a...