Articles | Volume 29, issue 18
https://doi.org/10.5194/hess-29-4437-2025
https://doi.org/10.5194/hess-29-4437-2025
Research article
 | 
17 Sep 2025
Research article |  | 17 Sep 2025

Combining recurrent neural networks with variational mode decomposition and multifractals to predict rainfall time series

Hai Zhou, Daniel Schertzer, and Ioulia Tchiguirinskaia

Model code and software

Evaluating five different adaptive decomposition methods for EEG signal seizure detection and classification, Biomedical Signal Processing and Control (https://github.com/vrcarva/vmdpy) V. R. Carvalho et al. https://doi.org/10.1016/j.bspc.2020.102073

Download
Short summary
The hybrid variational mode decomposition–recurrent neural network (VMD-RNN) model provides a reliable one-step-ahead prediction, with better performance in predicting high and low values than the pure long short-term memory (LSTM) model. The universal multifractal technique is also introduced to evaluate prediction performance, thus validating the usefulness and applicability of the hybrid model.
Share