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Abstract. Rainfall time series prediction is essential for
monitoring urban hydrological systems, but it is challeng-
ing and complex due to the extreme variability of rainfall.
A hybrid deep learning model (VMD-RNN) is used in order
to improve prediction performance. In this study, variational
mode decomposition (VMD) is first applied to decompose
the original rainfall time series into several sub-sequences
according to the frequency domain, where the number of
decomposed sub-sequences is determined by power spectral
density (PSD) analysis. To prevent the disclosure of forth-
coming data, non-training time series are sequentially ap-
pended for generating the decomposed testing samples. Fol-
lowing that, different recurrent neural network (RNN) vari-
ant models are used to predict individual sub-sequences, and
the final prediction is reconstructed by summing the predic-
tion results of sub-sequences. These RNN variants are long
short-term memory (LSTM), gated recurrent unit (GRU), and
bidirectional LSTM (BiLSTM) and bidirectional GRU (Bi-
GRU), which are optimal for sequence prediction. In addi-
tion to three common evaluation criteria, mean absolute er-
ror (MAE), root mean square error (RMSE), and mean ab-
solute percentage error (MAPE), the framework of universal
multifractals (UMs) is also introduced to assess the perfor-
mance of predictions, which enables the extreme variabil-
ity of predicted rainfall time series to be characterized. The
study employs two rainfall time series with daily and hourly
resolutions, respectively. The results indicate that the hybrid
VMD-RNN model provides a reliable one-step-ahead pre-
diction, with better performance in predicting high and low
values than the pure LSTM model without decomposition.

1 Introduction

Prediction of rainfall time series plays an important role in
monitoring urban hydrological systems and their geophysi-
cal environment. Accurate and trustworthy predictions can
serve as an early warning of floods and other extreme events,
as well as a guide for water resource allocation. Although
predicting rainfall time series is not a novel concept, it has re-
mained fundamentally difficult due to the extreme variability,
in fact intermittency, of rainfall over a wide range of space–
time scales; i.e., increasingly heavy precipitation is concen-
trated over smaller and smaller fractions of the space–time.

Classical forecast models are either process-driven physi-
cal models or data-driven statistical models. The former rep-
resents the most important physical processes and numer-
ically solves the governing equations based on initial and
boundary conditions (Lynch, 2008). Due to the fact that rain-
fall depends on a variety of land, ocean, and atmospheric
processes and their complex interactions, physical models
are developed based on simplifications of those processes,
in particular by truncating the scales and introducing rather
ad hoc parameterizations. This greatly increases their un-
predictability (Bauer et al., 2015). On the contrary, data-
driven models strive to establish a link between input and
output data to predict time series without regard to underly-
ing physical processes (Reichstein et al., 2019). In general,
they therefore provide a unique output with no information
on the uncertainty generated by the nonlinearity of the in-
volved processes. A sort of hybrid approach has been devel-
oped using stochastic models physically based on the cascade
paradigm (e.g., Schertzer and Lovejoy, 1987; Marsan et al.,
1996; Schertzer and Lovejoy, 2004, 2011). This ensures that
intermittency is directly taken into account, including in the
generation of uncertainty.
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The explosion of supercomputing and data availability
offers immense potential for data-driven models to signifi-
cantly contribute to prediction (Schultz et al., 2021). There
are several methods available for predicting rainfall time
series, including linear and nonlinear models. The tradi-
tional linear data-driven model is the autoregressive inte-
grated moving average (ARIMA) (Chattopadhyay and Chat-
topadhyay, 2010), which ignores the nonlinearity of the re-
lationship between input and output time series, leading to
poor prediction ability. Because of increased data availabil-
ity and computing power, various deep learning (DL) models
have been proposed and applied in predicting nonlinear time
series (Lara-Benítez et al., 2021).

Recurrent neural network (RNN) models are a subset of
deep learning models, which have been specifically designed
to solve sequential prediction problems (Elman, 1990). How-
ever, standard RNN struggles with long-term dependence
and exhibits the gradient vanishing or exploding problems
(Hochreiter and Schmidhuber, 1997). RNN variants, such
as long short-term memory (LSTM), gated recurrent unit
(GRU), bidirectional LSTM (BiLSTM), and bidirectional
GRU (BiGRU), are intended to alleviate the limitations of
standard RNN. These variant models have been employed in
various fields (e.g., Graves et al., 2013; Cho et al., 2014; Su
et al., 2020; Lin et al., 2022), including time series prediction
(e.g., Ma et al., 2015; Ding et al., 2019; Gauch et al., 2021).
In particular, great efforts have been devoted to predicting
rainfall time series (e.g., Ni et al., 2020; Barrera-Animas et
al., 2022; He et al., 2022), as shown in Table 1.

However, these pure variant models are not always capable
of efficiently handling extremely nonlinear time series with
several noisy components without the need for appropriate
preprocessing (Liu et al., 2020; Huang et al., 2021; Zhang et
al., 2021; Lv and Wang, 2022; Ruan et al., 2022). Decompo-
sition is a typical preprocessing method in time series analy-
sis, which can extract hidden information to aid in the com-
prehension of the complex original time series. For decompo-
sition approaches, wavelet decomposition (Pati et al., 1993),
empirical mode decomposition (EMD) (Huang et al., 1998),
and variational mode decomposition (VMD) (Dragomiret-
skiy and Zosso, 2013) are commonly used to decompose
original data. Relevant studies on time series prediction by
combining a decomposition technique with deep learning
models are also presented in Table 1. Because wavelet de-
composition is highly dependent on the choice of the mother
wavelet function, its adaptability in decomposing time series
is limited (Hadi and Tombul, 2018). Meanwhile, EMD suf-
fers from boundary effects, mode mixing, and a lack of exact
mathematical foundations (Devi et al., 2020). In comparison,
VMD, which is theoretically sound, presents the advantage
of solving the mode overlap problem.

The inherent variability of rainfall typically results in lim-
ited prediction performance for single RNN-variant models.
In response to this situation, integrated forecasting paradigms
have been widely employed to improve the precision and ro-

bustness of time series forecasting. The hybrid VMD-RNN
model is based on the fundamental concept of considering
the dominant characteristics of VMD in decomposing non-
linear time series and the beneficial performance of variant
RNN models in predicting complex sequential problems.

The main purpose of this study is to provide a reliable
one-step-ahead rainfall prediction for hydrological applica-
tions, particularly urban flood forecasting and water resource
management. This addresses the fundamental challenge in
operational hydrology where accurate short-term precipita-
tion forecasts are essential for timely flood warnings and
infrastructure management. In order to achieve this objec-
tive, it is essential to fully extract the underlying patterns
of rainfall time series while preserving their intermittency
structure – a critical requirement for hydrological model-
ing where extreme events often dominate system response.
An additional crucial point is to develop prediction models
with a satisfactory level of accuracy for practical implemen-
tation in operational hydrological systems. According to the
aforementioned two factors, this study implements a hybrid
approach known as VMD-RNN, which combines different
RNN-variant models with VMD decomposition for predict-
ing rainfall time series.

The effectiveness and reliability of the employed VMD-
RNN approach are extensively validated by applying this
method to forecast the following step’s rainfall in both daily
and hourly resolution, representing different temporal scales
relevant to hydrological practice. Furthermore, a comparison
study is carried out to further demonstrate the superiority of
the adopted VMD-RNN model in comparison to the base-
line method, the pure LSTM model without decomposition,
and the linear regression method. In addition, the universal
multifractal (UM) technique is used to confirm the ability of
the predicted time series to accurately describe rainfall vari-
ability, ensuring that the predicted series maintain the multi-
fractal properties essential for accurate hydrological model-
ing and flood risk assessment.

Given the growing usage of deep learning in hydrological
research, it is important to bridge the knowledge gap for read-
ers who are not familiar with deep learning models. The ped-
agogical aspect of our work has the potential to contribute to
the hydrology community by providing a deeper understand-
ing of the application of deep learning models and multifrac-
tal techniques in short-term rainfall prediction that remains
a fundamental problem of hydrology starting with one-step-
ahead prediction. This work specifically addresses the need
in the Hydrology and Earth System Sciences (HESS) com-
munity for accessible methodological advances that main-
tain strong connections to hydrological theory and practice,
demonstrating how modern deep learning techniques can
enhance traditional approaches to precipitation forecasting
while preserving the physical understanding of rainfall pro-
cesses essential for water resource management.

The rest of this article is organized as follows. In Sect. 2,
the corresponding methodologies are presented in detail, in-
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Table 1. Relevant studies on time series prediction using deep learning models.

Reference Models Applications
Evaluation methods

Ma et al. (2015) LSTM traffic speed
MAPE, MSE

Ding et al. (2019) GRU wind power
RMSE, MAE

Gauch et al. (2021) multi-timescale LSTM daily and hourly rainfall runoff
NSE

Ni et al. (2020) wavelet LSTM, convolutional LSTM monthly streamflow and rainfall
RMSE, NSE, MARE

Barrera-Animas et al. (2022) stacked LSTM, bidirectional LSTM hourly rainfall time series
RMSE, MAE, RMSLE

He et al. (2022) STL-ML daily rainfall time series
RMSE, NSE, MAE, accuracy

Hadi and Tombul (2018) ANN with wavelet transformation daily streamflow
RMSE, NSE

Devi et al. (2020) EEMD-CSO-LSTM-EFG hourly wind power
MAE, RMSE, MAPE, MASE

He et al. (2019) VMD-DNN daily runoff
MAE, RMSE, NSE

Xie et al. (2019) VMD-DBN-IPSO daily runoff series
MAE, RMSE, NSE

Zuo et al. (2020) VMD-LSTM daily streamflow
NSE, NRMSE, PPTS

This study∗ VMD-RNN daily and hourly rainfall
RMSE, MAE, MAPE, UM

∗ This study incorporates four RNN models, namely LSTM, GRU, bidirectional LSTM, and bidirectional GRU. The RNN model with
superior architecture was selected for each sub-sequence.

cluding VMD, RNN variants, and UM. Two rainfall time se-
ries with daily and hourly resolutions are created by VMD-
RNN in Sect. 3. The results are discussed and analyzed in
Sect. 4. Finally, conclusions and future work are given in
Sect. 5.

2 Methodology

2.1 Variational mode decomposition

The primary process of variational mode decomposition
(VMD) is constructing and solving the variational problem
(Dragomiretskiy and Zosso, 2013). For rainfall time series
f (t), the variation problem is described as identifying K
sub-sequences uk(t) with center frequency ωk to minimize
the sum value of the estimated bandwidth of each uk(t).
The constrained condition is that the aggregation of the sub-
sequences uk(t) should be equal to the original sequence

f (t). The constrained variational problem can be expressed
as follows:{

K∑
k=1

∥∥∥∂t [(δ(t)+ j
πt

)
· uk(t)

]
ejωk t

∥∥∥2

2

}
s.t.

K∑
k=1

uk = f (t),

(1)

where {uk(t)} = {u1(t),u2(t), . . .,uK(t)} and {ωk} =

{ω1,ω2, . . .,ωK} are shorthand notations for decomposed
sub-sequences and their center frequencies, respectively;
δ(t) is the Dirac distribution, the symbol ∗ denotes convo-
lution, and e−jωk t is a phasor describing the rotation of the
complex signal in time, with j2

=−1.
The variational problem is addressed efficiently using the

alternate direction method of multipliers (ADMMs). The
modes uk(t) are updated by Wiener filtering in the Fourier
domain with a filter tuned to the current center frequency; see
Eq. (2). Then the center frequencies ωk are updated as the
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center of gravity of the corresponding mode’s power spec-
trum, expressed as Eq. (3), and finally the Lagrangian mul-
tiplier λ enforcing exact constraints is updated as the dual
ascent by Eq. (4). The updating procedure is repeated until
the convergence condition is satisfied, as in Eq. (5).

ûn+1
k (ω)←

f̂ (ω)−
∑
i<k

ûn+1
i (ω)−

∑
i>k

ûni (ω)+
λ̂n(ω)

2

1+ 2θ(ω−ωnk )
2 (2)

ωn+1
k ←

∫
∞

0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫
∞

0

∣∣∣ûn+1
k (ω)

∣∣∣2dω
(3)

λ̂n+1(ω)← λ̂n(ω)+ τ

(
f̂ (ω)−

∑
k

ûn+1
k (ω)

)
(4)

∑
k

‖ ûn+1
k − ûnk‖

2
2

‖ ûnk‖
2
2

< ε (5)

Here, ûn+1
k (ω), f̂ (ω), and λ̂n+1(ω) represent the Fourier

transforms of un+1
k (t), f (t), and λn+1(t), respectively; n is

the iteration, θ is a quadratic penalty term, τ is the iterative
factor that indicates VMD’s noise tolerance, and ε denotes
the convergence tolerance.

2.2 Recurrent neural network

Recurrent neural network models perform deep learning
through a unique recurrent structure (Elman, 1990), as illus-
trated in Fig. 1. In terms of time series predicting, the re-
current units remember earlier information, processing not
only new data but also previous outputs to generate an up-to-
date prediction. However, RNN models have difficulty deal-
ing with long-term information. Additionally, standard RNN
suffers from the gradient vanishing or exploding problem. To
overcome the constraints of standard RNN, long short-term
memory (LSTM), gated recurrent unit (GRU), bidirectional
LSTM (BiLSTM) and bidirectional GRU (BiGRU), as vari-
ants of RNN, are designed. Their working principles are ex-
plained in detail as follows.

2.2.1 Long short-term memory

LSTM models are explicitly constructed with special recur-
rent structures to remember information for long periods, and
they have three gates to control the cell state that stores and
conveys information (Hochreiter and Schmidhuber, 1997),
which is depicted in Fig. 2. The forget gate ft determines
how much information should be forgotten from the cell
state, which constructs the long-term memory, as represented
in Eq. (6). The input gate it is responsible for deciding what
new information should be stored in the cell, and the corre-
sponding equations are Eqs. (7) and (8). The output gate ot is
to generate outputs (Eq. 9) and update the cell states Ct and

the hidden states ht , expressed as Eqs. (10) and (11), respec-
tively.

ft = σ
(
Wxf xt +Whf ht−1+ bf

)
(6)

it = σ (Wxixt +Whiht−1+ bi) (7)

C̃t = tanh(WxCxt +WhCht−1+ bC) (8)
ot = σ (Wxoxt +Whoht−1+ bo) (9)

Ct = ft ⊗Ct−1+ it ⊗ C̃t (10)
ht = ot ⊗ tanh(Ct ) (11)

Here, σ and tanh are activation functions, denoting the sig-
moid function and hyperbolic tangent function, respectively;
xt is the input and C̃t is candidate memory; Wxf , Wxi , WxC ,
and Wxo and Whf , Whi , WhC , and Who represent the corre-
sponding weights to xt and ht−1; bf , bi , bC , and bo are the
related bias; and ⊗ indicates element-wise multiplication.

2.2.2 Gated recurrent unit

GRU also overcomes the drawbacks of standard RNN. Un-
like LSTM, however, it only has two gates: a reset gate and an
update gate (Cho et al., 2014). The rest gate rt is accountable
for the short-term dependencies by determining which his-
torical data should be forgotten, represented as Eq. (12). The
update gate zt manages the long-term dependencies by con-
trolling what information is delivered to the future (Eq. 13).
The hidden state ht is then updated according to Eqs. (4) and
(15). The update gate performs functions similar to the for-
get and input gates of LSTM, so the recurrent structure of
GRU (Fig. 3) is less complex, which makes it more efficient
computationally from a theoretical standpoint (Chung et al.,
2014).

rt = σ (Wxrxt +Whrht−1+ br) (12)
zt = σ (Wxzxt +Whzht−1+ bz) (13)

ĥt = tanh(Wxhxt +Whh(rtht−1)+ bh) (14)

ht = zt ⊗ht−1+ (1− zt )⊗ ĥt (15)

2.2.3 Bidirectional recurrent neural network

Bidirectional RNN (BiRNN) is an RNN-variant model that
takes into account both past and future information to predict
the target (Schuster and Paliwal, 1997; Graves and Schmid-
huber, 2005). The architecture of a bidirectional RNN is seen
in Fig. 4. It adds an additional hidden layer to the RNN con-
struction so that information can be conveyed backward. The
hidden state ht is obtained by concatenating the forward and

backward hidden states,
−→
h t and

←

h t , implying that the out-
put is generated by combining information from two hidden
layers. To avoid the limitations of standard RNN, BiLSTM
and BiGRU are used instead of BiRNN, which have excel-
lent performance in time series prediction.
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Figure 1. The structure of standard RNN.

2.3 Universal multifractals

Universal multifractals (UMs) have been widely used to de-
scribe nonlinear phenomena that have a multiplicative struc-
ture, such as rainfall. The core principle of the framework
of UM is briefly explained here, and interested readers could
refer to references (e.g., Schertzer and Lovejoy, 1987, 2011;
Lovejoy and Schertzer, 2007) for more details. Let us denote
ελ as a conservative field at resolution λ (= L/l, the ratio
between the outer scale of the phenomenon L and the obser-
vation scale l), and the statistical moment of order q can be
defined as〈
ε
q
λ

〉
≈ λK(q), (16)

where K(q) is the moment scaling function characterizing
the variability of the field at all scales.

In the UM framework, the moment scaling function K(q)
can be determined by two scale-invariant parameters C1
and α in the conservative field, expressed as Eq. (17)

(Schertzer and Lovejoy, 2011). C1 is the mean intermittency
co-dimension, which measures the average sparseness of the
field. α is the multifractality index (0≤ α ≤ 2), which indi-
cates how fast the intermittency evolves when considering
singularities slightly different from the average field singu-
larity.

K(q)=

{
C1
α−1 (q

α
− q) α 6= 1

C1q lnq α = 1
(17)

The trace moment (TM) technique can be used to estimate
UM parameters (Schertzer and Lovejoy, 2011; Gires et al.,
2013). The steps in the technique are as follows: first, calcu-
late the empirical statistical moment

〈
ε
q
λ

〉
(corresponding to

the trace moment of fluxes) of order q for each resolution λ
and then plot the logarithm of the average field

〈
ε
q
λ

〉
versus

the logarithm of λ; later perform linear regression to obtain
the slope K(q), and finally, according to the theoretical ex-
pression of K(q) (Eq. 17), C1 is given by K ′(1)= C1 and
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Figure 2. The recurrent structure of LSTM.

α by K ′′(1)= αC1 because
〈
ε
q
λ

〉
= 1, i.e., K(1)= 0 for the

conservative field.
An alternative method for directly estimating the UM pa-

rametersC1 and α is the double trace moment (DTM) (Laval-
lée et al., 1993; Gires et al., 2012). Based on the assump-

tion that the conservative field ε(η)λ =
ε
η
λ

〈ε
η
λ〉

is renormalized

by upscaling the η power of the field at maximum resolu-
tion, the statistical moment K(qη) of order q is defined as〈
ε
(η)q
λ

〉
≈ λK(q,η) with K(qη)=K(qη)−ηK(q). In the spe-

cific framework of UM, the statistical momentK(qη) can be
expressed as K(qη)= ηαK(q). Therefore, UM parameters
C1 and α are obtained according to the slope and intercept of
the linear portion of the log–log plot K(qη) vs. η.

When a multifractal field φλ is non-conservative (〈φλ〉 6=
1), it is usually assumed that it can be written as

φλ = ελλ
−H , (18)

where ελ is a conservative field (〈ελ〉 = 1) of the moment
scaling function Kc(q) depending only on C1 and α; H is
the non-conservation parameter (H = 0 for the conservative
field).

The moment scaling function K(q) of φλ is given by

K(q)=Kc(q)−Hq. (19)

H can be estimated using the following formula (Tessier et
al., 1993):

β = 1+ 2H −Kc(2), (20)

where β is the spectral slope that characterizes the power
spectrum of a scaling field, which follows a power law over
a wide range of wave numbers,

E(k)∝ k−β . (21)

Theoretically, a fractional integration of order H (equivalent
to a multiplication by kH in the Fourier space) is performed
to retrieve ελ from φλ. A common approximation is to take
ε3 as the absolute value of the fluctuation of φ3 at the maxi-
mum resolution of3 and renormalizing it, shown as Eq. (22)
in one dimension (Lavallée et al., 1993). Then, ελ is obtained
by upscaling ε3.

ε3 =
|φ3(i+ 1)−φ3(i)|
〈|φ3(i+ 1)−φ3(i)|〉

(22)
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Figure 3. The recurrent structure of GRU.

3 Case study

3.1 Study area and datasets

Two rainfall time series with daily and hourly resolutions in
Champs-sur-Marne (48.8425° N, 2.5886° E) were collected
from the MERRA-2 (Modern-Era Retrospective analysis for
Research and Applications, Version 2) precipitation dataset
that is produced by NASA’s Global Modeling and Assimi-
lation Office (GMAO); refer to the POWER Project (https:
//power.larc.nasa.gov, last access: 10 September 2025). The
corrected MERRA-2 precipitation dataset is a reanalysis
product that integrates various observational data types (like
radar, tipping bucket gauges, and satellite) through sophisti-
cated data assimilation techniques into a climate model (Re-
ichle et al., 2017).

One could worry about the model’s applicability beyond
the chosen study area, i.e., its transportability, because the
model only has to be trained once. In principle, a new dataset
from different regions or time periods can be fed directly into
the well-trained model without repeating the training process
to obtain the prediction on the new dataset.

The daily time series covered 1 January 2001 to 31 De-
cember 2020 (a total of 7305 data points). The period from

1 January 2001 to 7 January 2015 (5120 data points, account-
ing for 70 % of the total dataset) was selected as the training
set, while the remaining dates were used as the non-training
set. The non-training set was further divided into a valida-
tion set to tune hyperparameters according to loss changes
and a testing set (1024 data points, from 14 March 2018 to
31 December 2020) to evaluate the predicting performance,
as presented in Fig. 5a. In addition, the rainfall time series
with hourly resolution for the period between 1 January 2001
and 1 November 2001 (a total of 7305 data points) was also
studied and divided into three sets: a training set (5120 data
points), a validation set (1161 data points), and a testing set
(1024 data points), as shown in Fig. 5b.

3.2 Model process

3.2.1 The implementation of VMD-RNN

In order to avoid using information from the future, the orig-
inal rainfall time series was first divided into the training
and non-training sets, and then the training set was decom-
posed into several sub-sequences and applied to train the
models (Zhang et al., 2015; Zuo et al., 2020). To predict in
the testing set, time series from the non-training set were se-

https://doi.org/10.5194/hess-29-4437-2025 Hydrol. Earth Syst. Sci., 29, 4437–4455, 2025
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Figure 4. The structure of BiRNN.

Figure 5. Original rainfall time series: (a) daily time series, (b) hourly time series.
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quentially appended to the training set, and the decomposi-
tion process was repeated with the rainfall time series of the
next step appended. Following that, four variant RNN mod-
els were used to predict individual sub-sequences. The root
mean square error (RMSE) was used to select the ideal RNN
model with the optimal parameters for each sub-sequence. In
addition to RMSE, UM was also employed to evaluate pre-
diction performances, characterizing the extreme variability
of time series. The implementation of the hybrid deep learn-
ing model (VMD-RNN) is summarized as follows and pre-
sented in Fig. 6.

Step 1. Divide the original rainfall time series f (t) (t =
1,2, . . . ,N , whereN is the length of total data) into a training
set fT (t) (t =1,2,. . . ,Nt , where Nt is the training set length)
and a non-training set fN (t) (t = 1, 2, . . . , Nn, where Nn is
the non-training set length).

Step 2. Use VMD to decompose the training set fT (t) into
sub-sequences uT i(t) (i = 1, 2, . . . , K).

Step 3. Sequentially append the non-training data fN (t)
to the training set to generate Nn new appended sequences
f
j
NT(t) (j = 1, 2, . . . ,Nn and t = 1, 2, . . . ,Nt+j), and repeat

decomposing each appended sequence f jNT(t) into K sets of
appended sub-sequences ujNTi(t) (i = 1, 2, . . . , K).

Step 4. Extract the last sample ujNTi(Nt + j) of each set
of appended sub-sequences ujNTi(t) as a non-training sam-
ple and divide the generated non-training samples Nvte =Nn
into two subsets: validation samples Nv and testing samples
Nte.

Step 5. For each sub-sequence, combine data from the
training set and validation samples as history data, which are
then used to train four variant RNN models and tune hyper-
parameters to find an ideal predicting model with optimal
parameters.

Step 6. For each sub-sequence, input testing samples into
the corresponding predicting models and obtain an individual
predicted result yi(t) (i = 1, 2, . . . , K).

Step 7. Aggregate the predicted results of each sub-
sequence to generate the final predicted result y(t)=
K∑
i=k

yi(t).

Step 8. Use the framework of UM to analyze the predicted
and actual time series in the testing set.

To minimize the possibility of exposing future data dur-
ing the decomposition of non-training time series, a precau-
tionary approach (Step 3 and Step 4) has been implemented.
This approach differs from the direct way of decomposing
the testing time series using VMD. The non-training data
were added to the training set in a sequential manner to cre-
ate a new time series, and the number of new generated time
series was equal to the number of non-training data points.
The VMD technique was thereafter used to decompose the
aforementioned new time series into several sub-sequences.
Subsequently, the final data point of each newly generated
sub-sequence was retrieved and designated as non-training

data, which were then used to build validation and testing
samples.

3.2.2 Parameters of VMD

The decomposition performance of VMD is affected by the
decomposition levelK , the quadratic penalty term θ , the con-
vergence tolerance ε, and the noise tolerance τ . In this study,
the number ofK was identified by observing the power spec-
tral density (PSD) of the last sub-sequence. The value of K
was determined on the training set with 5120 data points.
First, an initial K value was given, such as K = 5, and there
were five sub-sequences (IMFs) with the same length of
training set. Then, each sub-sequence was divided into 40
samples with 128 data points to perform the spectral analysis
and plot the corresponding PSD of sub-sequences. After that,
K was increased by 1 and the plotting PSD was repeated until
the PSD of the last sub-sequence exhibited an evident change
compared with the previous last sub-sequence. For daily time
series, the optimal number of K was 8, which is depicted in
Fig. 7, whereas K = 6 for hourly time series. Based on the
trial and error, other parameters of VMD were suggested as
θ = 100, ε = 1× 10−9, and τ = 0.

3.2.3 Parameters of RNN

In the process of training, hyperparameters such as the num-
ber of inputs, epoch, hidden layers, and hidden units all influ-
ence the performance of models. Without loss of generality,
the first sub-sequence (IMF1) is taken as an example to de-
scribe the determination of the ideal RNN structure with the
optimal hyperparameters. The specific process is as follows:
first, initialize a single hidden layer model with 5, 10, and
15 input neurons and 1 output neuron and run different vari-
ants of the RNN model (LSTM, GRU, BiLSTM, BiGRU) for
various hidden neurons (32, 64, and 128). All experiments
were intended to run for 10 000 epochs (one epoch is defined
as when an entire dataset is passed forward and backward
through the neural network only once), but early stopping
with a large patience value (= 200) was applied to prevent
unnecessary overfitting, which means the model will stop the
training if the performance on the validation dataset does not
improve after 200 epochs. After adjusting hyperparameters,
the ideal model with optimal parameters was found for the
first sub-sequence (IMF1) where MAE and RMSE are the
lowest.

The results of the model with one hidden layer for IMF1
predicting are shown in Table 2, where the best value is
marked in bold. Then, different second hidden layers with
hidden neurons (32, 64, and 128) were added to the first hid-
den layer with optimal parameters in order to discover the
optimal parameters for the second hidden layer. By analogy,
a third hidden layer was added. Table 3 shows the results
of the optimal model with second and third hidden layers
for IMF1 predicting. Through the above method, the variant
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Figure 6. The process of the VMD-RNN model.

RNN model structures of IMF1–IMF8 components were ob-
tained, as shown in Table 4.

3.3 Open-source software

This study made extensive use of open-source software.
Python 3.8 was the programming language. The packages
Numpy (Van Der Walt et al., 2011), Pandas (McKinney,
2011), and Scikit-Learn (Pedregosa et al., 2011) were used
to preprocess data. Tensorflow (Abadi et al., 2016) and
Keras (Chollet, 2018) were the deep learning frameworks
used to analyze time series, and Matplotlib (Hunter, 2007)
was used to create all the resulting figures. The decompo-
sition of time series by VMD was implemented based on
the package vmdpy (Carvalho et al., 2020), which is derived
from the original VMD MATLAB toolbox (Dragomiretskiy
and Zosso, 2013). TM and DTM analysis were performed

to calculate UM parameters according to the Multifractal
toolbox that was provided by the website (https://hmco.
enpc.fr/portfolio-archive/multifractals-toolbox, last access:
10 September 2025) (Gires et al., 2011, 2012, 2013).

4 Result analysis

To verify the effectiveness of the hybrid VMD-RNN model,
the benchmark methods, the pure LSTM model without de-
composition, and the linear regression (LR) method were in-
troduced. The benchmark also used the previous 5 d rainfall
values to predict the next day’s rainfall. The parameters for
the pure LSTM were adjusted by trial and error. Qualitative
and quantitative analyses of one-step-ahead predicted rainfall
time series from two different models were conducted.
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Figure 7. PSD of the corresponding last sub-sequence when K is from 5 to 10.

Table 2. Results of the VMD-RNN model with one hidden layer for IMF1 predicting. The best value is marked in bold.

Model Numbers Model MAE RMSE Model Numbers Model MAE RMSE
type of input structure type of input structure

32 0.246 0.496 32 0.144 0.380
5 64 0.157 0.396 5 64 0.150 0.387

128 0.188 0.433 128 0.136 0.369
32 0.144 0.380 32 0.142 0.377

LSTM 10 64 0.144 0.380 GRU 10 64 0.171 0.413
128 0.174 0.417 128 0.190 0.436

32 0.190 0.435 32 0.144 0.379
15 64 0.176 0.420 15 64 0.163 0.404

128 0.160 0.400 128 0.154 0.392

32 0.178 0.422 32 0.137 0.370
5 64 0.160 0.400 5 64 0.168 0.409

128 0.239 0.489 128 0.192 0.438
32 0.158 0.397 32 0.161 0.401

BiLSTM 10 64 0.234 0.484 BiGRU 10 64 0.156 0.395
128 0.185 0.431 128 0.162 0.403

32 0.138 0.371 32 0.155 0.393
15 64 0.183 0.428 15 64 0.171 0.414

128 0.198 0.445 128 0.185 0.430

4.1 Daily rainfall series

Figure 8 shows the predicted daily time series in the testing
set. It compares the predicted results of the VMD-RNN hy-
brid model, the pure LSTM model, and the linear regression
method with the actual data. It can be clearly observed that
the hybrid model has a better fit for most of the points, partic-
ularly during periods of high-intensity rainfall events that are
critical for flood forecasting applications. The VMD-RNN

model demonstrates enhanced capability to capture rainfall
variability patterns, including the temporal clustering of pre-
cipitation events that characterizes real rainfall processes.

The comparison of prediction performance with and with-
out VMD for daily time series in the testing set can be seen
in Fig. 9. The scatter plot demonstrates that the VMD-RNN
model has superior performance in predicting both high and
low values for daily time series, whereas the baseline mod-
els with LSTM and linear regression exhibit systematic bi-
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Figure 8. Predicted and actual daily time series in the testing set.

Table 3. Results of the optimal model with second and third hidden
layers for IMF1 predicting.

Model type Model structure MAE RMSE

128-32 0.139 0.373
128-64 0.157 0.396

GRU 123-128 0.128 0.358
128-128-32 0.152 0.39
128-128-64 0.157 0.396

Table 4. Variant RNN models of IMF1–IMF8.

VMD Model Numbers Model
component type of input structure

IMF1 GRU 5 128-128
IMF2 BiLSTM 15 64
IMF3 BiGRU 15 64-64-64
IMF4 LSTM 10 64
IMF5 LSTM 10 64-64-64
IMF6 BiLSTM 15 64
IMF7 BiLSTM 10 128-128
IMF8 BiGRU 15 32-32

ases. Notably, the VMD-RNN model shows improved per-
formance in predicting extreme rainfall events, which are
crucial for urban flood warning systems. The predicted val-
ues obtained by the baseline models exhibit considerable de-
viation from the best linear fitting line (blue dotted line), with
a tendency to underestimate high-intensity events – a critical
limitation for hydrological applications where accurate pre-
diction of extreme events directly impacts flood risk assess-
ment and emergency response effectiveness.

It was also necessary to know which model performed
better on quantitative aspects. Table 5 compares the results
of three widely used criteria: RMSE, MAE, and MAPE. It
can be seen that the three criteria of VMD-RNN are plainly
lower, so the hybrid model outperforms the pure model. It
further confirms the strong capability of the hybrid model in
rainfall prediction.

Figure 9. The comparison between predicted and actual daily rain-
fall values.

Table 5. Prediction errors for daily time series in the testing set.

MAE RMSE MAPE

VMD-RNN 0.726 0.852 9.853
LSTM 6.825 2.612 10.475
LR 9.239 3.040 18.923

In addition to calculating the prediction error, the UM
technique was also introduced to evaluate prediction perfor-
mance since it enables the extreme variability of rainfall time
series to be characterized. According to Tessier et al. (1996),
the rainfall series in France exhibits a rough scaling break
phenomenon between 16 and 30 d. Therefore, the analysis of
UM starts with a range of scales from 1 d, increasing in pow-
ers of 2 to an outer scale of 16 d. Figure 10 presents log

〈
ε
q
λ

〉
versus logλ over the range of q between 0.3 and 2.5 with
a coefficient of determination greater than 0.99, the log–log
plot of

〈
ε
(η)q
λ

〉
vs. λ for q = 1.5, and the corresponding log–

log plot of K(qη) vs. η.
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Figure 10. UM results for daily time series in the testing set: (a) actual time series, (b) predicted time series by VMD-RNN, (c) predicted
time series by LSTM without decomposition.

All the parameter values estimated using the TM and
DTM methods are listed in Table 6. The values of α and
C1 obtained using the DTM technique show slight differ-
ences from those estimated by TM but remain within accept-
able ranges for multifractal analysis. Importantly, the VMD-
RNN-predicted time series preserves multifractal properties
more effectively than LSTM without decomposition, as evi-
denced by UM parameters that are closer to those of actual
rainfall. This preservation of scaling properties is crucial for
hydrological applications where the multifractal structure of
rainfall directly influences runoff generation, infiltration pro-
cesses, and the temporal distribution of streamflow in urban
catchments.

4.2 Hourly rainfall series

Figure 11 displays the hourly time series in the testing set
with 1024 data points. The qualitative analysis reveals that

Table 6. Estimated UM parameters for daily time series in the test-
ing set.

TM DTM

α C1 α C1

Actual 0.89 0.25 1.02 0.24
VMD-RNN 0.98 0.16 1.06 0.16
LSTM 1.11 0.17 1.23 0.16

the predictive performance differences between VMD-RNN,
pure LSTM, and linear regression are less pronounced for
hourly rainfall time series compared to daily predictions.
This reduced benefit of decomposition for hourly data can
be attributed to the inherently higher noise level and lower
signal-to-noise ratio characteristic of high-frequency precip-
itation measurements, which limits the effectiveness of de-
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Table 7. Estimated UM parameters for hourly time series in the
testing set.

TM DTM

α C1 α C1

Actual 0.55 0.26 0.84 0.25
VMD-RNN 0.79 0.21 1.04 0.19
LSTM 0.97 0.22 1.08 0.22

composition techniques in extracting meaningful frequency
components.

Figure 12 depicts the comparison between predicted and
actual hourly rainfall values. The scatter plot reveals that the
predicted values from VMD-RNN basically agree with the
corresponding actual values, but the values predicted from
the baseline LSTM model do not yield the same level of
alignment. While the VMD-RNN model shows reasonable
agreement with actual values for moderate to high rainfall
intensities, significant challenges become apparent for low-
intensity precipitation events.

The UM analysis results for hourly time series (Fig. 13)
and estimated parameters (Table 7) indicate that the pre-
dictive performance of VMD-RNN is comparable to pure
LSTM for hourly data, without demonstrating the substan-
tial benefits observed for daily predictions. The UM param-
eters α and C1 show similar values between VMD-RNN
and LSTM predictions, suggesting that both approaches pre-
serve multifractal properties to a similar degree at hourly
resolution. This finding reflects the scale-dependent effec-
tiveness of decomposition techniques, where the benefits be-
come more apparent at longer timescales where signal-to-
noise ratios are higher and frequency separation is more pro-
nounced.

4.3 Discussion

4.3.1 Comparison with existing approaches

The hybrid VMD-RNN approach addresses several limita-
tions of traditional hydrological forecasting methods. Com-
pared to physically based numerical weather prediction mod-
els, data-driven approaches like VMD-RNN can provide
more computationally efficient solutions for short-term rain-
fall prediction, particularly for local-scale applications where
high-resolution atmospheric models may not be practical or
cost-effective (Wilks, 2011). However, it is important to note
that these models complement rather than replace physical
understanding of hydrological processes.

Nowcasting systems, which typically rely on radar obser-
vations and numerical weather prediction models, face chal-
lenges in accurately predicting the timing and intensity of
precipitation events (Hess and Boers, 2022). The VMD-RNN
approach could potentially be integrated with existing now-

casting frameworks to improve short-term precipitation fore-
casts, particularly when combined with radar-based observa-
tions and ensemble forecasting techniques.

The multifractal analysis using universal multifractals pro-
vides additional insights into the scaling properties of rainfall
that are not captured by traditional error metrics. The closer
agreement of VMD-RNN predictions with observed multi-
fractal parameters suggests that the model better preserves
the natural variability structure of rainfall processes across
scales (Schertzer et al., 1997). This is particularly important
for hydrological applications where the temporal distribu-
tion and intensity patterns of rainfall can significantly affect
runoff generation and flood risk.

4.3.2 Hydrological significance and applications

The results of this study demonstrate that the VMD-RNN
hybrid approach offers significant advantages for rainfall
prediction in hydrological contexts, particularly at daily
timescales. This improvement has important implications for
operational hydrology and water resource management.

The enhanced performance of VMD-RNN in capturing ex-
treme rainfall events is particularly valuable for flood early
warning systems. Extreme precipitation events are the pri-
mary drivers of flash floods and urban flooding, and their ac-
curate prediction can provide crucial lead time for emergency
response and flood mitigation measures (Berne et al., 2004;
Beven, 2012). The improved prediction of high-intensity
events could enhance the reliability of flood forecasting sys-
tems and reduce false alarm rates, which are critical factors
in maintaining public trust and ensuring effective emergency
response (Demeritt et al., 2007).

4.3.3 Model limitations and uncertainties

Despite the promising results, several limitations must be ac-
knowledged. The systematic overestimation of low-intensity
rainfall represents a significant challenge for practical appli-
cations. This bias could lead to overestimation of cumulative
precipitation over extended periods, affecting water balance
calculations and long-term hydrological planning (Gardiya
Weligamage et al., 2023). The issue of false positives in low-
intensity predictions is a common challenge in precipitation
forecasting and requires careful consideration in operational
applications.

The temporal scale dependency observed in our results,
where VMD decomposition shows greater benefits for daily
compared to hourly predictions, suggests that the approach
may be most suitable for applications requiring daily to
weekly rainfall forecasts. This scale dependence may be
related to the frequency content of rainfall signals, where
longer timescales contain more distinct frequency compo-
nents that can be effectively separated by VMD.

The current study focuses on a single location with a tem-
perate climate. The performance of VMD-RNN may vary
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Figure 11. Predicted and actual hourly time series in the testing set.

Figure 12. Predicted and actual hourly time series in the testing set.

significantly across different climatic regions, particularly in
areas with distinct wet and dry seasons and monsoon cli-
mates or arid regions where rainfall patterns differ markedly
from those observed in our study area. Further validation
across diverse climatic conditions is essential for establish-
ing the general applicability of the approach.

5 Conclusions and future work

In this study, the hybrid VMD-RNN model was used as a
methodology for forecasting rainfall with a one-step lead
time. The integration of variational mode decomposition
with recurrent neural networks demonstrates significant po-
tential for improving rainfall time series prediction accuracy,
particularly for extreme events that are critical for flood risk
assessment.

VMD was first used to extract hidden information to un-
derstand the complex original time series. Then variants of
RNN were applied to handle problems involving sequen-
tial prediction. By combining the dominant characteristics of
VMD in decomposing nonlinear time series and the favor-
able performance of variant RNN models in predicting com-

plex sequential problems, the hybrid model based on VMD
and RNN was employed to predict rainfall time series with
daily and hourly resolution. The framework of UM was sub-
sequently introduced to evaluate the performance of predict-
ing rainfall time series.

According to the above study, the following conclusions
could be drawn: (1) the VMD-RNN hybrid approach suc-
cessfully addresses the challenge of predicting highly vari-
able rainfall time series by decomposing the signal into
frequency-specific components. The determination of opti-
mal decomposition levels through power spectral density
analysis provides a systematic approach for model configura-
tion. (2) For daily rainfall prediction, the VMD-RNN model
significantly outperforms pure LSTM models, particularly in
capturing extreme rainfall events that are crucial for flood
forecasting applications. The improvement in prediction ac-
curacy has direct implications for early warning systems and
flood risk management. (3) The closer agreement of VMD-
RNN predictions with observed universal multifractal pa-
rameters demonstrates that the model better preserves the
natural scaling variability of rainfall processes. This vali-
dation using C1 and α parameters provides additional con-
fidence in the model’s ability to represent the complex in-
termittent nature of precipitation. (4) The benefits of VMD
decomposition are more pronounced at daily compared to
hourly timescales, suggesting that the approach may be most
effective for applications requiring daily to weekly rainfall
forecasts rather than sub-daily nowcasting.

However, there are still some limits to this study, and
corresponding improvements will be implemented in fu-
ture work. First, extending the approach to multi-step-ahead
predictions would significantly enhance its practical util-
ity for hydrological applications. Second, incorporating spa-
tial information through the development of spatially dis-
tributed VMD-RNN models could improve rainfall predic-
tion for catchment-scale applications. Third, the integration
of physics-informed constraints into the VMD-RNN frame-
work could help address some of the observed limitations,
particularly the overestimation of low-intensity rainfall. Fi-
nally, the development of ensemble forecasting capabilities
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Figure 13. UM results for hourly time series in the testing set: (a) actual time series, (b) predicted time series by VMD-RNN, (c) predicted
time series by LSTM without decomposition.

would provide valuable uncertainty information for decision-
making.

Code and data availability. The source Python code of VMD
is available at https://github.com/vrcarva/vmdpy (last access: 10
September 2025) (Carvalho et al., 2020). The Multifractal toolbox
is provided by the website (https://hmco.enpc.fr/portfolio-archive/
multifractals-toolbox, last access: 10 September 2025) (Gires
et al., 2013, 2012, 2011). Two rainfall time series with daily
and hourly resolutions in Champs-sur-Marne are collected from
the POWER Project (https://power.larc.nasa.gov, last access:
10 September 2025) (White et al., 2011).
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