Articles | Volume 29, issue 17
https://doi.org/10.5194/hess-29-4219-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-4219-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Relevance of feedbacks between water availability and crop systems using a coupled hydrological–crop growth model
Department of Physical Geography, Utrecht University, Utrecht, the Netherlands
Rens L. P. H. van Beek
Department of Physical Geography, Utrecht University, Utrecht, the Netherlands
Michelle T. H. van Vliet
Department of Physical Geography, Utrecht University, Utrecht, the Netherlands
Jerom P. M. Aerts
Water Resources Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
Department of Hydraulic Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
Marc F. P. Bierkens
Department of Physical Geography, Utrecht University, Utrecht, the Netherlands
Unit Subsurface & Groundwater Systems, Deltares, Utrecht, the Netherlands
Related authors
No articles found.
Nicole Gyakowah Otoo, Edwin H. Sutanudjaja, Michelle T. H. van Vliet, Aafke M. Schipper, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 29, 2153–2165, https://doi.org/10.5194/hess-29-2153-2025, https://doi.org/10.5194/hess-29-2153-2025, 2025
Short summary
Short summary
The contribution of groundwater to groundwater-dependent ecosystems (GDEs) is declining as a result of an increase in groundwater abstractions and climate change. This may lead to loss of habitat and biodiversity. This proposed framework enables the mapping and understanding of the temporal and spatial dynamics of GDEs on a large scale. The next step is to assess the global impacts of climate change and water use on GDE extent and health.
Jennie C. Steyaert, Edwin Sutanudjaja, Marc Bierkens, and Niko Wanders
EGUsphere, https://doi.org/10.5194/egusphere-2024-3658, https://doi.org/10.5194/egusphere-2024-3658, 2025
Short summary
Short summary
Using machine learning techniques and remotely sensed reservoir data, we develop a workflow to derive reservoir storage bounds. We put these bounds in a global hydrologic model, PCR-GLOBWB 2, and evaluate the difference between generalized operations (the schemes typically in global models) and this data derived method. We find that modelled storage is more accurate in the data derived operations. We also find that generalized operations over estimate storage and can underestimate water gaps.
Barry van Jaarsveld, Niko Wanders, Edwin H. Sutanudjaja, Jannis Hoch, Bram Droppers, Joren Janzing, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Earth Syst. Dynam., 16, 29–54, https://doi.org/10.5194/esd-16-29-2025, https://doi.org/10.5194/esd-16-29-2025, 2025
Short summary
Short summary
Policy makers use global hydrological models to develop water management strategies and policies. However, it would be better if these models provided information at higher resolution. We present a first-of-its-kind, truly global hyper-resolution model and show that hyper-resolution brings about better estimates of river discharge, and this is especially true for smaller catchments. Our results also suggest that future hyper-resolution models need to include more detailed land cover information.
Jerom P. M. Aerts, Jannis M. Hoch, Gemma Coxon, Nick C. van de Giesen, and Rolf W. Hut
Hydrol. Earth Syst. Sci., 28, 5011–5030, https://doi.org/10.5194/hess-28-5011-2024, https://doi.org/10.5194/hess-28-5011-2024, 2024
Short summary
Short summary
For users of hydrological models, model suitability often hinges on how well simulated outputs match observed discharge. This study highlights the importance of including discharge observation uncertainty in hydrological model performance assessment. We highlight the need to account for this uncertainty in model comparisons and introduce a practical method suitable for any observational time series with available uncertainty estimates.
Safaa Naffaa, Frances F. E. Dunne, Jannis Hoch, Geert Sterk, Steven S. M. de Jong, and Rens L. P. H. van Beek
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-255, https://doi.org/10.5194/hess-2024-255, 2024
Revised manuscript under review for HESS
Short summary
Short summary
This paper introduces the RDSM model. Human impacts such as climate change, land cover change and reservoir construction can be explicitly modelled and evaluated. We applied RDSM to the Amazon. We also validated the model and we conclude that RDSM effectively represents the patterns of monthly and annual variations of discharge and sediment transport across the Amazon Basin and to the ocean. Our findings are relevant to the research community working on the Amazon Basin and on similar topics.
Jarno Verkaik, Edwin H. Sutanudjaja, Gualbert H. P. Oude Essink, Hai Xiang Lin, and Marc F. P. Bierkens
Geosci. Model Dev., 17, 275–300, https://doi.org/10.5194/gmd-17-275-2024, https://doi.org/10.5194/gmd-17-275-2024, 2024
Short summary
Short summary
This paper presents the parallel PCR-GLOBWB global-scale groundwater model at 30 arcsec resolution (~1 km at the Equator). Named GLOBGM v1.0, this model is a follow-up of the 5 arcmin (~10 km) model, aiming for a higher-resolution simulation of worldwide fresh groundwater reserves under climate change and excessive pumping. For a long transient simulation using a parallel prototype of MODFLOW 6, we show that our implementation is efficient for a relatively low number of processor cores.
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023, https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Short summary
DynQual is a new high-resolution global water quality model for simulating total dissolved solids, biological oxygen demand and fecal coliform as indicators of salinity, organic pollution and pathogen pollution, respectively. Output data from DynQual can supplement the observational record of water quality data, which is highly fragmented across space and time, and has the potential to inform assessments in a broad range of fields including ecological, human health and water scarcity studies.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Jannis M. Hoch, Edwin H. Sutanudjaja, Niko Wanders, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 27, 1383–1401, https://doi.org/10.5194/hess-27-1383-2023, https://doi.org/10.5194/hess-27-1383-2023, 2023
Short summary
Short summary
To facilitate locally relevant simulations over large areas, global hydrological models (GHMs) have moved towards ever finer spatial resolutions. After a decade-long quest for hyper-resolution (i.e. equal to or smaller than 1 km), the presented work is a first application of a GHM at 1 km resolution over Europe. This not only shows that hyper-resolution can be achieved but also allows for a thorough evaluation of model results at unprecedented detail and the formulation of future research.
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci., 27, 501–517, https://doi.org/10.5194/hess-27-501-2023, https://doi.org/10.5194/hess-27-501-2023, 2023
Short summary
Short summary
Forecasts on water availability are important for water managers. We test a hybrid framework based on machine learning models and global input data for generating seasonal forecasts. Our evaluation shows that our discharge and surface water level predictions are able to create reliable forecasts up to 2 months ahead. We show that a hybrid framework, developed for local purposes and combined and rerun with global data, can create valuable information similar to large-scale forecasting models.
Pau Wiersma, Jerom Aerts, Harry Zekollari, Markus Hrachowitz, Niels Drost, Matthias Huss, Edwin H. Sutanudjaja, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 5971–5986, https://doi.org/10.5194/hess-26-5971-2022, https://doi.org/10.5194/hess-26-5971-2022, 2022
Short summary
Short summary
We test whether coupling a global glacier model (GloGEM) with a global hydrological model (PCR-GLOBWB 2) leads to a more realistic glacier representation and to improved basin runoff simulations across 25 large-scale basins. The coupling does lead to improved glacier representation, mainly by accounting for glacier flow and net glacier mass loss, and to improved basin runoff simulations, mostly in strongly glacier-influenced basins, which is where the coupling has the most impact.
Jerom P. M. Aerts, Rolf W. Hut, Nick C. van de Giesen, Niels Drost, Willem J. van Verseveld, Albrecht H. Weerts, and Pieter Hazenberg
Hydrol. Earth Syst. Sci., 26, 4407–4430, https://doi.org/10.5194/hess-26-4407-2022, https://doi.org/10.5194/hess-26-4407-2022, 2022
Short summary
Short summary
In recent years gridded hydrological modelling moved into the realm of hyper-resolution modelling (<10 km). In this study, we investigate the effect of varying grid-cell sizes for the wflow_sbm hydrological model. We used a large sample of basins from the CAMELS data set to test the effect that varying grid-cell sizes has on the simulation of streamflow at the basin outlet. Results show that there is no single best grid-cell size for modelling streamflow throughout the domain.
Rolf Hut, Niels Drost, Nick van de Giesen, Ben van Werkhoven, Banafsheh Abdollahi, Jerom Aerts, Thomas Albers, Fakhereh Alidoost, Bouwe Andela, Jaro Camphuijsen, Yifat Dzigan, Ronald van Haren, Eric Hutton, Peter Kalverla, Maarten van Meersbergen, Gijs van den Oord, Inti Pelupessy, Stef Smeets, Stefan Verhoeven, Martine de Vos, and Berend Weel
Geosci. Model Dev., 15, 5371–5390, https://doi.org/10.5194/gmd-15-5371-2022, https://doi.org/10.5194/gmd-15-5371-2022, 2022
Short summary
Short summary
With the eWaterCycle platform, we are providing the hydrological community with a platform to conduct their research that is fully compatible with the principles of both open science and FAIR science. The eWatercyle platform gives easy access to well-known hydrological models, big datasets and example experiments. Using eWaterCycle hydrologists can easily compare the results from different models, couple models and do more complex hydrological computational research.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Marc F. P. Bierkens, Edwin H. Sutanudjaja, and Niko Wanders
Hydrol. Earth Syst. Sci., 25, 5859–5878, https://doi.org/10.5194/hess-25-5859-2021, https://doi.org/10.5194/hess-25-5859-2021, 2021
Short summary
Short summary
We introduce a simple analytical framework that allows us to estimate to what extent large-scale groundwater withdrawal affects groundwater levels and streamflow. It also calculates which part of the groundwater withdrawal comes out of groundwater storage and which part from a reduction in streamflow. Global depletion rates obtained with the framework are compared with estimates from satellites, from global- and continental-scale groundwater models, and from in situ datasets.
Jan L. Gunnink, Hung Van Pham, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 3297–3319, https://doi.org/10.5194/essd-13-3297-2021, https://doi.org/10.5194/essd-13-3297-2021, 2021
Short summary
Short summary
In the Mekong Delta (Vietnam) groundwater is important for domestic, agricultural and industrial use. Increased pumping of groundwater has caused land subsidence and increased the risk of salinization, thereby endangering the livelihood of the population in the delta. We made a model of the salinity of the groundwater by integrating different sources of information and determined fresh groundwater volumes. The resulting model can be used by researchers and policymakers.
Edward R. Jones, Michelle T. H. van Vliet, Manzoor Qadir, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 237–254, https://doi.org/10.5194/essd-13-237-2021, https://doi.org/10.5194/essd-13-237-2021, 2021
Short summary
Short summary
Continually improving and affordable wastewater management provides opportunities for both pollution reduction and clean water supply augmentation. This study provides a global outlook on the state of domestic and industrial wastewater production, collection, treatment and reuse. Our results can serve as a baseline in evaluating progress towards policy goals (e.g. Sustainable Development Goals) and as input data in large-scale water resource assessments (e.g. water quality modelling).
Jerom P. M. Aerts, Steffi Uhlemann-Elmer, Dirk Eilander, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 3245–3260, https://doi.org/10.5194/nhess-20-3245-2020, https://doi.org/10.5194/nhess-20-3245-2020, 2020
Short summary
Short summary
We compare and analyse flood hazard maps from eight global flood models that represent the current state of the global flood modelling community. We apply our comparison to China as a case study, and for the first time, we include industry models, pluvial flooding, and flood protection standards. We find substantial variability between the flood hazard maps in the modelled inundated area and exposed gross domestic product (GDP) across multiple return periods and in expected annual exposed GDP.
Bram Droppers, Wietse H. P. Franssen, Michelle T. H. van Vliet, Bart Nijssen, and Fulco Ludwig
Geosci. Model Dev., 13, 5029–5052, https://doi.org/10.5194/gmd-13-5029-2020, https://doi.org/10.5194/gmd-13-5029-2020, 2020
Short summary
Short summary
Our study aims to include both both societal and natural water requirements and uses into a hydrological model in order to enable worldwide assessments of sustainable water use. The model was extended to include irrigation, domestic, industrial, energy, and livestock water uses as well as minimum flow requirements for natural systems. Initial results showed competition for water resources between society and nature, especially with respect to groundwater withdrawals.
Cited articles
Ai, Z. and Hanasaki, N.: Simulation of crop yield using the global hydrological model H08 (crp.v1), Geosci. Model Dev., 16, 3275–3290, https://doi.org/10.5194/gmd-16-3275-2023, 2023.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, Fao, Rome, 300, D05109, ISBN 92-5-104219-5, 1998.
Antle, J. M., Capalbo, S. M., Elliott, E. T., Hunt, H. W., Mooney, S., and Paustian, K. H.: Research needs for understanding and predicting the behavior of managed ecosystems: lessons from the study of agroecosystems, Ecosystems, 4, 723–735, 2001.
Arata, L., Fabrizi, E., and Sckokai, P.: A worldwide analysis of trend in crop yields and yield variability: Evidence from FAO data, Econ. Model., 90, 190–208, https://doi.org/10.1016/J.ECONMOD.2020.05.006, 2020.
Chevuru, S.: SnehaChevuru/Coupled_PCR-GLOBWB2-WOFOST_model_framework: PCR-GLOBWB2-WOFOST model (Hydrology-Crop_model), Zenodo [code], https://doi.org/10.5281/zenodo.10681452, 2024.
Corona-López, E., Román-Gutiérrez, A. D., Otazo-Sánchez, E. M., Guzmán-Ortiz, F. A., and Acevedo-Sandoval, O. A.: Water–food nexus assessment in agriculture: A systematic review, Int. J. Env. Res. Pub. He., 18, 1–14, https://doi.org/10.3390/ijerph18094983, 2021.
CSDMS: https://babelizer.readthedocs.io/en/latest/, last access: 6 February 2024.
Dendoncker, N., Schmit, C., and Rounsevell, M.: Exploring spatial data uncertainties in land-use change scenarios, Int. J. Geogr. Inf. Sci., 22, 1013–1030, https://doi.org/10.1080/13658810701812836, 2008.
de Wit, A. and Boogaard, H.: A Gentle Introduction to WOFOST, November, 287–295, https://doi.org/10.1007/978-3-319-06956-2_25, 2021.
de Wit, A., Boogaard, H., Fumagalli, D., Janssen, S., Knapen, R., van Kraalingen, D., Supit, I., van der Wijngaart, R., and van Diepen, K.: 25 years of the WOFOST cropping systems model, Agr. Syst., 168, 154–167, https://doi.org/10.1016/j.agsy.2018.06.018, 2019.
Droppers, B., Supit, I., Van Vliet, M. T. H., and Ludwig, F.: Worldwide water constraints on attainable irrigated production for major crops, Environ. Res. Lett., 16, https://doi.org/10.1088/1748-9326/abf527, 2021.
Dubois, O.: The state of the world's land and water resources for food and agriculture: managing systems at risk, Earthscan, ISBN 978-1-84971-327-6, 2011.
Easterling, W. E.: Why regional studies are needed in the development of full-scale integrated assessment modelling of global change processes, Global Environ. Chang., 7, 337–356, https://doi.org/10.1016/S0959-3780(97)00016-2, 1997.
Eckhardt, K., Breuer, L., and Frede, H. G.: Parameter uncertainty and the significance of simulated land use change effects, J. Hydrol., 273, 164–176, https://doi.org/10.1016/S0022-1694(02)00395-5, 2003.
Ewert, F., Rötter, R. P., Bindi, M., Webber, H., Trnka, M., Kersebaum, K. C., Olesen, J. E., van Ittersum, M. K., Janssen, S., Rivington, M., Semenov, M. A., Wallach, D., Porter, J. R., Stewart, D., Verhagen, J., Gaiser, T., Palosuo, T., Tao, F., Nendel, C., Roggero, P. P., Bartosova, L., and Asseng, S.: Crop modelling for integrated assessment of risk to food production from climate change, Environ. Model. Softw., 72, 287–303, https://doi.org/10.1016/J.ENVSOFT.2014.12.003, 2015.
Food and Agriculture Organization of the United Nations (FAO): Digital Soil Map of the World, Version 3.6, FAO, Rome, Italy, https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1026564/, 2007.
Huang, J., Hartemink, A. E., and Kucharik, C. J.: Soil-dependent responses of US crop yields to climate variability and depth to groundwater, Agr. Syst., 190, 103085, https://doi.org/10.1016/J.AGSY.2021.103085, 2021.
Hutton, E., Piper, M., and Tucker, G.: The Basic Model Interface 2.0: A standard interface for coupling numerical models in the geosciences, Journal of Open Source Software, 5, 2317, https://doi.org/10.21105/joss.02317, 2020.
IRENA: Renewable energy in the water, energy and food nexus, International Renewable Energy Agency, 1–125, https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2015/IRENA_Water_Energy_Food_Nexus_2015.pdf, 2015.
Jackson, N. D., Konar, M., Debaere, P., and Sheffield, J.: Crop-specific exposure to extreme temperature and moisture for the globe for the last half century, Environ. Res. Lett., 16, 064006, https://doi.org/10.1088/1748-9326/ABF8E0, 2021.
Jägermeyr, J., Pastor, A., Biemans, H., and Gerten, D.: Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation, Nat. Commun., 8, 1–9, https://doi.org/10.1038/ncomms15900, 2017.
Jägermeyr, J., M uller, C., Ruane, A.C., Elliott, J., Balkovic, J., Castillo, O., Faye, B., Foster, I., Folberth, C., Franke, J.A. and Fuchs, K.: Climate impacts on global agriculture emerge earlier in new generation of climate and crop models, Nature Food, 2, 873–885, https://doi.org/10.1038/s43016-021-00400-y, 2021.
Kanda, E. K., Mabhaudhi, T., and Senzanje, A.: Coupling hydrological and crop models for improved agricultural water management – A review, Bulg. J. Agric. Sci., 24, 380–390, 2018.
Lange, S., Menz, C., Gleixner, S., Cucchi, M., Weedon, G. P., Amici, A., Bellouin, N., Schmied, H. M., Hersbach, H., Buontempo, C., and Cagnazzo, C.: WFDE5 over land merged with ERA5 over the ocean (W5E5 v2.0), ISIMIP Repository, https://doi.org/10.48364/ISIMIP.342217, 2021.
Leclère, D., Havlík, P., Fuss, S., Schmid, E., Mosnier, A., Walsh, B., Valin, H., Herrero, M., Khabarov, N., and Obersteiner, M.: Climate change induced transformations of agricultural systems: Insights from a global model, Environ. Res. Lett., 9, https://doi.org/10.1088/1748-9326/9/12/124018, 2014.
Li, Y., Zhou, Q., Zhou, J., Zhang, G., Chen, C., and Wang, J.:. Assimilating remote sensing information into a coupled hydrology-crop growth model to estimate regional maize yield in arid regions, Ecol. Model., 291, 15–27, 2014.
McMillan, H. K., Westerberg, I. K., and Krueger, T.: Hydrological data uncertainty and its implications, WIRES Water, 5, 1–14, https://doi.org/10.1002/WAT2.1319, 2018.
Momblanch, A., Papadimitriou, L., Jain, S. K., Kulkarni, A., Ojha, C. S. P., Adeloye, A. J., and Holman, I. P.: Science of the Total Environment Untangling the water-food-energy-environment nexus for global change adaptation in a complex Himalayan water resource system, Sci. Total Environ., 655, 35–47, https://doi.org/10.1016/j.scitotenv.2018.11.045, 2019.
Mortada, S., Abou Najm, M., Yassine, A., El Fadel, M., and Alamiddine, I.: Towards sustainable water-food nexus: An optimization approach, J. Clean. Prod., 178, 408–418, https://doi.org/10.1016/J.JCLEPRO.2018.01.020, 2018.
Müller, C., Elliott, J., Chryssanthacopoulos, J., Arneth, A., Balkovic, J., Ciais, P., Deryng, D., Folberth, C., Glotter, M., Hoek, S., Iizumi, T., Izaurralde, R. C., Jones, C., Khabarov, N., Lawrence, P., Liu, W., Olin, S., Pugh, T. A. M., Ray, D. K., Reddy, A., Rosenzweig, C., Ruane, A. C., Sakurai, G., Schmid, E., Skalsky, R., Song, C. X., Wang, X., de Wit, A., and Yang, H.: Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications, Geosci. Model Dev., 10, 1403–1422, https://doi.org/10.5194/gmd-10-1403-2017, 2017.
Peckham, S. D., Hutton, E. W. H., and Norris, B.:. A component-based approach to integrated modeling in the geosciences: The design of CSDMS, Comput. Geosci., 53, 3–12, https://doi.org/10.1016/J.CAGEO.2012.04.002, 2013.
Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000 – Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling, Global Biogeochem. Cy., 24, 1–24, https://doi.org/10.1029/2008gb003435, 2010.
Porwollik, V., Müller, C., Elliott, J., Chryssanthacopoulos, J., Iizumi, T., Ray, D. K., Ruane, A. C., Arneth, A., Balkovič, J., Ciais, P., Deryng, D., Folberth, C., Izaurralde, R. C., Jones, C. D., Khabarov, N., Lawrence, P. J., Liu, W., Pugh, T. A. M., Reddy, A., Sakurai, G., Schmid, E., Wang, X., de wit, A., and Wu, X.: Spatial and temporal uncertainty of crop yield aggregations, Eur. J. Agron., 88, 10–21, https://doi.org/10.1016/J.EJA.2016.08.006, 2017.
Prestele, R., Alexander, P., Rounsevell, M. D. A., Arneth, A., Calvin, K., Doelman, J., Eitelberg, D. A., Engström, K., Fujimori, S., Hasegawa, T., Havlik, P., Humpenöder, F., Jain, A. K., Krisztin, T., Kyle, P., Meiyappan, P., Popp, A., Sands, R. D., Schaldach, R., , Schungel, J., Stehfest, E., Tabeau, A., Van Meijl, H., Van Vliet, J., and Verburg, P. H.: Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison, Glob. Change Biol., 22, 3967–3983, https://doi.org/10.1111/gcb.13337, 2016.
Roux, S., Brun, F., and Wallach, D.: Combining input uncertainty and residual error in crop model predictions: A case study on vineyards, Eur. J. Agron., 52, 191–197, https://doi.org/10.1016/J.EJA.2013.09.008, 2014.
Ruess, P. J., Konar, M., Wanders, N., and Bierkens, M.: Irrigation by Crop in the Continental United States From 2008 to 2020, Water Resour. Res., 59, 1–19, https://doi.org/10.1029/2022WR032804, 2023.
Shafiei, M., Ghahraman, B., Saghafian, B., Davary, K., Pande, S., and Vazifedoust, M.: Uncertainty assessment of the agro-hydrological SWAP model application at field scale: A case study in a dry region, Agr. Water Manage., 146, 324–334, https://doi.org/10.1016/J.AGWAT.2014.09.008, 2014.
Siad, S. M., Iacobellis, V., Zdruli, P., Gioia, A., Stavi, I., and Hoogenboom, G.: A review of coupled hydrologic and crop growth models, Agr. Water Manage., 224, 105746, https://doi.org/10.1016/J.AGWAT.2019.105746, 2019.
Sophocleous, M. Global and Regional Water Availability and Demand: Prospects for the Future, Natural Resources Research, 13, 61–75, https://doi.org/10.1023/B:NARR.0000032644.16734.f5, 2004.
Supit, I., Hooijer, A. A., and van Diepen, C. A. (Eds.): System description of the WOFOST 6.0 crop simulation model implemented in CGMS, Theory and Algorithms, vol. 1, EUR Publication 15956, Agricultural Series, Luxembourg, 146 pp., https://cir.nii.ac.jp/crid/1573950399770954368 (last access: 30 August 2025), 1994.
Sutanudjaja, E. H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H. C., Drost, N., van der Ent, R. J., de Graaf, I. E. M., Hoch, J. M., de Jong, K., Karssenberg, D., López López, P., Peßenteiner, S., Schmitz, O., Straatsma, M. W., Vannametee, E., Wisser, D., and Bierkens, M. F. P.: PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model, Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, 2018.
Tompkins, E. L. and Adger, W. N.: Does Adaptive Management of Natural Resources Enhance Resilience to Climate Change?, 9, https://www.jstor.org/stable/26267677, 2004.
Tsarouchi, G. M., Buytaert, W., and Mijic, A.: Coupling a land-surface model with a crop growth model to improve ET flux estimations in the Upper Ganges basin, India, Hydrol. Earth Syst. Sci., 18, 4223–4238, https://doi.org/10.5194/hess-18-4223-2014, 2014.
USDA: https://quickstats.nass.usda.gov/, last access: 6 February 2024.
USGS: Water use in the United States, from USGS Water-Science School, USGS 1-2, https://www.usgs.gov/water-science-school/science/total-water-use-united-states , 2023.
Veettil, A. V., Mishra, A. K., and Green, T. R.: Explaining water security indicators using hydrologic and agricultural systems models, J. Hydrol., 607, 127463, https://doi.org/10.1016/J.JHYDROL.2022.127463, 2022.
Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M. H., Amelung, W., and Aitkenhead, M.: Modeling soil processes: Review, key challenges, and new perspectives, Vadose Zone J., 15, vzj2015-09, https://doi.org/10.2136/vzj2015.09.0131, 2016.
Vörösmarty, C. J., Green, P., Salisbury, J., and Lammers, R. B.: Global water resources: Vulnerability from climate change and population growth, Science, 289, 284–288, https://doi.org/10.1126/science.289.5477.284, 2000.
Wang, X., Williams, J. R., Gassman, P. W., Baffaut, C., Izaurralde, R. C., Jeong, J., and Kiniry, J. R.: EPIC and APEX: Model use, calibration, and validation, T. ASABE, 55, 1447–1462, 2012.
Wang, X., Folberth, C., Skalsky, R., Wang, S., Chen, B., Liu, Y., Chen, J., and Balkovic, J.: Crop calendar optimization for climate change adaptation in rice-based multiple cropping systems of India and Bangladesh, Agr. Forest Meteorol., 315, 108830, https://doi.org/10.1016/J.AGRFORMET.2022.108830, 2022.
WOFOST Crop Parameters: de Wit, A., GitHub, https://github.com/ajwdewit/WOFOST_crop_parameters, (last access: 6 February 2024).
Zhang, Y., Wu, Z., Singh, V. P., He, H., He, J., Yin, H., and Zhang, Y.: Coupled hydrology-crop growth model incorporating an improved evapotranspiration module, Agr. Water Manage., 246, 106691, https://doi.org/10.1016/j.agwat.2020.106691, 2021.
Short summary
This study combines the global hydrological model
PCRaster Global Water Balancewith the
World Food Studiescrop model to analyze feedbacks between hydrology and crop growth. It quantifies one-way and two-way interactions, revealing patterns in crop yield and irrigation water use. Dynamic interactions enhance understanding of climate variability impacts on food production, highlighting the importance of two-way model coupling for accurate assessments.
This study combines the global hydrological model
PCRaster Global Water Balancewith the
World...