Articles | Volume 29, issue 15
https://doi.org/10.5194/hess-29-3589-2025
https://doi.org/10.5194/hess-29-3589-2025
Research article
 | 
07 Aug 2025
Research article |  | 07 Aug 2025

A distributed hybrid physics–AI framework for learning corrections of internal hydrological fluxes and enhancing high-resolution regionalized flood modeling

Ngo Nghi Truyen Huynh, Pierre-André Garambois, Benjamin Renard, François Colleoni, Jérôme Monnier, and Hélène Roux

Related authors

Hybrid Physics-AI and Neural ODE Approaches for Spatially Distributed Hydrological Modeling
Ngo Nghi Truyen Huynh, Pierre-André Garambois, François Colleoni, and Jérôme Monnier
EGUsphere, https://doi.org/10.5194/egusphere-2025-2797,https://doi.org/10.5194/egusphere-2025-2797, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
SMASH v1.0: A Differentiable and Regionalizable High-Resolution Hydrological Modeling and Data Assimilation Framework
François Colleoni, Ngo Nghi Truyen Huynh, Pierre-André Garambois, Maxime Jay-Allemand, Didier Organde, Benjamin Renard, Thomas De Fournas, Apolline El Baz, Julie Demargne, and Pierre Javelle
EGUsphere, https://doi.org/10.5194/egusphere-2025-690,https://doi.org/10.5194/egusphere-2025-690, 2025
Short summary

Cited articles

Agency, E. E.: CORINE Land Cover 2012 (raster 100 m), European Environment Agency [data set], https://doi.org/10.2909/a84ae124-c5c5-4577-8e10-511bfe55cc0d, 2019. a, b
Arnaud, P., Aubert, Y., Organde, D., Cantet, P., Fouchier, C., and Folton, N.: Estimation de l'aléa hydrométéorologique par une méthode par simulation : la méthode SHYREG : présentation – performances – bases de données, Houille Blanche, 100, 20–26, https://doi.org/10.1051/lhb/2014012, 2014. a
Artigue, G., Johannet, A., Borrell, V., and Pistre, S.: Flash flood forecasting in poorly gauged basins using neural networks: case study of the Gardon de Mialet basin (southern France), Nat. Hazards Earth Syst. Sci., 12, 3307–3324, https://doi.org/10.5194/nhess-12-3307-2012, 2012. a
Astagneau, P. C., Bourgin, F., Andréassian, V., and Perrin, C.: When does a parsimonious model fail to simulate floods? Learning from the seasonality of model bias, Hydrolog. Sci. J., 66, 1288–1305, https://doi.org/10.1080/02626667.2021.1923720, 2021. a
Astagneau, P. C., Bourgin, F., Andréassian, V., and Perrin, C.: Catchment response to intense rainfall: evaluating modelling hypotheses, Hydrol. Process., 36, e14676, https://doi.org/10.1002/hyp.14676, 2022. a
Download
Short summary
Understanding and modeling flash-flood-prone areas remains challenging due to limited data and scale-relevant hydrological theory. While machine learning shows promise, its integration with process-based models is difficult. We present an approach incorporating machine learning into a high-resolution hydrological model to correct internal fluxes and transfer parameters between watersheds. Results show improved accuracy, advancing the development of learnable and interpretable process-based models.
Share