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Abstract. To advance the discovery of scale-relevant hy-
drological laws while better exploiting massive multisource
data, merging artificial intelligence with process-based mod-
eling has emerged as a compelling approach, as demon-
strated in recent lumped hydrological modeling studies. This
research proposes a general spatially distributed hybrid mod-
eling framework that seamlessly combines differentiable
process-based models with neural networks. Specifically, we
focus on hybridizing the hydrological module — built atop
a differentiable kinematic wave routing over a flow direc-
tion grid — using a process-parameterization network that re-
fines internal water fluxes, with all conceptual parameters es-
timated by a regionalization network trained simultaneously.
We evaluate flood modeling performance and analyze the in-
terpretability of learned conceptual parameters and correc-
tions of internal fluxes using two high-resolution datasets
(dx = 1km and df = 1h). The first dataset involves 235
catchments in France, used for local calibration—validation
and model structure comparisons between the classical Génie
Rural (GR)-like model and the hybrid approach. The sec-
ond dataset presents a challenging multi-catchment model-
ing setup in flash-flood-prone areas to demonstrate the frame-
work’s regionalization learning capabilities. The results show
that the hybrid models achieve superior accuracy and robust-
ness compared to classical approaches in both spatial and
temporal validation. Analysis of the spatially distributed pa-
rameters and internal fluxes reveals the hybrid models’ nu-

anced behavior, their adaptability to diverse hydrological re-
sponses, and their potential to uncover physical processes.

1 Introduction

Faced with the socioeconomic challenges of flood and
drought forecasting in the context of climate change, model-
ing approaches that make the most of the maximum amount
of information available are needed to make accurate fore-
casts at high spatiotemporal resolution. Nevertheless, given
the complexity and nonlinearity of the coupled surface and
subsurface physical processes involved and their limited ob-
servability with respect to the number of parameters to es-
timate (“curse of dimensionality”), hydrological modeling
remains a difficult task tinged with uncertainties (e.g., Liu
and Gupta, 2007). Moreover, in the absence of directly ex-
ploitable first principles in hydrology (e.g., Dooge, 1986), as
opposed to flow mechanistic equations in continuous media
such as river hydraulics, meteorology, or oceanography, and
given the high heterogeneities of continental hydrosystem
compartments as well as the lack of “scale-relevant theories”
(Beven, 1987), process-based hydrological models generally
include a certain amount of empiricism, which represents an
avenue for the fusion of data assimilation (DA) and uncer-
tainty quantification (UQ) with machine learning (ML) and
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deep-learning (DL) techniques to better exploit the informa-
tive richness of multisource data.

Pure ML applications in hydrology started decades ago
(e.g., references in Maier and Dandy, 2000, or Artigue et al.,
2012, on flash floods). A recent explosion of artificial in-
telligence (Al) applications, stemming from the rise in big
data, computational power, and capabilities to extract multi-
level information from large datasets (LeCun et al., 2015),
has led to a bloom of studies, in particular in hydrology,
e.g., the reviews by Nearing et al. (2021) and Shen and Law-
son (2021) and water-related disciplines (e.g., Tripathy and
Mishra, 2024). The potential of using a long short-term mem-
ory (LSTM) network (Hochreiter and Schmidhuber, 1997), a
recurrent neural network (RNN) adapted to long time series,
for lumped continuous rainfall-runoff modeling was intro-
duced by Kratzert et al. (2018) and explored in hundreds of
studies since (Shen and Lawson, 2021). In addition to the ca-
pability of LSTM to learn multi-frequency aspects, training
these networks over large catchment samples using meteoro-
logical forcing time series and catchment physical descrip-
tors within lumped models enhances performance in daily
runoff prediction and regionalization (Kratzert et al., 2018;
Hashemi et al., 2022). A convolutional LSTM architecture,
combining the strength of LSTM to capture multiscale tem-
poral dynamics and convolutional layers for spatial pattern
extraction, is found to be effective for spatiotemporal rain-
fall nowcasting (Shi et al., 2015) and hydrological modeling
(e.g., Xu et al., 2022; Chen et al., 2022). Nevertheless, pure
ML or DL algorithms are hardly interpretable and do not use
effective physical models, solvers, and DA techniques devel-
oped over the past century. Hybrid approaches that leverage
ML or DL in sequential combination with process-based nu-
merical models via their inputs or outputs were explored re-
cently and enable improvement in the accuracy of hydrolog-
ical predictions (e.g., Konapala et al., 2020, with DA in Roy
et al., 2023, or UQ in Tran et al., 2023).

Merging process-based differential equations with ML
can be very advantageous, as recently shown with physics-
informed neural networks (PINNSs) in Raissi et al. (2019),
where the process-based model is used as a weak constraint
in the training cost function and is well adapted to assimi-
lating observations (e.g., He et al., 2020) or universal differ-
ential equations that embed a universal approximator (Chen
et al., 2019; Rackauckas et al., 2021; Yin et al., 2021). In
hydrology, integrating ML into process-based models shows
promise, as demonstrated in recent studies on daily lumped
models (Kumanlioglu and Fistikoglu, 2019; Jiang et al.,
2020; Hoge et al., 2022; Feng et al., 2022). Kumanlioglu
and Fistikoglu (2019) replaced the routing component of a
lumped Génie Rural (GR) model (Perrin et al., 2003) — an
algebraic model derived from temporally integrable ordinary
differential equations (ODEs) — with an artificial neural net-
work (ANN), achieving superior performance compared to
using the GR model or ANN alone in a single basin. Includ-
ing an ANN for flux correction in a spatially lumped process-
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based hydrological ODE (Hoge et al., 2022) and adding an
ANN-based regionalization pipeline (Feng et al., 2022) or a
semi-lumped model (Li et al., 2024) has resulted in learn-
able lumped model structures that exhibit interesting perfor-
mance and improved interpretability after training. However,
these approaches do not inherently account for spatially dis-
tributed information, such as detailed meteorological forc-
ings and descriptors of basin physical properties, which is
crucially needed for high-resolution hydrological modeling,
particularly for extreme events with strong variability.

A spatially distributed hybrid approach, HDA-PR (hybrid
data assimilation and parameter regionalization), which in-
corporates a regionalization neural network into the forward
model, was recently proposed by Huynh et al. (2024b). This
approach has enhanced regional flash flood modeling at a
relatively high resolution (dx = 1km and df = 1h). Mean-
while, Wang et al. (2024) introduced a large-scale spatial-
ized hybrid hydrological model that improves evapotranspi-
ration modeling for the Amazon basin by incorporating a re-
placement neural network and a regionalization neural net-
work. In their study, Wang et al. (2024) combined a con-
ceptual hydrological model with a simple bucket-based rout-
ing structure, using a hybrid approach that predicts concep-
tual parameters and corrects evapotranspiration (adjusting a
Penman—Monteith estimate via a 3D convolutional neural
network — CNN) without correcting other internal fluxes, and
it operates at a coarser resolution (dx = 0.5° and dr = 1d).
In addition, enhancing the physical modeling of runoff and
flood propagation necessitates the use of hydraulic models
that must be differentiable in order to facilitate gradient-
based optimization, a requirement for effective hybrid mod-
eling. This approach has been demonstrated for the optimiza-
tion of large parameter sets from heterogeneous data at the
river network scale using various approaches based on dif-
ferentiable hydraulic models, including a 2D or multidimen-
sional complete shallow-water model coupled to a differ-
entiable semi-lumped GR model (Pujol et al., 2022), a 1D
Saint-Venant river network model (e.g., Larnier et al., 2025,
though without a differentiable hydrological model), and a
kinematic wave model integrated into a grid differentiable
spatialized hydrological model (Huynh et al., 2024a). These
hydraulic models consist of partial differential equations
(PDEs). Therefore, hybrid hydrological models embedding
neural networks should advance from lumped, semi-lumped,
or spatialized ODE-based models to spatially distributed dif-
ferentiable hybrid PDE-based hydrological-hydraulic mod-
els with a view to improving modeling capabilities at the
basin scale and their realism, at least for hydraulic processes
whose modeling is less uncertain than hydrological processes
occurring in Earth’s critical zone (the near-surface environ-
ment where complex interactions between water, soils, rocks,
and living organisms regulate Earth’s surface dynamics).

To address the aforementioned challenges, this research
proposes a spatially distributed hybrid modeling framework
combining process-based models and neural networks that
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is amenable to hydrological-hydraulic (H&H) modeling and
other geophysical models. This study is based on a spatially
distributed, parsimonious GR-like hydrological model struc-
ture that is well suited to flood modeling and regionalization
learning (Huynh et al., 2024b), coupled with a differentiable
kinematic wave model for spatially distributed flow routing.
The original version of this framework was first proposed
in Huynh et al. (2024a), while the present article enhances
the approach with a more comprehensive case study, testing
a larger sample set and offering more detailed analyses. The
research continues to focus on correcting internal fluxes via a
simple neural network. A relatively parsimonious hybridiza-
tion with a dense flux correction neural network is proposed,
as it effectively captures nonlinear flux corrections while
leveraging the memory effect already embedded in the orig-
inal hydrological model. This reduces the need for recurrent
architectures such as LSTM, which are typically designed
for sequential data but introduce additional complexity that
is unnecessary for this application. The approach is imple-
mented in the SMASH (Spatially distributed Modeling and
ASsimilation for Hydrology) platform (Colleoni et al., 2025)
that enables multiscale modeling, numerical adjoint model
derivation via automatic differentiation, and variational data
assimilation (VDA). The performance, robustness, and inter-
pretability of the proposed approach are studied at a rela-
tively high spatiotemporal resolution of 1 km and 1 h, over a
large sample of French catchments and also over a challeng-
ing flash-flood-prone area. This study aims to demonstrate
the feasibility and advantages of distributed hybrid model-
ing for spatiotemporal learning of hydrological processes at
basin and regional scales. It provides a general framework for
PDE-based spatially distributed modeling, taking advantage
of Al and big data.

2 Method

2.1 Forward differentiable spatially distributed model
statement

The forward differentiable hybrid model M is obtained
by partially composing (i) a dynamic-process-based, dif-
ferentiable, and spatially distributed rainfall-runoff model
with simplified hydraulic routing M.y with (i) a
learnable (neural-network-based), differentiable process-
parameterization and regionalization operator ¢, resulting in

Eq. (1).
M= My (59 ()) ()

Let © C R? denote a 2D spatial domain with x € Q the
spatial coordinate, t € ]0, T'] the physical time, and Dg an
eight-direction (D8) drainage plan. The spatially distributed
rainfall-runoff model M.y is a dynamic operator project-
ing the input fields of atmospheric forcings Z onto the fields
of surface discharge Q, internal states ki, and internal fluxes
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q, as expressed in Eq. (2):

Ux,t)=[Q.h.q](x,1)
= Mirhy (Do, Z(x,0); f,(x,),[0,ho]l (x)),  (2)

with U (x, r) the modeled state flux variables, f q the vector
of spatially distributed corrections of the internal fluxes ¢
(which will be explained later), and @ and hg the spatially
distributed parameters and initial states of the hydrological
model. Note that neural-network-based estimation of initial
states is also feasible, e.g., for short-range DA; however, this
is beyond the scope of the current work.

A neural-network-based estimator ¢, with trainable pa-
rameters p, is embedded in the hydrological model Mypy
and forms part of the complete model M. Its purpose is to
predict corrections of internal fluxes f, and to estimate pa-
rameters @ regionally based on various input data, including
atmospheric forcings Z and spatialized physical descriptors
D, as described in Eq. (3).

¢:(Z,h,D;p)—> (f,.0,ho) 3)

By design, the complete forward model M is learnable
through the neural-network-based mapping ¢ embedded in
Mirny. Moreover, if M..py and ¢ are differentiable, then M
is differentiable, which is required to obtain its output gradi-
ent derivatives with respect to the neural network parameters
as needed for their optimization.

The differentiable spatially distributed hydrological model
studied hereafter is based on ODEs for local runoff produc-
tion coupled with neural networks. This runoff is then con-
veyed on the spatial grid with a PDE-based hydraulic model.

2.2 Case of a differentiable spatially distributed
GR-like and kinematic wave model

The spatially distributed differentiable, learnable, and re-
gionalizable model proposed and studied in this article is
detailed in this section. Its hydrological component is based
on GR4, which is a parsimonious, widely used, and efficient
lumped hydrological model (Perrin et al., 2003). Intercep-
tion, production, and fast and slow transfer branch structures
are used at the pixel scale without unit hydrographs, which
are not needed for small-scale pixels (Huynh et al., 2024b,
and references therein) and could, if needed for a semi-
distributed model with larger subcatchments, be replaced by
a Nash cascade that is differentiable and quasi-equivalent (cf.
Santos et al., 2018). Moreover, the selected hydrological op-
erators simply consist of algebraic relations obtained from
analytical integration in time of first-order ODEs that de-
scribe state evolution in interception, production, and trans-
fer reservoirs plus closure laws. This simple hydrological
model produces “runoff” at the pixel scale that is then routed
on the spatial grid with a kinematic wave model (Te Chow
et al., 1988). These model operators and their numerical im-
plementation are fully differentiable, a property further de-
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tailed in the following sections. Additionally, this dynami-
cal hydrological model, implemented as recurrence relations,
maintains a spatiotemporal memory via the reservoir states
h(x,t). This property is used to define the hybridization for
internal flux corrections via a simple ANN based on the prin-
ciple of parsimony. The ANN uses previous reservoir states
and atmospheric forcings as inputs, which requires no addi-
tional information beyond the original model. The proposed
model, which is spatially distributed and differentiable, is
schematized in Fig. 1. The following sections describe the
complete forward model, including details on the neural net-
works used for flux corrections and parameter regionaliza-
tion.

2.2.1 Runoff production

For a given cell x € Q2 and time step ¢ >0, P(x,t) and
E(x,t) represent the local precipitation and potential evap-
otranspiration. For simplicity, spatiotemporal dependencies
on x and ¢ are omitted in the following equations.

Interception. First, an interception reservoir of capacity
¢i, automatically computed with the flux matching technique
(cf. Ficchi et al., 2019), enables computation of the neutral-
ized rainfall P, and the neutralized evapotranspiration Ej,.

Production. Then, the infiltration flux f’s into the produc-
tion reservoir is obtained by applying a correction term fy 1,
predicted by the neural network ¢1, to the classical GR infil-
tration flux Py as follows:

Py = min(Py, (1 + f;.1) Py)

) hy 2 TanH (%)
with Py=cp | 1 — | — ) 4
1+

% < >TanH( )

where ¢, represents the capacity of the production reservoir
predicted by the neural network ¢, and /" is the production
state at the previous time step. The actual evapotranspiration
flux E, subtracted to the production reservoir is obtained by
applying a correction term f >, predicted by ¢y, to the clas-
sical GR evapotranspiration flux E; as follows:

TanH (£2)
with E, =hy |2— 2 >

CP) 1+<1—h—>TanH( )

Transfer (subgrid). A subgrid transfer with slow and fast
“lateral” flow components is fed by a learnable partition of
net rainfall using a correction term f, 3 predicted by ¢,
where the net rainfall P, = P, — Py is split into Qg and Qgy,
representing the fluxes that feed the delayed and direct trans-
fer branches:

E~'S = min(En, (1 + fq,Z)Es)

&)

Qa=0.9(1—f73)Prand Qur =0.1(1+9/7 )P (6)
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A nonconservative exchange flux F, applied to both the
transfer reservoir and the fast transfer branch (direct runoff),
is obtained by applying a correction term f; 4, predicted by
@1, to the classical GR exchange flux F:

7/2
F=(1+ f;4)F, with F = kexc X (—t) , (7N

Ct

where kexc and ¢, represent the exchange coefficient and the
capacity of the transfer reservoir predicted by ¢», and i,
is the transfer reservoir state at the previous time step. The
outflow subtracted to the transfer reservoir is

4> 1 /4. ®

The remaining net rainfall flux er feeds the direct transfer
branch where the exchange flux F is also applied, and its
outflow is Qrg = Qgr + F. The hydrological runoff flux pro-
duced at the pixel scale is Q1ar = Qrs+ Oraq and is routed over
a 2D mesh with a simple hydraulic routing module.

Note that the values of f; ;—1. 4, which are the outputs of
@1, are bounded between —1 and 1 (Sect. 2.2.3). Thus, by
definition, the transformation functions applied to these in-
ternal flux corrections (i.e., 1+ f4.1, 1 — f 7.3 etc.) enable the
preservation of the original conceptual model structure when
the neural network output is 0, as all transformations equal 1
in this case. These terms were defined based on the specific
fluxes being corrected and the mathematical constraints. For
example, the correction f, 3 is squared to ensure nonnegativ-
ity, and its transformations (1 — f q2,3 and 149 fq2’3) are specif-
ically designed to preserve mass conservation in the trans-
fer branch partitioning, as 0.9(1 — f23) +0.1(1 +9f23) =1
for any value of f, 3, while allowmg the model to learn
and adjust the partition between delayed and direct trans-
fer branches from their default values of 0.9 and 0.1, respec-
tively.

O () =h = ()™ +

2.2.2 Pixel-to-pixel flow routing of runoff with a partial
differential equation

The routing module used here is based on a conceptual 1D
kinematic wave model that is numerically solved with a lin-
earized implicit numerical scheme (Te Chow et al., 1988).
The discharge routing problem is classically reduced to a 1D
problem by considering a D8 drainage plan Dg, (x), obtained
by terrain digital elevation model processing with the condi-
tion that a unique pixel has the highest drained area.

The kinematic wave model is a PDE obtained by simpli-
fying the 1D Saint-Venant equations assuming that the mo-
mentum reduces to a flow friction slope equal to the bottom
slope. Using a conceptual parameterization of the momen-
tum A = agy Qka with A the flow cross-sectional area, Q the
discharge, and ayw and by, two parameters to be estimated
and injecting this into the mass equation d, Q + d; A = A Qjat
with Qjy the lateral discharge (total runoff produced at a
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Figure 1. Hybrid physics—Al framework, applied to the spatially distributed GR-like and kinematic wave model, involving a pair of process
parameterization and regionalization neural networks. The pair of neural networks is used to (i) correct internal fluxes with “neutralized”
(by interception reservoir terminology of GR models from Perrin et al., 2003, and Santos et al., 2018) atmospheric data and (ii) estimate
the model parameters using physical descriptors, with their weights optimized through high-dimensional optimization algorithms using an

adjoint model to obtain accurate gradients of the cost function.

pixel from GR operators) and A the conversion factor, a
single-equation model is obtained. The model is discretized
with a classical finite-difference approach (cf. Te Chow et al.,
1988), resulting in the following expression for the discharge
propagation model:

3y O + akwbiw Q19,0 = 1Oy

2.2.3 Learnable mappings for a spatialized GR-like
model on top of kinematic wave routing

€))

In this study, we use two multilayer perceptrons, the first ¢
for spatiotemporal corrections of the model-internal fluxes
f ¢ (x, 1) and the second ¢ for spatialized parameter 0(x) re-
gionalization as used in Huynh et al. (2024b). That is, ¢ con-
sists of a pair of neural networks designed to ingest (i) neu-
tralized atmospheric inputs Z,, = (P, E,) (using the word-
ing of the GR conceptual model in Perrin et al., 2003; Santos
et al., 2018), along with the model states at the previous time
step k(x, 1—1), to correct the spatiotemporal internal fluxes ¢
(process-parameterization pipeline) and (ii) physical descrip-
tors D (refer to Appendix A for information on the studied
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descriptors) to estimate the spatialized hydrological parame-
ters @ (regionalization pipeline), as shown in Eq. (10):

N f ) =1 (Talx.0), h(x, 1= 1) py),

¢ 0(x) =2 (D(x); p3).

(10)

with p = (p, py) the vector of trainable parameters, invari-
ant to the spatial coordinate x over €2, of the (pair of) neural
network(s). Note that more advanced neural networks, such
as CNNs, RNNs, or LSTM, can be explored in future studies.
For instance, applying a CNN to the regionalization neural
network ¢, is possible and has been implemented in SMASH
but is not investigated since it is beyond the scope of this pa-
per.

Here, the first neural network ¢ has a single hidden layer
with 16 neurons, followed by a leaky rectified linear unit
(ReLU) activation function. The output layer uses a TanH
activation function, which is bounded from —1 to 1. Then,
the flux corrections fq = (fq,,‘zln_4)T, predicted by ¢, are
applied for each pixel x and time ¢ to correct simultane-
ously the internal fluxes of the GR hydrological operators
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as described in Sect. 2.2.1. The second network ¢ consists
of three hidden layers with 96, 48, and 16 neurons. ReLU
activation functions are used between hidden layers, while
the sigmoid function is applied in the output layer and is
followed by a scaling function to constrain the model pa-
rameters in accordance with their feasible bounds. The vec-
tor of conceptual spatialized parameters, mapped by ¢», is
0 = (cp, 1 kexc: akws bkw)T and is composed of the produc-
tion and transfer reservoir capacities ¢p and ¢, the exchange
coefficient kexc, and the kinematic wave parameters ay,, and
byy. Finally, the parameter control vector for the optimiza-
tionis p = (pl, p2), i.e., the weight and bias of the process-
parameterization and regionalization mappings.

2.3 Inverse problem and analysis of the hybrid
physics—Al framework

Given the observed and simulated discharge time series
0% =(Q_; y,)" and @ =(Qu=1.n,)T With N the
number of gauges over the study domain €2, the model misfit
to multi-catchment observations is measured through a cost
function J, as shown in Eq. (11):

Ng
J(Q*, Q)= wej(Q%. Q) (11)

g=1

where Y% w, =1 (with wg = 1/Ng in this study), and
J(Q%, Qg) = 1-NSE(Qj, Q) at each gauge, with NSE be-
ing the quadratic Nash—Sutcliffe efficiency. Thus, J is a con-
vex and differentiable function, involving the response of the
forward model M through its output @, and consequently
depending on the model parameters # and the flux correc-
tions f,, hence on the parameters p of the ANNs (cf. Eq. 10).
Accordingly, the VDA optimization problem is formulated as
shown in Eq. (12).

p = argmin/ (Q, Mirty (¢ (-, p))) (12)

This high-dimensional inverse problem can be tackled
through gradient-based optimization algorithms. A limited-
memory quasi-Newton approach, such as L-BFGS-B (Zhu
etal., 1997), is suitable for smooth objective functions, while
an adaptive learning rate approach, exemplified by Kingma
and Ba (2014), is effective for non-smooth objective func-
tions. These approaches require one to obtain the cost gra-
dient with respect to the parameters sought V,J, achieved
through numerical code differentiability rules and automatic
differentiation using the Tapenade engine (Hascoet and Pas-
cual, 2013).

After optimization with the proposed approach, enabling
us to jointly learn physical process parameterization and
regionalization, a hybrid-process-based spatially distributed
calibrated hydrological model M is obtained and is there-
fore reusable for space-time extrapolation. In contrast to
PINNs where the physical model residual serves as a weak
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constraint on optimization, in our proposed conceptualiza-
tion the physics is used as a strong constraint. In this sense,
the approach can be seen as a learnable spatialized physical
model. Moreover, in contrast to PINNs and LSTM, which
are composed of neural networks only, our hybrid model
is physically interpretable through its conceptual parameters
0 (x), internal states h(x, t), and fluxes ¢ (x, t). Moreover, the
ANNSs ¢ and ¢, coupled with the conceptual model Mypy
at the pixel scale for each time step are capable of captur-
ing nonlinear and multiresolution effects. The conceptualiza-
tion, where the physics is used as a strong constraint on the
forward model, enables us to use other differentiable hydro-
logical and hydraulic models, e,g,, on structured or unstruc-
tured meshes. Such an approach enables data to be integrated
that are not directly usable or explicitly represented in the
model, such as the physical descriptors for regionalization of
the conceptual parameters here.

3 Data and experimental design

We evaluated our method on two datasets (see Fig. 2). The
first dataset includes 235 non-nested catchments selected
from Hashemi et al. (2022) and is part of a larger dataset
containing 4190 French catchments provided by the INRAE-
HYCAR research unit (Delaigue et al., 2025; Brigode et al.,
2020). The second dataset consists of 21 catchments and
is a subset of the ArcMed region taken from Huynh et al.
(2024b).

The SMASH model is run on a spatial grid with a resolu-
tion of dx = 1km and a temporal step of df = 1h. It is forced
by the following data:

— Discharge. This is collected by the French Ministry of
the Environment, covering the period of the forcing
data and extracted from the HydroPortail platform (http:
/Iwww.hydro.eaufrance.fr, last access: 1 August 2025).

— Rainfall. We use rainfall data from the ANTILOPE J+1
radar observation reanalysis, which merges radar data
with in situ gauge observations. These data are provided
by Météo-France at a grid resolution of 1km?, matching
the resolution of the model grid rasters.

— Potential evapotranspiration (PET). Temperature data
for calculating PET are sourced from the SAFRAN
(Systeme d’Analyse Fournissant des Renseignements
Atmosphériques a la Neige) reanalysis, provided by
Météo-France at a resolution of 8 km x 8 km (Quintana-
Segui et al., 2008; Vidal et al., 2010). The PET is then
computed using the Oudin formula (Oudin et al., 2005)
and has the same resolution as the rainfall data.
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Figure 2. Study areas used for evaluation. The first area consists of 235 non-nested catchments in France, while the second area includes 21
catchments in a multi-catchment setup in the eastern Mediterranean region representing contrasting hydrological conditions.

The first dataset contains hourly time series over a 13-year
period (August 2006 to July 2019) for downstream gauges
only. It is used to evaluate single-gauge optimization (local
calibration) without regionalization, focusing solely on the
process-parameterization neural network ¢, which is the key
novelty of this study. The 13-year period is divided into two
segments: the calibration period covers the first 7 years (in-
cluding a 1-year warmup), and the remaining 6 years are used
for temporal validation. Four methods are compared to eval-
uate the learning capacity of the neural network ¢;:

— Two classic GR models with spatially uniform pa-
rameters (GR.U) and spatially distributed parame-
ters (GR.D), which, in some cases, exhibit under-
parameterization or over-parameterization issues in the
spatially distributed hydrological model

— Two hybrid GR models that integrate the neural net-
work ¢ (called ¢1-hybrid) with spatially uniform pa-
rameters (GRNN.U) and spatially distributed parame-
ters (GRNN.D)

The second dataset includes hourly time series over 7 years
(August 2009 to July 2016) for both nested and independent
catchments in the eastern Mediterranean region (known as
“MedEst”). This dataset is used to assess the relevance of
the learnable structure for simultaneous multi-gauge region-
alization with physical descriptors. A set of seven descriptors
(Table Al and Fig. Al in Appendix A), with a spatial reso-
lution of 0.01° in the WGS84 projection and encompassing
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various types such as topography, morphology, land use, and
hydrogeology, is used as input for the regionalization map-
ping ¢». The MedEst region presents a challenging case due
to its contrasting hydrological properties, including steep to-
pography and highly heterogeneous soils and bedrock (e.g.,
Garambois et al., 2015). This region is prone to intense rain-
fall events that trigger nonlinear flash flood responses and
contains a significant proportion of karstic zones. The first 4-
year time series, including a 1-year warmup period, is used
for calibration, while the remaining 3 years are used for val-
idation. Four methods are compared to evaluate the learning
capacity of both the process-parameterization neural network
¢1 and the regionalization neural network ¢;:

— the classical GR model with regional, spatially uniform
parameters (GR.U);

— the hybrid GR model integrating the neural network
¢1 (¢1-hybrid) to correct internal fluxes in hydrological
processes, with regional, spatially uniform parameters
(GRNN.U);

— the classical GR model integrating the neural network
¢2 (¢o-hybrid) to learn the mapping between physi-
cal descriptors and spatially distributed hydrological pa-
rameters (GR.NN); and

— the hybrid GR model integrating both neural networks
¢1 and ¢» (GRNN.NN), representing the fully inte-
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grated hybrid approach (¢-hybrid) among the studied
methods.

While the first dataset aims to test the performance of
the neural network ¢; in flux correction using local calibra-
tions only at downstream gauges over Metropolitan France,
the second aims to evaluate regional calibration in a multi-
catchment setup, testing the performance of both ¢ (for pro-
cess parameterization) and ¢, (for regionalization). Note that
performing a global multi-catchment calibration (e.g., at the
national scale across the entire mesh of France) for process
parameterization and regionalization with neural networks is
computationally challenging given the high spatiotemporal
resolution of the data and model. In this study, we focus
on a specific and well-known study zone. It is worth men-
tioning that regionalization performance (without a process-
parameterization network) over a larger zone, covering ap-
proximately one-fourth of France, was already investigated
in Huynh et al. (2024b). Future work could extend this study
to a national-scale multi-catchment setup.

4 Results and discussion

In this section, we first present the performance of the hybrid
spatially distributed models tested on both datasets. Then,
we will provide further interpretation and discussion of the
learning process to analyze the proposed framework and en-
hance the understanding of hydrological behaviors in the
process-based model through internal fluxes.

4.1 Model performance analysis
4.1.1 Local calibration over 235 French catchments

Figure 3 illustrates typical simulated streamflows from dif-
ferent methods for small, medium, and large catchments.
Overall, we observe significant improvements in the hybrid
methods compared to the classical models in simulating both
peak flows and low flows. For example, in the case of the
medium catchment, GRNN.U more accurately predicts the
peak flows in January 2014 compared to GR.U while also
reliably reproducing the low flows, particularly during the
period between 2018 and 2019.

Figure 4 shows a global comparison of performances
in terms of Nash—Sutcliffe efficiency (NSE), Kling—-Gupta
efficiency (KGE), and root mean squared error (RMSE)
across both calibration and validation periods for the differ-
ent methods. The results suggest that the ¢;-hybrid meth-
ods (GRNN.U and GRNN.D) consistently achieve superior
efficiency scores and lower errors compared to the classic
models (GR.U and GR.D) in various scenarios. In calibra-
tion, both hybrid models outperform the classical ones, with
significantly higher median NSE scores (0.85 and 0.86 com-
pared to 0.79 and 0.83), a narrower and higher interquartile
range, and a shorter lower whisker.
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In temporal validation, GRNN.U achieves a median NSE
of 0.73 compared to 0.76 for GR.D, and both models reach
a median KGE of 0.75, while GRNN.U shows a lower me-
dian RMSE of 1.38 compared to 1.42 for GR.D. Although
median improvements may appear small, it is important to
consider the entire distribution. In addition to the median
values, we observe notable enhancements in other statisti-
cal measures, such as the interquartile range (0.25 and 0.75
quantiles) and whiskers in the boxplots. For catchments that
already exhibit satisfactory performance, the effect of hy-
bridization is relatively small, leading to similar median 0.75
and 0.95 quantile values. However, for poorly performing
basins, the hybrid models provide substantial improvements,
as evidenced by enhanced performance in the lower quar-
tiles. Notably, the hybrid model with spatially uniform hy-
drological parameters (GRNN.U) performs comparably to,
and in some cases surpasses, the classic GR model with spa-
tially distributed parameters (GR.D). This result is promis-
ing, as it demonstrates that, while the original model with
spatially uniform conceptual parameters (GR.U) inherently
leads to under-parameterization compared to GR.D, this lim-
itation can be compensated for by the spatially distributed
flux correction in GRNN.U.

To evaluate flood simulation performance, Huynh et al.
(2023) introduced a method to compute several flood event
signatures using an automatic segmentation algorithm. These
signatures help depict the model behavior during flood
events. Relative error is used as the evaluation metric to quan-
tify the difference between simulated and observed flood
event signatures, including peak flow, runoff coefficient,
flood flow, and baseflow. Figure 5 shows the cumulative dis-
tribution function (CDF) of the relative error for these signa-
tures, based on over 2700 flood events that occurred during
the 6-year validation period. The hybrid models achieve the
best performance, outperforming the classical GR.U model,
with their CDF lines consistently above. Notably, the hy-
brid model GRNN.U, using only spatially uniform param-
eters, attains a performance comparable to or even better
than the classical model with spatially distributed parame-
ters (GR.D). GRNN.U shows similar performance to GR.D
in reproducing peak flows (with the same median error of
0.32) and flood flow (both with a median error of 0.28) while
performing slightly better in reproducing the runoff coeffi-
cient (0.20 compared to 0.22) and baseflow (0.21 compared
to 0.22). This highlights the strength of the hybrid process-
parameterization framework, particularly its relevance in im-
proving flood modeling systems.

4.1.2 Multi-catchment regionalization over a
flash-flood-prone Mediterranean area

Here, we investigate how the hybrid models perform in a
study of a multi-catchment regionalization setup. In cali-
bration, it is evident from Fig. 6 that the ¢»-hybrid model
(GR.NN) and the ¢-hybrid (GRNN.NN) model, both using
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Figure 3. Comparison of streamflow simulation across representative small, medium, and large catchments randomly selected from the 235
catchments in France during the validation period.
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Figure 5. Comparison of model performance in simulating flood event signatures, presented as the cumulative distribution function (CDF)
of the relative error (RE) between observed and simulated values for peak flow (Epf), runoff coefficient (Erc), flood flow (Eff), and baseflow
(Ebf). The evaluation is based on 2718 flood events across 235 catchments during the validation period (August 2013-July 2019).

the regionalization neural network ¢;, outperform the mod-
els with lumped parameters (GR.U and GRNN.U). Notably,
the fully integrated hybrid model GRNN.NN dominates the
radar plot, with a large shape extending toward the outer
edges and fully enveloping the other methods. Although
GRNN.U clearly falls short of the two regionalization-based
models, it still shows a significant improvement over the clas-
sic GR.U model. Similar results can be observed in both
temporal and spatiotemporal validation, as seen in the box-
plots. This proves that using physical descriptors with learn-
able mapping is an effective approach in this regionaliza-
tion setup (multiple catchments in a large, flash-flood-prone
area with high-spatiotemporal-resolution data) compared to
lumped models (without physical descriptors) or simpler re-
gionalization methods (e.g., multilinear or multi-polynomial
mappings), as demonstrated in Huynh et al. (2024b). Inter-
estingly, while the ¢-hybrid model GRNN.NN, which de-
livers the best overall performance, shows a moderate gain
over GR.NN — with median NSE scores of 0.75 (compared to
0.72) and 0.51 (compared to 0.48) in temporal and spatiotem-
poral validation — the ¢1-hybrid model GRNN.U, which uses
lumped parameters without regionalization using physical
descriptors, is a dramatic improvement over the classic GR.U
model (median NSE values of 0.56 compared to 0.14 and
0.43 compared to 0.16). In this way, learning internal flux
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corrections has made it possible to improve the regionaliz-
ability of a distributed conceptual hydrological model, even
with spatially uniform conceptual parameters (i.e., without
using physical descriptors). This may represent a compelling
research direction for reducing structural uncertainty in mod-
eling, using a minimum of data and enabling more efficient
extraction of multiscale information through hybrid flux cor-
rection with GRNN.U, with the potential for flexible semi-
spatializations of conceptual parameters and even proximity-
based regionalizations for spatially dense gauging networks
(cf. Oudin et al., 2008).

In the context of flood prediction, the hybrid models
(GRNN.U, GR.NN, and GRNN.NN) consistently yield su-
perior performance compared to the classical GR.U model.
Figure 7a presents the RMSE and NSE metrics computed
using short time series from 143 flood events that occurred
across the entire MedEst area during the validation period
from August 2013 to July 2016 (similar graphs for ad-
ditional evaluation metrics are shown in Fig. B5 in Ap-
pendix B). Figure 7b shows typical streamflow simula-
tions, demonstrating a significant enhancement for both hy-
brid process-parameterization and regionalization-based ap-
proaches, compared to classical methods, in simulating high
flow characteristics and behaviors during flood events.
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Although the NSE values computed for the 143 flood
events are relatively low across all of the models, it is im-
portant to note that the NSE for flood events — which are
short time series with high values — is highly sensitive to
small timing errors. Even slight discrepancies in peak tim-
ing can lead to substantial decreases in NSE. Additionally,
data and modeling uncertainties may vary between events,
making accurate prediction of highly contrasted events par-
ticularly challenging. The models are calibrated on the entire
time series, and we evaluate the validation results specifically
for flood events, where classical approaches often struggle to
accurately estimate water dynamics. This discrepancy high-
lights the difficulty in capturing the rapid and intense nature
of flood events, even with advanced hybrid models and sim-
plified hydraulic routing. This underscores the need to inves-
tigate potential sources of error, including input data quality
and model structural limitations, as well as the impact of us-
ing a calibration metric based solely on flood events. These
factors could explain the overall challenges in flood event
simulation.

4.2 Towards learning hydrological behaviors

Here, we focus on uncovering the hydrological behav-
iors inferred with the hybrid approach, consisting of neu-
ral networks embedded in a physical model for learnable
correction of internal fluxes. In the studied hybrid struc-
ture GRNN, the learned correction of GR-like model con-
sists of four flux corrections fq(x, t) = (fq’,-(x, t))izl...4 =
¢1(Py, En, hy, hy)(x, ) for each pixel and time step of the
simulation domain from atmospheric forcings and previ-
ous model states. A positive (or negative) correction of f; ;
(where i = 1,2,4), with values bounded in ] — 1; 1] due to
the TanH activation function used in the output layer, re-
sults in an increase (or decrease) in the original fluxes P;,
E;, and |F| — the absolute value of F (cf. Egs. 4, 5, and
7), thereby influencing the simulated mass balance. Mean-
while, f ;3, with values in [0; 1[, produces a conservative re-
repartitioning of the net rainfall P between direct and de-
layed transfer branches (cf. Eq. 6), thereby affecting the sub-
grid transfer dynamics. The following quantitative analysis
begins with the spatiotemporal averages of these flux cor-
rections and proceeds to explore their variability across the
235 independently calibrated catchments, as well as in the
regionalization test case.

4.2.1 Analysis of internal flux corrections

Figure 8 shows the maps of spatiotemporal average flux cor-
rections (the corrections are first averaged spatially within
each catchment and then temporally across the calibration
period), obtained through local calibrations using GRNN.U
(see Fig. B1 in Appendix B for GRNN.D). Red and blue in-
dicate positive and negative flux corrections in the spatiotem-
poral average. For fluxes affecting the production reservoir,
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i.e., infiltrating rainfall P; and evapotranspiration Ej, the av-
erage corrections show opposite signs for the majority of the
basins and the same sign for a minority. These maps reveal
different trends of flux corrections across France. Several
regions exhibit strong corrections (either negative or posi-
tive) for Py and E, while others show near-zero corrections
(white points with values close to 1). However, the exchange
flux is generally the one most influenced by the corrections,
as indicated by the dark colors across the maps, playing a
crucial role in refining the model’s state dynamics. Note that
the transformation function 1 — f qz 5 applied to correct the de-
layed transfer flux Qg results in a reduction of this flux and
conservative augmentation of the Qg, flux feeding the direct
branch.

Now, we turn to the analysis of the time series of the
spatially averaged flux corrections presented in Fig. 9 (see
Fig. B2 for GRNN.D). Figure 9a illustrates these corrections
over time for 3 randomly selected catchments that are repre-
sentative of the 235 French catchments (corresponding re-
sults for all 235 catchments are provided in Fig. B4). We
observe opposite signs in the corrections f,,1 and f, 2 for
infiltration Py and evapotranspiration E; from the produc-
tion reservoir. Catchments exhibiting positive corrections to
P; and negative corrections to E suggest that more water is
directed towards the production reservoir and that less is lost
by evapotranspiration, leading to an increased moisture state.
Conversely, in catchments with negative corrections for P
and positive corrections for Ej, reduced infiltration and in-
creased evapotranspiration imply lower moisture states. Fur-
thermore, periodic behaviors are observed over time for cor-
rections of the four water fluxes, highlighting the temporal
patterns of flux corrections. This pattern likely reflects the
footprint of the annual periodicity of the production state 4,
which is an input to the neural network ¢;. Overall, the cor-
rected infiltrating rainfall P, is generally 10 % higher than
the original, as indicated by the median of 1+ f; 1 being ap-
proximately 1.10 in Fig. 9b. This implies an increased water
level in the production reservoir and hence more water being
directed there rather than feeding the transfer branch. This
observation somehow explains why the production capac-
ity cp, calibrated for the hybrid models, is generally slightly
higher than that of the classical models (see Table B1 in Ap-
pendix B). Additionally, fewer corrections are obtained for
re-repartitioning of the net rainfall flux into the direct and de-
layed transfer branches (i.e., the corrections show less vari-
ation and are closer to 1). Negative corrections that tend to
reduce the flux magnitude are applied to the delayed trans-
fer branch Qg, which implies positive corrections for the di-
rect transfer branch Qg;. In this case, the hybrid model sug-
gests that more water reaches the outflow Qg via the direct
transfer branch. Both transfer branches are affected by the
exchange flux F for which, across most catchments, a reduc-
tion is obtained by flux correction (the median of 1 + f 4 is
lower than 1).
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In a multi-gauge regionalization setup, distinct spatiotem-
poral patterns emerge over the MedEst area, as shown in
Fig. 10 for GRNN.U (corresponding results for GRNN.NN
are shown in Fig. B6 in Appendix B). Figure 10a illustrates
that the spatially averaged corrections for infiltrating rain-
fall Py show relatively high temporal variability; moreover,
they still exhibit stable periodic patterns after the first year of
warmup. The spatial average of the corrected flux P tends
to be lower during moderate-rain events, while it is higher
during high-rain events compared to the original flux Ps.
This suggests that the hybrid model directs more rainfall into
the transfer branch during moderate-rain events (which may
have longer durations), while the opposite behavior is ob-
served for high-rain events (which can be shorter in dura-
tion). The spatial maps of time-averaged flux corrections in
Fig. 10b further indicate that the hybrid model generally ap-
plies negative corrections, reducing the spatiotemporal mean
of infiltrating rainfall from 0.1 mm to 0.06 mm. Interestingly,
these maps also reveal spatial variability in internal flux cor-
rections, which may explain the improved regionalizability
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of the hybrid GRNN models, as demonstrated by their perfor-
mance in spatiotemporal validation, even with spatially uni-
form conceptual parameters (without regionalization using
physical descriptors). While temporal patterns of flux correc-
tions (e.g., annual periodicity) emerge from the production
and transfer states, similar to the case of the 235 catchments,
spatial patterns are likely due to the spatial variability of at-
mospheric data.

4.2.2 Hybridization effect on the main mass fluxes
involved in a basin’s water balance

This section examines the effect of ¢ hybridization on the
primary mass fluxes involved in the hydrological mass bal-
ance, as simulated using the original GR-like spatially dis-
tributed model structure. For a given catchment domain €2,
the annual catchment-scale flux W 4 of a state flux f(x, )
— such as actual evapotranspiration, exchange flux, or runoff
flux — simulated using either the classical model or the hybrid
model (with flux corrections omitted for brevity) is computed

Hydrol. Earth Syst. Sci., 29, 3589-3613, 2025
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as follows:

1
‘Iff,A=@/ /f(x,t)dxdt, (13)

te AxeQ

where A denotes the annual period and |S2| represents the
drainage area.

A basin-scale analysis is performed for each of the 235
French basins simulated, focusing on the flux of rainfall P
inflowing into the model and three key fluxes affected by the
¢1 hybridization: evapotranspiration E from the production
store, exchange F, and the pixel-scale discharge Qiy prior
to routing. The annual average of each flux is calculated us-
ing Eq. (13), and the interannual averages of these water gain
or loss fluxes over the 6-year calibration period (2007-2013)
are shown in Fig. 11. This figure quantitatively illustrates the
impact of ¢ hybridization on the classical GR-like model,
with uniform conceptual parameters for each basin and each
model structure. Of the variety of hydrological behaviors and
annual rainfall regimes of this large catchment set, it is note-
worthy that hybridization results show almost no change for
nearly all basins in terms of interannual discharge runoff vol-
ume, with medians of 246.6 mm for GR.U and 251.3 mm
for GRNN.U and similar quantiles, while dynamic changes
have been obtained as suggested by the improved NSE, flood
signatures, and hydrographs (cf. the performance analysis in
Sect. 4.1) as well as internal flux corrections (such as infil-
tration and repartitioning between direct and delayed lateral
transfer branches).

The simulated water balance is influenced by the correc-
tion of kexc, Which represents the exchange flux and can re-
sult in either gains or losses relative to the original model
(which is already nonconservative). In this case, the ex-
change flux is moderately affected by hybridization, with a
median trend of reduced exchange from —23.5 to —13.2 mm.
This reduction is compensated, in terms of water balance,
by an increase in evaporation from the production reservoir
(from 254.5 to 265.1 mm in the median). Notably, both fluxes
exhibit a larger interquartile range across basins compared
to the classical model structure. Therefore, the proposed ¢
hybridization enables learning of spatiotemporal corrections
of internal model dynamics, resulting in physically inter-
pretable fluxes that remain within imposed ranges and lead
to overall model improvement.

Figure 12 depicts the versatile nature of the learnable hy-
brid model in comparison to classical conceptual models for
correcting internal fluxes and vividly illustrates the learned
nonlinear relationship between the corrected net rainfall and
neutralized data, together with the internal states. The model
response surface of the net rainfall P. = P, — FN’S, obtained
with the corrected infiltrating rainfall Py=(1+ fq.1) P, is
shown for different levels of the production state s, and
neutralized rainfall P,. Interestingly, this corrected net rain-
fall P, — Py, regardless of the level of the production state
(i.e., hp = 0.3, 6, and 15mm), exhibits nonmonotonic behav-
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ior with respect to the intensity of neutralized rainfall P,
(Fig. 12a). However, this nonmonotonic behavior becomes
less pronounced as the production state i, approaches the
production capacity cp. Figure 12b further clarifies the non-
linear response surface, showing that the corrected net rain-
fall undergoes two changes in monotonicity as the neutral-
ized rainfall when the reservoir is less than half-utilized
(hp < ¢p/2). In contrast, when the reservoir is fully or nearly
fully utilized (hy, ~ cp), the corrected flux P, — P, behaves
similarly to the original flux P, — Ps. Interestingly, nonlinear
infiltration behavior is obtained after learning with the hybrid
GRNN model structure, especially for drier conditions of the
production reservoir where classical GR models are known
to fail in flood generation (cf. Astagneau et al., 2021). Further
research could focus on deeper analysis of learned physical
behaviors, e.g., by investigating the approximation of learned
behaviors with known mathematical functions. One could
also investigate how to a priori directly impose physically
onto the forward model structure using other mathematical
expressions, e.g., imposing a explicit monotonicity or even
a shape of dependency, such as the rainfall-intensity-related
modifications of the original lumped GR model in Astagneau
et al. (2022).

4.3 Research perspectives and further discussion

This article proposed a spatially distributed hybrid GR-
like model and a comprehensive analysis of a large catch-
ment sample. Future research should concentrate on re-
fining the model’s hybridization strategy in order to en-
hance its applicability across even larger datasets (e.g., the
CARAVAN database in Kratzert et al., 2023) and to im-
prove extrapolation capabilities for extreme hydrometeoro-
logical events. This quest for generalized structures of spa-
tially distributed hydrological models requires scalable hy-
brid solvers applicable over very large domains. Immediate
work will focus on developing a SMASH version for par-
allel GPU-based forward-inverse computation and adapting
the ¢-hybrid model to a state space GR model (cf. Santos
et al., 2018), thereby enabling the investigation of additional
nonlinearities in hydrological model differential equations.
In addition, improving the routing model may deliver a more
realistic flood wave propagation. Such improvement could
be based on the use of known hydraulic models (e.g., kine-
matic wave in Roux et al., 2011, and Vergara et al., 2016,
non-inertial 1D or 2D in Fleischmann et al., 2020, or full
1D Saint-Venant at the network scale in Larnier et al., 2025),
fine topography data such as lidar obtained during low flows
(capturing a significant part of the river bathymetry), and/or
more observations of flow depth, extent, and velocity.
Although hybrid models have more degrees of freedom
compared to classical GR models, it is important to note that
the inputs and outputs of the flux correction model are phys-
ically consistent and of the same dimension as the original
model. This design allows the hybrid model to learn non-
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linearities in the internal flux laws, which we analyze thor-
oughly in the flux correction analysis in both time and space
throughout the paper. The hybrid models do not necessar-
ily have more conceptual parameters (maintaining the same
number of reservoirs and connections here), but they do in-
troduce more nonlinearity into the internal flux law correc-
tions with the neural network ¢;. This added complexity
effectively increases the model’s degrees of freedom while
maintaining robustness in both spatial and temporal valida-
tions, as demonstrated by the numerical results.

It is worth noting that the two neural networks will not be
extrapolated in the same way when the model is used in pre-
diction. The regionalization neural network ¢, will not be ex-
trapolated as long as the model is used in the region in which
it has been calibrated. At the opposite end, the flux correction
neural network ¢; is bound to be extrapolated since its inputs
(Pn, En, hp, hy) vary in time, so that the range observed in the
calibration will be exceeded sooner or later. This is particu-
larly the case when the model is calibrated locally, as done in
the first case study involving 235 French catchments. By con-
trast, a multi-catchment regionalization setup (Mediterranean
case study) is advantageous since it offers more opportunity
to expose ¢ to extreme values of its inputs. Quantifying the
uncertainty affecting the estimated parameters of the neural
networks would be useful for raising awareness of a likely
loss of precision when ¢ is extrapolated, but this comes with
many difficulties (e.g., Papamarkou et al., 2022). An alterna-
tive approach would be to look for parsimonious regressions

Hydrol. Earth Syst. Sci., 29, 3589-3613, 2025

that are able to adequately reproduce the behavior revealed
by ¢1 while being amenable to uncertainty quantification.
Finally, the proposed hybrid hydrological framework
should be extended to other model structures, as with the
other GR or variable infiltration capacity (VIC) available
on the SMASH platform, but it should also use more com-
plex physics-based modeling approaches and hypothesis test-
ing such as in Douinot et al. (2018) with various subsur-
face flow models. Note that the proposed physics—Al frame-
work for spatially distributed modeling could help unify
top—down approaches such as GR or other data-based con-
ceptual models with bottom—up physics-based hydrologi-
cal models that suffer from (up)scaling problems of phys-
ical laws and parameterization. In the context of relatively
sparse discharge data compared to model dimensionality,
such a model discovery process could greatly benefit from
the wealth of surface information provided by remote sens-
ing. This includes data on terrain and vegetation properties,
surface moisture, snow cover, surface temperature, and total
water storage (Meyer Oliveira et al., 2021) along with river
network data (e.g., river flow surface topography variability
through altimetry and imagery), which necessitates a differ-
entiable river network hydraulic model to achieve coherence
with hydraulic observables while enabling the inference of
complex and large spatiotemporal parameters from hetero-
geneous data (Larnier et al., 2025). Such a model would also
support information feedback from these data to the hydro-
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logical model within a differentiable H&H coupling frame-
work (Pujol et al., 2022).

5 Conclusions

This article introduces a hybrid physics—Al framework that
integrates neural networks to infer spatiotemporal internal
fluxes and spatially distributed conceptual parameters within
a differentiable, gridded hydrological model, all encapsu-
lated in a VDA algorithm. Numerical results from local cal-
ibration and validation across 235 French catchments and
regionalization in a complex, flash-flood-prone area demon-
strate the superiority of the hybrid models. These models ex-
cel not only in performance scores during both calibration
and validation but also in producing physically interpretable
results, with improved representations of simulated hydro-
logical behavior.

The proposed approach, relying on process-based equa-
tions hybridized with ANNSs, allows interpretable spatially
distributed hydrological models to be obtained, in contrast to
pure machine learning approaches, while taking advantage
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of nonlinear and multiresolution effects of neural networks.
Accordingly, it is applicable to any other differentiable hy-
drological, hydraulic, or geophysical model on structured or
unstructured meshes.

Future work will aim to enhance the hybrid framework
by (i) studying the generalizability of structural corrections
across larger datasets and diverse model structures; (ii) in-
vestigating more complex neural networks, including deeper
ANN:g, to capture multiscale information over larger datasets
in global optimization or simpler tools that could reproduce
the behavior revealed by the ANNs while facilitating un-
certainty quantification; (iii) exploring mathematical proper-
ties, such as equifinality issues between neural networks and
conceptual parameters, and analyzing the response surfaces
of universal differential equation sets for flexible hydrologi-
cal modeling in time and space; and (iv) coupling with dif-
ferentiable river network hydraulic models to improve 1D-
2D hydrodynamic realism. This coupling will enable feed-
back by assimilating hydraulic observations into a differen-
tiable H&H chain (Pujol et al., 2022), such as the unprece-
dented hydraulic visibility (Garambois et al., 2017) brought
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by SWOT (Surface Water and Ocean Topography) and multi-
satellite data (e.g., with VDA in Pujol et al., 2020, and Malou
et al., 2021). Such differentiable and learnable H&H model-
ing frameworks are expected to enhance the representation of
basin-internal state fluxes and enable efficient fusion of ma-
chine learning with process-based modeling, advancing the
discovery of scale-relevant hydrological laws through maxi-
mal extraction of information from multisource data.

Appendix A: Input physical descriptors for learning
regionalization

Table Al and Fig. Al provide information on the physical
descriptors used as input data for regionalization learning
methods. Note that, before the optimization process, all de-
scriptors are standardized between 0 and 1 using min—-max
scaling.

Table A1. Descriptors used as input data for regionalization methods.

Notation  Type Description Unit  Source

dy Topography Slope ° Odry (2017)

dy Morphology Drainage density - Organde et al. (2013)

ds Influence Percentage of the basin area in a karst % Arnaud et al. (2014)
zone

dy Land use Forest cover rate % Agency (2019)

ds Land use Urban cover rate (including artificial % Agency (2019)
and non-vegetated areas)

de Hydrogeology  Potentially available water reserve mm  Poncelet (2016)

d7 Hydrogeology = High-storage-capacity basin rate % Finke et al. (1998)

dl d2 d3 d]'

p=1.36,0=158  p=18.9,0=7.1  p=0.49,0=0.46  u=0.48, 0=0.37  pu=0.09,0=021 p=196.7,0=787 u=0.28, 0=0.43
AT S S S S S -
o 5 10 o 20 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0 200 0.0 0.5 1.0

Figure A1l. Maps of the seven physical descriptors in the MedEst area at a resolution of 0.01° in the WGS84 projection, where p and o
represent the spatial average and standard deviation for each descriptor.
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Appendix B: Further results and visualizations

Table B1 presents the statistical quantities (mean, median,
and standard deviation) of the calibrated hydrological param-
eters across the 235 French catchments, obtained using dif-

ferent methods.

Figures B1-B3 present similar graphs to Figs. 8, 9,
and 11, but these are obtained using local calibrations of spa-
tially distributed parameters with the hybrid model structure

(GRNN.D).

3607

Table B1. Median (mean; standard deviation) of the calibrated hydrological parameters across the study area of 235 catchments.

Method cp Ct kexc Qg bxw
GR.U 281.2 (384.5;283.8) 155.4 (388.1;758.6) —0.58 (—2.15;4.73) 3.41(6.5;9.92) 0.82(0.77;0.25)
GRNN.U 344.8 (469.2;398.9) 150.7 (450.2; 1135) —0.64 (—1.75;5.37) 4.8(9.21;12) 0.82(0.73;0.29)
GR.D 271.4 (379;299.6) 151.5(461.5;984.5) —0.62(—1.76;3.67) 4.6(6.11;6.46) 0.74 (0.7; 0.19)
GRNN.D 301.3 (411.1;309) 184.2(524.8;991.7) —0.63 (—1.37;34) 4.62(6.42;6.9) 0.74 (0.71;0.19)
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Red dots and lines represent increases according to the hybrid model, while blue ones indicate decreases. For cases where F < 0, red indicates
a larger magnitude in F for the hybrid model (more negative), while blue indicates a lower magnitude (closer to 0).

Hydrol. Earth Syst. Sci., 29, 3589-3613, 2025

https://doi.org/10.5194/hess-29-3589-2025



N. N. T. Huynh et al.: A distributed hybrid physics—AI framework 3609

Figure B4 presents similar results to Fig. 9a but is plotted
using a heatmap over all 235 catchments for both GRNN.U
and GRNN.D.

Figure B5 shows graphs similar to those in Fig. 7a but
presents different evaluation metrics, including mean abso-

lute error (MAE), percent bias (PBIAS), and peak flow ratio
(PFR).

(a) GRNN.U

Catchment
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I g i £
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J
, where j = 1...Ng for the Ny = 235 catchments. These

are obtained through local calibrations of (a) spatially uniform parameters with the hybrid model structure (GRNN.U) and (b) spatially
distributed parameters with the hybrid model structure (GRNN.D).

Figure B4. Heatmap of spatially averaged flux correction time series g ( fq@®
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Figure B6 presents graphs similar to those in Fig. 10, but
these are obtained using the fully integrated hybrid model,
which includes both the process-parameterization neural net-
work and the regionalization neural network (GRNN.NN).

N. N. T. Huynh et al.:
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Figure B6. Visualization of flux corrections in the MedEst region obtained through regional calibration of spatially distributed parameters
with the fully integrated hybrid model (GRNN.NN). (a) Spatial average of the infiltrating flux correction 1+ f, 1 (t)x and the original and
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corrected infiltrating rainfall Py (t)x and Ps(t) . (b) Maps of the time-averaged infiltrating flux correction 1+ f; | (x)t and the original and
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Code and data availability. The datasets that support
this study comprise preprocessed data sourced from
SCHAPI-DGPR and Météo-France and are available at
https://doi.org/10.5281/zenodo.13826145 (Huynh, 2024).
The proposed algorithms were implemented in the
SMASH source code, version 1.1-dev, which is stored at
https://doi.org/10.5281/zenodo.13696078 (Huynh and Colleoni,
2024), available via a GNU-3 license, and developed openly
at https://github.com/DassHydro/smash (last access: 14 Octo-
ber 2024).
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