Articles | Volume 29, issue 15
https://doi.org/10.5194/hess-29-3435-2025
https://doi.org/10.5194/hess-29-3435-2025
Research article
 | 
01 Aug 2025
Research article |  | 01 Aug 2025

The role of land–atmosphere coupling in subseasonal surface air temperature prediction across the contiguous United States

Yuna Lim, Andrea M. Molod, Randal D. Koster, and Joseph A. Santanello

Related authors

Exploring commercial Global Navigation Satellite System (GNSS) radio occultation (RO) products for planetary boundary layer studies in the Arctic
Manisha Ganeshan, Dong L. Wu, Joseph A. Santanello, Jie Gong, Chi Ao, Panagiotis Vergados, and Kevin J. Nelson
Atmos. Meas. Tech., 18, 1389–1403, https://doi.org/10.5194/amt-18-1389-2025,https://doi.org/10.5194/amt-18-1389-2025, 2025
Short summary
Northern Hemisphere Stratospheric Temperature Response to External Forcing in Decadal Climate Simulations
Abdullah A. Fahad, Andrea Molod, Krzysztof Wargan, Dimitris Menemenlis, Patrick Heimbach, Atanas Trayanov, Ehud Strobach, and Lawrence Coy
EGUsphere, https://doi.org/10.21203/rs.3.rs-1892797/v2,https://doi.org/10.21203/rs.3.rs-1892797/v2, 2025
Short summary
Signatures of aerosol-cloud interactions in GiOcean: A coupled global reanalysis with two-moment cloud microphysics
Ci Song, Daniel McCoy, Andrea Molod, and Donifan Barahona
EGUsphere, https://doi.org/10.5194/egusphere-2024-4108,https://doi.org/10.5194/egusphere-2024-4108, 2025
Short summary
Deducing land–atmosphere coupling regimes from SMAP soil moisture
Payal R. Makhasana, Joseph A. Santanello, Patricia M. Lawston-Parker, and Joshua K. Roundy
Hydrol. Earth Syst. Sci., 28, 5087–5106, https://doi.org/10.5194/hess-28-5087-2024,https://doi.org/10.5194/hess-28-5087-2024, 2024
Short summary
Influence of lower-tropospheric moisture on local soil moisture–precipitation feedback over the US Southern Great Plains
Gaoyun Wang, Rong Fu, Yizhou Zhuang, Paul A. Dirmeyer, Joseph A. Santanello, Guiling Wang, Kun Yang, and Kaighin McColl
Atmos. Chem. Phys., 24, 3857–3868, https://doi.org/10.5194/acp-24-3857-2024,https://doi.org/10.5194/acp-24-3857-2024, 2024
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Barriers to urban hydrometeorological simulation: a review
Xuan Chen, Job Augustijn van der Werf, Arjan Droste, Miriam Coenders-Gerrits, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 29, 3447–3480, https://doi.org/10.5194/hess-29-3447-2025,https://doi.org/10.5194/hess-29-3447-2025, 2025
Short summary
Global catalog of soil moisture droughts over the past four decades
Jan Řehoř, Rudolf Brázdil, Oldřich Rakovec, Martin Hanel, Milan Fischer, Rohini Kumar, Jan Balek, Markéta Poděbradská, Vojtěch Moravec, Luis Samaniego, Yannis Markonis, and Miroslav Trnka
Hydrol. Earth Syst. Sci., 29, 3341–3358, https://doi.org/10.5194/hess-29-3341-2025,https://doi.org/10.5194/hess-29-3341-2025, 2025
Short summary
Probabilistic precipitation downscaling for ungauged mountain sites: a pilot study for the Hindu Kush Himalaya
Marc Girona-Mata, Andrew Orr, Martin Widmann, Daniel Bannister, Ghulam Hussain Dars, Scott Hosking, Jesse Norris, David Ocio, Tony Phillips, Jakob Steiner, and Richard E. Turner
Hydrol. Earth Syst. Sci., 29, 3073–3100, https://doi.org/10.5194/hess-29-3073-2025,https://doi.org/10.5194/hess-29-3073-2025, 2025
Short summary
Implementation of global soil databases in the Noah-MP model and the effects on simulated mean and extreme soil hydrothermal changes
Kazeem Abiodun Ishola, Gerald Mills, Ankur Prabhat Sati, Benjamin Obe, Matthias Demuzere, Deepak Upreti, Gourav Misra, Paul Lewis, Daire Walsh, Tim McCarthy, and Rowan Fealy
Hydrol. Earth Syst. Sci., 29, 2551–2582, https://doi.org/10.5194/hess-29-2551-2025,https://doi.org/10.5194/hess-29-2551-2025, 2025
Short summary
Skilful probabilistic predictions of UK flood risk months ahead using a large-sample machine learning model trained on multimodel ensemble climate forecasts
Simon Moulds, Louise Slater, Louise Arnal, and Andrew W. Wood
Hydrol. Earth Syst. Sci., 29, 2393–2406, https://doi.org/10.5194/hess-29-2393-2025,https://doi.org/10.5194/hess-29-2393-2025, 2025
Short summary

Cited articles

Abdolghafoorian, A. and Dirmeyer, P. A.: Validating the land–atmosphere coupling behavior in weather and climate models using observationally based global products, J. Hydrometeorol., 22, 1507–1523, https://doi.org/10.1175/JHM-D-20-0183.1,  2021. 
Ardilouze, C., Batté, L., Decharme, B., and Déqué, M.: On the link between summer dry bias over the U.S. Great Plains and seasonal temperature prediction skill in a dynamical forecast system, Weather Forecast., 34, 1161–1172, https://doi.org/10.1175/WAF-D-19-0023.1, 2019. 
Benson, D. O. and Dirmeyer, P. A.: The soil moisture – surface flux relationship as a factor for extreme heat predictability in subseasonal to seasonal forecasts, J. Clim., 36, 6375–6392, https://doi.org/10.1175/jcli-d-22-0447.1, 2023. 
Bolton, D.: The computation of equivalent potential temperature, Mon. Weather Rev., 108, 1046–1053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2, 1980. 
Budyko, M. I.: Heat Balance of the Earth's Surface, Gidrometeoizdat, Leningrad, 255 pp., 1956. 
Download
Short summary
To better utilize a given set of predictions, identifying “forecasts of opportunity” is valuable as this helps anticipate when prediction skill will be higher. This study shows that when strong land–atmosphere (L–A) coupling is detected 3–4 weeks into a forecast, the surface air temperature prediction skill at this lead time increases across the Midwest and northern Great Plains. Regions experiencing strong L–A coupling exhibit warm and dry anomalies, enhancing predictions of abnormally warm events.
Share