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Abstract. Land-atmosphere (L—-A) coupling can play a cru-
cial role for subseasonal-to-seasonal (S2S) predictability and
prediction. When coupling is strong, L—-A processes and
feedback are expected to enhance the system’s memory,
thereby increasing the predictability and prediction skill.
This study evaluates the subseasonal prediction of ambi-
ent surface air temperature under conditions of strong ver-
sus weak L—A coupling in forecasts produced with NASA’s
state-of-the-art Goddard Earth Observing System (GEOS)
S2S forecast system. By applying three L-A coupling met-
rics that collectively capture the connection between the soil
and the free troposphere, we observe improved prediction
skill for surface air temperature during weeks 3—4 of bo-
real summer forecasts across the Midwest and northern Great
Plains, particularly when all three indices indicate strong L—
A coupling at this lead time. The prediction skill indeed in-
creases as more indices show strong coupling. The forecasts
with strong L-A coupling in these regions tend to exhibit
sustained warm and dry anomalies, signals that are well sim-
ulated in the model. Overall, this study highlights how better
identifying and capturing relevant L—-A coupling processes
can potentially enhance prediction on S2S timescales.

1 Introduction

Subseasonal-to-seasonal (S2S) prediction, involving fore-
casts covering a period of 15 to 60d ahead, holds signifi-
cance for end users in decision-making roles whose goal is
to mitigate human and economic losses caused by natural
disasters. In this context, the S2S prediction project was initi-

ated by the World Weather Research Programme/World Cli-
mate Research Programme, with operational centers world-
wide providing their retrospective forecasts to the project to
advance the understanding of the S2S prediction (Vitart et al.,
2017). Factors contributing to subseasonal prediction include
soil moisture anomalies and their associated memory, the
Madden—Julian oscillation, and sudden stratospheric warm-
ing (e.g., Dirmeyer et al., 2018; Lim et al., 2018; Domeisen
et al., 2020). However, because such factors fall far short of
providing perfect prediction skill, finding “forecasts of op-
portunity” stemming from these factors can optimize the uti-
lization of a given prediction system (Mariotti et al., 2020).

Land-atmosphere (L-A) coupling is required for soil
moisture to affect surface meteorological conditions, which
in turn can amplify the memory of the system (Seneviratne
et al., 2010). It occurs across various timescales and involves
numerous variables (Seneviratne et al., 2010; Santanello et
al., 2018), including land surface and planetary boundary
layer (PBL) states and fluxes. Positive feedback in L-A
coupling involves soil moisture, surface latent and sensible
heat fluxes, surface temperature, boundary layer tempera-
ture and humidity, and cloud formation (see Fig. 6 of Molod
et al., 2004, for one example of a positive feedback loop).
Such robust L-A coupling processes can significantly impact
droughts and heat extremes (Fischer et al., 2007; Dirmeyer
et al., 2021). Of course, to be impactful, the strength of L-A
coupling must exert a stronger influence on the local con-
ditions than advection from synoptic-scale atmospheric mo-
tion.

Accurate representation of strong L-A coupling is nec-
essary to leverage the impact of soil moisture on surface
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meteorological variables in a prediction system (Roundy et
al., 2014; Benson and Dirmeyer, 2023). Previous studies
have investigated how prediction models simulate L-A cou-
pling, examining the connections between variables (e.g.,
Dirmeyer, 2013; Abdolghafoorian and Dirmeyer, 2021) or
assessing the simulation of the relationship between soil
moisture and evaporation (Benson and Dirmeyer, 2023). It
has been observed that the ability to simulate L-A coupling
influences the prediction of surface meteorological variables.
For example, accurate simulation of soil moisture “break-
points”, which is a critical threshold value indicating when
atmosphere responses to the land surface conditions oc-
cur, can improve predictions of heat extremes (Benson and
Dirmeyer, 2023). Roundy et al. (2014) demonstrated that
coupling strength is closely associated with predictions of
surface temperature and precipitation based on two drought
events. However, in terms of “forecasts of opportunity”, no
attempts have yet been made to assess the impact of L-A
coupling strength on the prediction skill of surface variables
at these subseasonal timescales.

In this study, we hypothesize that the surface air tempera-
ture forecasts for weeks 3—4 will be better predicted if con-
ditions conducive to positive L-A feedback are present in
that forecast. Furthermore, we aim to assess the importance
of fully integrating the soil moisture—atmosphere connection
by considering separately the links between soil moisture and
evapotranspiration (ET), between ET and surface skin tem-
perature, and between ET and the character of the PBL and
free troposphere, hypothesizing that all three links must be
strong for the feedback to positively affect prediction skill.
The analysis focuses on the contiguous United States, which
contains a well-known hotspot of LA coupling (e.g., Koster
et al., 2006). Importantly, this approach focuses specifically
on forecasts of these coupling components rather than on ob-
servations and/or the forecast initialization (as is typical in
prediction studies) when evaluating impacts on forecast skill.

This paper is organized as follows. Section 2 describes
the forecast system used in our analysis, the reanalysis data
used for assessing the prediction skill, the metrics we use to
quantify L-A coupling strength, and the evaluation metrics
of prediction skill. Section 3 presents the results, including
the general characteristics of L-A coupling as simulated by
the model and the impacts of strong versus weak coupling
on surface air temperature prediction skill. A summary and
additional discussion are provided in Sect. 4.

2 Data and methods

2.1 GEOS-S2S model

In this study, we used the suite of subseasonal forecasts
with Version 2 of the National Aeronautics and Space Ad-

ministration (NASA)’s state-of-the-art Goddard Earth Ob-
serving System (GEOS) S2S analysis and forecast sys-
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tem, i.e., GEOS-S2S-2 (Molod et al., 2020). This system
comprises a coupled atmosphere—ocean general circulation
model (GCM) and a weakly coupled data assimilation sys-
tem. The coupled atmosphere—ocean GCM incorporates sev-
eral components: the GEOS atmospheric GCM (after Molod
et al., 2015; Rienecker et al., 2008), the Modular Ocean
Model version 5 (MOMS) ocean GCM (Griffies, 2012), the
GOCART aerosol model (Chin et al., 2002), and the Com-
munity Ice CodE-4 sea ice model (Hunke, 2008). The atmo-
spheric and oceanic components have approximately 0.5° x
0.5° horizontal resolution with 72 vertical levels for the at-
mosphere and 40 for the ocean. Land processes are repre-
sented using the Catchment model (Ducharne et al., 2000;
Koster et al., 2000), a well-established land model with a
non-traditional representation of subgrid hydrological vari-
ability. With the Catchment model, the land surface is di-
vided into a patchwork of irregularly shaped hydrological
catchments, and each catchment element is in turn divided
into three distinct subareas (saturated, subsaturated but tran-
spiring, and wilting) with sizes that vary in time based on
the model’s bulk soil moisture prognostic variables. Distinct
physical parameterizations for evapotranspiration and runoff
are utilized in the different subareas.

The weakly coupled data assimilation system used for the
forecast system’s initialization makes use of observed (rain-
gauge-based) precipitation measurements to drive the land
surface fields; as a result, the soil moisture initialization for
the forecasts appropriately reflects the character of the an-
tecedent observed precipitation. Quantitative estimates of the
accuracy of such precipitation-driven, model-based estimates
are rare but do exist. Using a slightly modified version of the
land model used here in GEOS (Catchment model), Reichle
et al. (2017) found strong temporal correlations between
the surface and root zone soil moisture generated and cor-
responding in situ measurements across the contiguous US
(CONUS). The soil moisture produced by a slightly updated
version of the land model was recently compared to Soil
Moisture Active Passive (SMAP) satellite-based soil mois-
ture retrievals (Entekhabi et al., 2009); the resulting anomaly
correlation coefficients over CONUS were found to gener-
ally exceed 0.6 (Qing Liu, personal communication, 2024).
Koster et al. (2020, their Fig. 9) effectively show that signifi-
cant subseasonal air temperature forecast skill in the GEOS-
S2S-2 system, particularly in the eastern half of CONUS, is
strongly tied to the initialized profile soil moisture, indicating
useful accuracy therein.

This study utilizes all available retrospective and real-time
forecasts spanning from 1999 to 2022, except for the sum-
mer of 2017, which is the transition period between the ret-
rospective and real-time forecasts. The full forecast suite is
the combination of the retrospective and real-time forecasts,
which will be referred to as forecasts hereafter. Each fore-
cast includes four ensemble members and is initialized six
times a month at 5 d intervals. Since the L—A coupling is the
strongest in the boreal summer (e.g., Koster et al., 2004), we
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examined the forecasts initialized in June—August, resulting
in 18 start dates per year. A total of 414 forecast dates are
thus analyzed in this study. Note that the forecasts initialized
in late August provide forecast information extending into
September.

2.2 Verification data

To assess forecast skill, we primarily take as “observations”
the 2 m temperatures (T2m) produced in the fifth generation
of the European Centre for Medium-Range Weather Forecast
Reanalysis (ERAS; Hersbach et al., 2020). During the pro-
duction of ERAS, the data assimilation process ingested sub-
stantial amounts of T2m information from ground stations,
making the ERAS T2m product particularly trustworthy as an
evaluation standard, particularly in boreal summer in the ab-
sence of snow cover. We aggregated the hourly 0.25° x 0.25°
ERAS5 T2m data during the period of 1999 to 2022 into daily
means for consistency with the available GEOS-S2S-2 fore-
cast data. In addition to T2m, we used other variables such
as surface soil moisture, surface latent heat flux, surface skin
temperature, 2 m specific humidity (Q2m), and PBL height
(PBLH) for evaluating L-A coupling processes in the model.
As an additional dataset for evaluation, we utilized data from
a second reanalysis, the Modern-Era Retrospective analy-
sis for Research and Applications, version 2 (MERRA-2;
Gelaro et al., 2017); we aggregated the hourly 0.625° x 0.5°
MERRA-2 data from 1999 to 2022 into daily means. Due to
slight differences in grid resolution across the ERAS, GEOS-
S2S-2, and MERRA-2, all datasets were interpolated to the
same 1.0° x 1.0° grid before analysis.

2.3 Land-atmosphere coupling metrics

L—-A coupling strength has often been discussed in terms of
“two-legged metrics” (e.g., Dirmeyer, 2011; Santanello et al.,
2018), statistical metrics that separately describe the connec-
tion between land conditions and the surface fluxes, as well
as the connection between the surface fluxes and the over-
lying atmosphere or boundary layer. By dividing the cou-
pling process into these two components, it becomes easier
to identify the complex processes governing these feedback
processes. Specifically, for the first metric of L-A coupling
to be used in this study, we calculate the correlation between
surface soil moisture (SM) and surface latent heat flux (LH)
using Eq. (1). A higher positive correlation signifies a more
robust L-A coupling between these two variables, indicating
that the soil moisture anomalies are driving the latent heat
anomalies. The second metric to be used here is the correla-
tion between LH and surface skin temperature (TS) (Eq. 2).
Here, a greater negative correlation between LH and TS sig-
nifies a stronger L—A coupling, indicating that the latent heat
anomalies are driving the skin temperature anomalies. To de-
tect changes in conditions conducive to clouds and convec-
tion formation, for the third metric we compute the correla-
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tion between the anomaly of the lifting condensation level
deficit (LCLd or LCL deficit; Santanello et al., 2011) and the
anomaly of LH (Eq. 3). The LCLd is defined here as the dif-
ference in meters between the PBLH and the LCL, where a
negative value indicates that the LCL has not been reached
by the air parcel subjected to PBL turbulent motions, mean-
ing that the conditions are not favorable to allow for con-
vection and perhaps precipitation. LCLd anomalies of either
sign are therefore associated with conditions that are more
or less favorable to convection. The LCL is estimated from
T2m and Q2m (Bolton, 1980), while PBLH is provided by
the forecasts. A higher positive correlation of LH and LCLd,
where positive (negative) LH anomalies correspond to posi-
tive (negative) LCLd anomalies, therefore describes a more
intense L—A coupling.

As mentioned in the Introduction, our focus lies on condi-
tions for which the forecast produces a strong LA coupling.
In line with this, each index is computed using data from
the forecasts rather than from the reanalysis. In line with our
focus on subseasonal prediction, each index at a given grid
point is calculated using data from weeks 3—4 (days 15 to
28) of each of the forecast’s four ensemble members, as ex-
pressed below:

4 28 /
#(SM, LH) = Zk:er:lSSM/LH (1)
4 28 2 [e4 28 2’
\/Zk:l ZT:ISSM/ \/Zk:l ZI:ISLH/
4 28
r(LH, TS) = L1 Lo isLHTS 2
4 28 /2 4 28 2
\/Zk:l ZI:ISLH \/Zk:l ZT:ISTS,
4 28 ’ /
LH'LCLd
#(LH,LCLd) = Zk:er:lS (3)

4 28 2[4 28 2’
\/Zk:l ZI:ISLH/ \/Zk:l Z‘r:lSLCLd/

where k is the ensemble number, and 7 is the forecast lead
time. As indicated by the primes, corresponding lead-time-
dependent climatological values are subtracted from all vari-
ables before computing the index.

For a given index, separate values are computed for each
forecast, and then the values are ranked and binned into per-
centiles. If a given forecast places an index in the upper
50th percentile, that index is categorized as “strong” for the
forecast. When all three indices indicate strong (weak) L-A
coupling, this is classified as a strong (weak) L-A coupling
event. This approach ensures that the full process chain con-
necting soil moisture, surface energy budget, and boundary
layer remains “active”. Later in this paper, we will also ex-
amine forecasts for which only one or two indices indicate
strong L—A coupling.

2.4 Evaluation metrics

The anomaly correlation coefficient (ACC) between GEOS-
S2S-2 and ERAS is computed to quantify the prediction skill.
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The ACC at 3—4 weeks lead can be expressed as follows:

YN (fFO) =@ —0)
L o-/ron-op

ACC = “

where f (¢) is the forecast datum at weeks 3—4 lead for the
forecast initialized on date ¢, and O (¢) is obtained from
ERAS5 for the corresponding period. More precisely, f ()
and O (t) are the ensemble-mean forecast T2m averaged over
weeks 3—4 (i.e., days 15-28) of the forecast and the ERAS
T2m averaged over the same period, respectively. f and O
are the climatological values for the forecast and ERAS data,
derived (for the forecasts) by averaging the data initialized on
the same start dates. By subtracting the climatological means
from the model and the observational data, the impacts of the
seasonal cycle, model drift, and mean bias on the calculated
ACC can be excluded or at least mitigated. N is the number
of initialization dates used in the analysis.

3 Results

Figure 1 reveals the character of the simulated L-A cou-
pling in GEOS-S2S-2 and in the two sets of reanalysis data.
The L-A coupling index is computed for a given forecast
at week 3—4 forecast lead time using Egs. (1)—(3) above
and, for the figure, is averaged over forecasts initialized be-
tween June 1999 to August 2022 (Sect. 2.3). The coupling
index for either reanalysis is computed using data from cor-
responding days. Generally, the datasets reveal similar spa-
tial distributions in all three indices. The maximum (in mag-
nitude) correlations are found in the western US, with no-
table asymmetries between the western and eastern US. Pos-
itive values of ¥(SM, LH) are broadly evident across the con-
tinental US, with distinctively high values observed in the
deserts of the western US and the Great Plains extending
from Mexico to North Dakota — locations characterized by
a soil-moisture-controlled evaporative regime, as indepen-
dently mapped with satellite-based evapotranspiration and
soil moisture estimates (Koster et al., 2024). These positive
r(SM, LH) values indicate that higher soil moisture leads to
increased evapotranspiration, which should, in turn, be re-
lated to lower surface temperatures through evaporative cool-
ing, which explains why the r(SM, LH) patterns are largely
aligned (though opposite in sign) with those for r(LH, TS).
The r(LH, LCLd) patterns are also similar to those for »(LH,
TS), again with an opposite sign. As the latent heat flux in-
creases, both relative humidity and dew point temperature
increase, causing a decrease in the LCL (Seo and Dirmeyer,
2022) and a consequent increase in LCLd (i.e., PBLH —
LCL height in meters). Note that the LCL is more sensi-
tive to changes in latent heat flux, while the PBLH is gen-
erally driven by surface heating and buoyancy flux, result-
ing in positive r(LH, LCLd) in the western US. In the west-
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ern and southeastern US, the average coupling strength of
GEOS-S2S-2 falls between that of ERAS and MERRA-2.

The spatial distribution of GEOS-S2S-2 is understandably
more similar to that of MERRA-2 as both are based on the
same modeling system (Molod et al., 2020). The asymmetry
between the western and eastern US is somewhat more pro-
nounced in ERAS compared to GEOS-S2S-2 and MERRA-
2. As mentioned earlier, the data assimilation process used in
the production of ERAS incorporated substantial amounts of
T2m information from ground stations. Furthermore, ERAS
is based on a higher spatial resolution: ERAS data are pro-
vided at approximately 25 km horizontal resolution, whereas
MERRA-2 provides data at a 50 km resolution. This differ-
ence may contribute to variations in simulating boundary
layer conditions and land—atmosphere coupling. Neverthe-
less, using MERRA-2 is still valuable for examining the sen-
sitivity of the results to the choice of reanalysis data.

Some disparities are found in the eastern US, with the av-
erage coupling strength of GEOS-S2S-2 slightly higher than
that of both reanalysis datasets. These disparities can per-
haps be attributed to a data assimilation process that accom-
panies the model during reanalysis, which enforces observed
values into the reanalysis data and may suppress or enhance
physical correlations and L-A feedback modeled by the sys-
tem. These considerations would not, of course, impact the
forecasts made during the forecast period. The discrepancy
between MERRA-2 and GEOS-S2S-2 particularly supports
this explanation given that the atmospheric and land compo-
nents of the two systems are structurally similar.

Figure 2a presents the ACC of T2m for week 3—4 fore-
casts throughout the entire analysis period (Sect. 2.4). The
T2m anomalies in each forecast are averaged over weeks 3—
4, and the ACC is computed by comparing these T2m aver-
ages with the corresponding 2-week averages obtained from
ERAS. Overall, prediction skill over the continental US is
about 0.3 of ACC. The ACC values are higher in the western,
south-central, and eastern US compared to the north-central
US. Overall, GEOS-S2S-2 performs similarly to other mod-
els (Wang and Robertson, 2019; Pegion et al., 2019). In the
eastern US, the ACC for GEOS-S2S-2 is between 0.2 and
0.3, which is slightly below the ECMWF Variable Resolu-
tion Ensemble Prediction System monthly forecast system
(VarEPS) but exceeds that of the NCEP Climate Forecast
System, version 2 (CFSv2; see Fig. 2 of Wang and Robert-
son, 2019). Texas and the southeastern US region have rela-
tively high ACC in GEOS-S2S-2; the values are close to 0.4,
which is comparable to ECMWF VarEPS and NCEP CFSv2
(Wang and Robertson, 2019). In the western US, the GEOS-
S2S-2 shows ACC values above 0.3, slightly outperform-
ing ECMWF VarEPS and NCEP CFSv2 (Wang and Robert-
son, 2019). Although a direct comparison with the results in
Fig. 2a is difficult because Pegion et al. (2019) evaluated the
predictability of week 3 forecasts in Subseasonal Experiment
(SubX) models, they showed that the GEOS-S2S-2 model
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Figure 1. (a) Spatial distribution of the »(SM, LH) averaged across all forecasts initialized from 1999 to 2022. (b—c) Same as (a) but derived
from ERAS and MERRA-2, respectively. (d-i) Same as (a)—(c) but showing the spatial distributions for (d—f) the »(LH, TS) and (g-i) the

r(LH, LCLA).

has relatively better T2m predictability over the continental
US compared to other SubX models.

Figure 2 illustrates how L—A coupling strength affects the
ACC of T2m. Based on the 50th percentiles of each L-A
coupling index, we identify forecasts characterized by strong
and weak L—A couplings (see Sect. 2.3; all three indices must
be in the upper (lower) 50th percentile for the forecast to be
identified as having strong (weak) L—A coupling. Forecasts
where not all three indices fall within the same percentile
range (about half of the total sample size) are excluded from
this particular analysis). The ACC values of T2m during the
strong and weak L—A coupling forecast subsets are depicted
in Fig. 2b and c, respectively. A distinct difference in ACC
is observed between strong and weak L—A coupling events,
particularly across the northern Great Plains, the Midwest,
and the western coast of Mexico, where strong coupling is
tied to higher ACC. The strong—weak difference (Fig. 2d) in
these areas is maximally up to 0.20 and is statistically sig-
nificant at a 90 % confidence level, as determined by a boot-
strapping test. In the bootstrapping test, the full dataset is
subsampled randomly to produce two subsets of equal size to
our strong and weak groups, and then the differences in their
skills are computed. This process is repeated 10000 times.
The observed difference is compared to those obtained from
the random sampling. These regions align with the hotspots
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of strong L—A coupling identified in the multimodel analysis
(Fig. 8c of Seneviratne et al., 2010). Similar differences were
found when analyzing the 30th and 40th percentiles instead
of the 50th percentile (not shown). To test whether our spa-
tial interpolation of the GEOS-S2S-2 data had some impact
on our findings, we conducted the same analysis (not shown)
using a 0.5° x 0.5° grid without the spatial interpolation. The
results were essentially the same.

The southern Great Plains also exhibit a strong L-A cou-
pling, as can be inferred from Fig. 1, but the prediction
skill in GEOS-S2S-2 does not vary with the L-A coupling
strength in this region. Considering the fact that the hotspots
of L-A coupling can differ between models (Koster et al.,
20006), it is possible that T2m in this region is controlled more
strongly by external factors (e.g., advection) than by the land
component, which could diminish the effect of L—A coupling
on prediction skill.

Focusing on the region exhibiting the most pronounced
impact of L-A coupling, we examine whether incorporat-
ing more elements of the L-A coupling feedback loop en-
hances the prediction skill. Figure 3 displays the ACC of
T2m averaged over the northern Great Plains for four dif-
ferent and mutually exclusive forecast subsets. The 3Strong
and 3Weak groups correspond to the strong and weak L—-A
coupling groups in Fig. 2. Additionally, we present the ACC

Hydrol. Earth Syst. Sci., 29, 3435-3445, 2025
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Figure 2. The ACC of T2m anomalies (forecast values versus observations) at a forecast lead time of 3—4 weeks over North America during
(a) all, (b) strong, and (c) weak L-A coupling events. Strong (weak) events are defined when all three indices are above (below) the 50th
percentiles. (d) The difference in T2m ACC between strong and weak events. Statistically significant differences at a 90 % confidence level
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Figure 3. A bar plot illustrating the T2m ACC averaged across the
northern Great Plains (35-45° N, 100-85° W) at forecast lead times
of 3—4 weeks and 1-4 weeks for each coupling group. The black bar
indicates ACC for all forecasts. Red (blue) bars denote ACC values
with all three indices being strong (weak), while orange (yellow)
bars indicate ACC with any two (one) indices being strong and any
one (two) weak. The average sample size in each group is indicated
at the bottom of each bar.

of T2m for two other subsets, the first consisting of events
for which two (and only two) indices among the three are
strong (denoted as 2Strong 4+ 1Weak) and the second con-
sisting of events where only one index is strong (denoted
as 1Strong + 2Weak). The ACC of T2m gradually increases
from 0.08 to 0.24 with an increase in the number of strong
coupling indices, suggesting that each metric provides at
least some independent information about L—A coupling and
forecast skill. It is also noteworthy that the sample sizes of
the four subsets are roughly equal. Despite the expected sam-
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ple size for both the 3Strong and 3Weak groups being about
one-eighth of the number of the total forecasts based on the
50th percentile value, these two groups actually have larger
sample sizes in the GEOS-S2S-2 dataset. This suggests that
the coupling metrics within this dataset are not fully indepen-
dent of each other.

We extend the analysis to week 1-4 forecasts (i.e., aver-
aging T2m over the first 4 weeks of each forecast) to see
if similar results apply at the monthly prediction scale. As
shown on the right side of Fig. 3, the results are indeed
similar — the ACC increases consistently with the number
of indices identified as strong. The difference between the
3Strong and 3Weak subsets for the week 1-4 forecasts is,
however, slightly smaller than that for the week 3—4 fore-
casts (0.16 in week 3—4 forecasts versus 0.08 in week 1-4
forecasts). This reduction is likely due to the substantial in-
fluence of atmospheric initialization on skill during the first
2 forecast weeks.

To characterize the atmospheric conditions associated with
varying strengths of L-A coupling strength and prediction
skill over the northern Great Plains during boreal summer,
the temporal variations in areally averaged T2m and Q2m
anomalies for this region (35-45°N, 100-85° W) during the
forecasts are depicted in Fig. 4a-b. They reveal a system-
atic change with an increase in the number of strong cou-
pling indices. In cases of strong L-A coupling, warm and
dry anomalies are evident in the initial condition and persist
for 4 weeks. In the 2Strong + 1Weak group, T2m and Q2m
anomalies are near zero, while the 1Strong + 2Weak group
shows weakly cool and humid anomalies. The coolest and
most humid anomalies are seen during weak L-A coupling
events.

These distinctions in T2m and Q2m anomalies can be ex-
plained, at least in part, by considerations of evaporative
regimes as controlled by soil moisture. Evapotranspiration
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Figure 4. Time series displaying daily mean of (a) T2m anomalies, (b) Q2m anomalies, and (c) soil moisture averaged across the northern
Great Plains (35-45° N, 100-85° W) for forecast lead days 1-28. The different colored lines represent the four different L—A coupling groups.
Consistently with Fig. 3, red, orange, yellow, and blue lines correspond to the values in the 3Strong, 2Strong + 1Weak, 1Strong + 2Weak,

and 3Weak groups, respectively.
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Figure 5. Probability of predicting observed abnormally warm events during (a) 3Strong and (b) 3Weak L-A coupling events. (c¢) The

difference between 3Strong and 3Weak coupling events.

efficiency tends to increase with soil moisture in dry soil
conditions (the soil-water-limited evaporative regime) and to
be relatively insensitive to soil moisture changes under wet
soil conditions (the energy-limited evaporative regime; e.g.,
Budyko, 1956; Koster et al., 2024). The rightmost panel of
Fig. 4 shows that the average soil moisture gets progressively
drier as the number of strong coupling indices increases. We
can hypothesize that the drier soil places the evaporation into
the soil-water-limited evaporative regime, wherein reduced
evapotranspiration induces reduced evaporative cooling. This
results in warmer and drier air above the surface. Note that,
to the extent the evaporative regime concept is valid, dry con-
ditions automatically encourage high values for at least two
of our coupling metrics, namely, »(SM, LH) and r(LH, TS).
In some ways, it is thus not a surprise that soil-water-limited
conditions are associated with stronger coupling in the north-
ern Great Plains during boreal summer in our analysis frame-
work.

Given our finding that warm and dry events are more likely
during strong L—A coupling in the northern Great Plains dur-
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ing boreal summer, we now examine whether our coupling
indices can be directly linked to a higher probability of pre-
dicting abnormally warm events. Here, we define the abnor-
mally warm events as events for which the T2m anomalies
averaged over weeks 3—4 of a forecast exceed 1 standard de-
viation of the mean of the values obtained from the 414 sepa-
rate forecasts. A similar definition is applied to warm events
from the ERAS data. The probability of hitting a warm event
correctly is determined by the ratio of the number of warm
events occurring in both the GEOS-S2S-2 and ERAS data
to the total number of warm events seen in the ERAS data
(Fig. 5). The 3Strong subset shows significantly higher skill
than the 3Weak subset in predicting the warm events in the
Midwest, the northern Great Plains, and Mexico, similarly to
what was seen for T2m prediction (Fig. 2b—d). This suggests
that our approaches and selected indices may be particularly
applicable for predicting abnormally warm events during bo-
real summer.
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4 Summary and discussion

This study demonstrates that the T2m prediction skill on sub-
seasonal timescales can be modulated by the L-A coupling
strength. When strong L—A coupling (as determined by three
separate coupling indices) is detected in week 3—4 forecasts,
enhanced T2m prediction skill is observed across the Mid-
west and the northern Great Plains (Fig. 2). Furthermore, the
prediction skill increases with the number of indices iden-
tified as strong, suggesting that each part of the L-A cou-
pling process from the soil to the free troposphere likely con-
tributes to the enhancement of the prediction skill (Fig. 3).
Persistent warm and dry events in the regions and season we
studied here are better predicted when the L-A coupling is
determined to be strong rather than weak (Figs. 4 and 5).
This study suggests that the L—A coupling strength can be an
indicator of stronger surface air temperature predictability in
the hotspots of L—-A coupling.

It is noteworthy that GEOS-S2S-2 exhibits spatially simi-
lar patterns in the L-A coupling indices with the two reanal-
yses (Fig. 1). However, evaluating the L—A coupling strength
is challenging because the reanalysis data are influenced by
the data assimilation process, which may suppress (or en-
hance) the L-A coupling processes modeled in the system.
Long-term observational data would be needed to better eval-
uate the simulation and forecasting of L—A coupling.

Although Fig. 5 clearly shows that strong L—-A coupling
during summer in the contiguous US was associated with
warm anomalies, we do not directly analyze extreme events
here. The L-A coupling is recognized as one of the key
mechanisms driving extreme events such as heat waves and
drought (e.g., Seneviratne et al., 2010). For instance, the
2012 drought in the Midwest (Roy et al., 2019) and the 2022
heat wave—drought in the Great Plains (Yoon et al., 2024)
were affected by the L-A coupling. Our coupling-strength-
based approach may help identify forecasts of opportunity
for such events.

The results above are based on a single model, and L-A
coupling processes are known to differ among current S2S
prediction models (Abdolghafoorian and Dirmeyer, 2021). In
this regard, our findings could be further evaluated by con-
ducting a multimodel intercomparison of coupling strength
impacts using the S2S prediction project data (Vitart et al.,
2017) and/or SubX data (Pegion et al., 2019); such an inter-
comparison study would help us better understand the impact
of L-A coupling over the continental US in boreal summer
as well as in other geographical regions and seasons.

There are various ways to construct the ensemble size for
subseasonal forecasts. As the ensemble size increases, the
prediction skill tends to improve (Buizza and Palmer, 1998;
Vitart and Takaya, 2021). It is also valuable to examine how
such adjustments to ensemble size affect the influence of the
L—A coupling strength on prediction skill. We plan to inves-
tigate this further with GEOS-S2S-3, which features a larger
ensemble size.
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Additionally, seasonal prediction models have exhibited
systematically warm and dry biases over the central US
(Klein et al., 2006; Ardilouze et al., 2019). The impacts
of such biases on forecast skill are complex; Koster et
al. (2021), for example, found that a precipitation bias has
a distinctly different impact if the soil starts out anomalously
wet rather than anomalously dry. The impacts of such biases
on L—A coupling will need to be further investigated in future
studies. Through multimodal intercomparison, we can better
understand the possible impacts of these biases on L-A cou-
pling and predictability.

Code and data availability. MERRA-2 is available from MDISC
(https://disc.gsfc.nasa.gov/datasets ?project=MERRA-2, last ac-
cess: 28 July 2025, Gelaro et al., 2017). GEOS-S2S-2 data are
primarily available from IRI (https://iridl.ldeo.columbia.edu/
SOURCES/.Models/.SubX/.GMAO/.GEOS_V2pl/, last access:
28 July 2025), although some variables can be obtained upon
request from the corresponding author (yu-na.lim@nasa.gov).
ERAS is available for download from the NSF NCAR Research
Data Archive (https://rda.ucar.edu/datasets/d633000/, last access:
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