Articles | Volume 29, issue 14
https://doi.org/10.5194/hess-29-3315-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-3315-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impacts of inter-basin water diversion projects on the feedback loops of water supply–hydropower generation–environment conservation nexus
Jiaoyang Wang
State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
Dedi Liu
CORRESPONDING AUTHOR
State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
Hubei Provincial Key Lab of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China
Department of Earth Science, University of the Western Cape, Bellville, Republic of South Africa
Shenglian Guo
State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
Lihua Xiong
State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
Hua Chen
State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
Jie Chen
State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
Jiabo Yin
State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
Hubei Provincial Key Lab of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China
Yuling Zhang
State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
Related authors
Jiayu Zhang, Dedi Liu, Jiaoyang Wang, Feng Yue, Hanxu Liang, Zhengbo Peng, and Wei Guan
EGUsphere, https://doi.org/10.5194/egusphere-2025-2734, https://doi.org/10.5194/egusphere-2025-2734, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Water use is often estimated with coarse data that overlook spatial heterogeneity, limiting effective water planning. This study proposes a framework to simulate water use at multiple spatial scales across China, combining a grid-based approach and uncertainty analysis. It finds that both the model structure and spatial scale affect. The framework reveals detailed patterns in water use and can guide smarter water resources management.
Jiayu Zhang, Dedi Liu, Jiaoyang Wang, Feng Yue, Hanxu Liang, Zhengbo Peng, and Wei Guan
EGUsphere, https://doi.org/10.5194/egusphere-2025-2734, https://doi.org/10.5194/egusphere-2025-2734, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Water use is often estimated with coarse data that overlook spatial heterogeneity, limiting effective water planning. This study proposes a framework to simulate water use at multiple spatial scales across China, combining a grid-based approach and uncertainty analysis. It finds that both the model structure and spatial scale affect. The framework reveals detailed patterns in water use and can guide smarter water resources management.
Chao Ma, Weifeng Hao, Qing Cheng, Fan Ye, Ying Qu, Jiabo Yin, Fang Xu, Haojian Wu, and Fei Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-79, https://doi.org/10.5194/essd-2025-79, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
Antarctic sea ice albedo is a key factor influencing the energy balance of the cryosphere. Here we present a daily 1 km shortwave albedo product for Antarctic sea ice from 2012 to 2021, based on VIIRS reflectance data. Additionally, we reconstructed the albedo for missing pixels due to cloud cover. This dataset can be used to assess changes in Antarctic sea ice, radiation budget, and the strength of sea ice albedo feedback mechanisms, as well as their potential interconnections.
Kun Xie, Lu Li, Hua Chen, Stephanie Mayer, Andreas Dobler, Chong-Yu Xu, and Ozan Mert Göktürk
Hydrol. Earth Syst. Sci., 29, 2133–2152, https://doi.org/10.5194/hess-29-2133-2025, https://doi.org/10.5194/hess-29-2133-2025, 2025
Short summary
Short summary
We compared hourly and daily extreme precipitation across Norway from HARMONIE Climate models at convection-permitting 3 km (HCLIM3) and 12 km (HCLIM12) resolutions. HCLIM3 more accurately captures the extremes in most regions and seasons (except in summer). Its advantages are more pronounced for hourly extremes than for daily extremes. The results highlight the value of convection-permitting models in improving extreme-precipitation predictions and in helping the local society brace for extreme weather.
Qiumei Ma, Chengyu Xie, Zheng Duan, Yanke Zhang, Lihua Xiong, and Chong-Yu Xu
EGUsphere, https://doi.org/10.5194/egusphere-2025-679, https://doi.org/10.5194/egusphere-2025-679, 2025
Short summary
Short summary
We propose a method to estimate the reservoir WLS curve based on the capacity loss induced by sediment accumulation and further assess the potential negative impact caused by outdated design WLS curve on flood regulation risks. The findings highlight that when storage capacity is considerably reduced, continued use of the existing design WLS curve may significantly underestimate, thus posing potential safety hazards to the reservoir itself and downstream flood protection objects.
Xin Xiang, Shenglian Guo, Chenglong Li, and Yun Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-279, https://doi.org/10.5194/egusphere-2025-279, 2025
Short summary
Short summary
Deep learning models excel in hydrological simulations but lack physical foundations. We combine the Xinanjiang model’s principles into recurrent neural network units, forming a physical-based XAJRNN layer. Combined with LSTM layers, we propose an explainable deep learning model. The model shows low peak errors and minimal timing differences. The model improves accuracy and interpretability, offering new insights for combining deep learning and hydrological models in flood forecasting.
Ruikang Zhang, Dedi Liu, Lihua Xiong, Jie Chen, Hua Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci., 28, 5229–5247, https://doi.org/10.5194/hess-28-5229-2024, https://doi.org/10.5194/hess-28-5229-2024, 2024
Short summary
Short summary
Flash flood warnings cannot be effective without people’s responses to them. We propose a method to determine the threshold of issuing warnings based on a people’s response process simulation. The results show that adjusting the warning threshold according to people’s tolerance levels to the failed warnings can improve warning effectiveness, but the prerequisite is to increase forecasting accuracy and decrease forecasting variance.
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci., 28, 3305–3326, https://doi.org/10.5194/hess-28-3305-2024, https://doi.org/10.5194/hess-28-3305-2024, 2024
Short summary
Short summary
Climate change accelerates the water cycle and alters the spatiotemporal distribution of hydrological variables, thus complicating the projection of future streamflow and hydrological droughts. We develop a cascade modeling chain to project future bivariate hydrological drought characteristics over China, using five bias-corrected global climate model outputs under three shared socioeconomic pathways, five hydrological models, and a deep-learning model.
Zhen Cui, Shenglian Guo, Hua Chen, Dedi Liu, Yanlai Zhou, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 28, 2809–2829, https://doi.org/10.5194/hess-28-2809-2024, https://doi.org/10.5194/hess-28-2809-2024, 2024
Short summary
Short summary
Ensemble forecasting facilitates reliable flood forecasting and warning. This study couples the copula-based hydrologic uncertainty processor (CHUP) with Bayesian model averaging (BMA) and proposes the novel CHUP-BMA method of reducing inflow forecasting uncertainty of the Three Gorges Reservoir. The CHUP-BMA avoids the normal distribution assumption in the HUP-BMA and considers the constraint of initial conditions, which can improve the deterministic and probabilistic forecast performance.
Jinghua Xiong, Shenglian Guo, Abhishek, Jiabo Yin, Chongyu Xu, Jun Wang, and Jing Guo
Hydrol. Earth Syst. Sci., 28, 1873–1895, https://doi.org/10.5194/hess-28-1873-2024, https://doi.org/10.5194/hess-28-1873-2024, 2024
Short summary
Short summary
Temporal variability and spatial heterogeneity of climate systems challenge accurate estimation of probable maximum precipitation (PMP) in China. We use high-resolution precipitation data and climate models to explore the variability, trends, and shifts of PMP under climate change. Validated with multi-source estimations, our observations and simulations show significant spatiotemporal divergence of PMP over the country, which is projected to amplify in future due to land–atmosphere coupling.
Qian Lin, Jie Chen, and Deliang Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-826, https://doi.org/10.5194/egusphere-2024-826, 2024
Preprint archived
Short summary
Short summary
Glaciers of the Tibetan Plateau (TP) have experienced widespread retreat in recent decades, but impacts of glacier changes that have occurred on regional climate, including precipitation, is still unknown. Thus, this study addressed this knowledge gap, and found that glacier changes exert a more pronounced impact on summer extreme precipitation events than mean precipitation over the TP. This provides a certain theoretical reference for the further improvement of long-term glacier projection.
Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine
Earth Syst. Sci. Data, 15, 5597–5615, https://doi.org/10.5194/essd-15-5597-2023, https://doi.org/10.5194/essd-15-5597-2023, 2023
Short summary
Short summary
This study presents long-term (i.e., 1940–2022) and high-resolution (i.e., 0.25°) monthly time series of TWS anomalies over the global land surface. The reconstruction is achieved by using a set of machine learning models with a large number of predictors, including climatic and hydrological variables, land use/land cover data, and vegetation indicators (e.g., leaf area index). Our proposed GTWS-MLrec performs overall as well as, or is more reliable than, previous TWS datasets.
Jinghua Xiong, Abhishek, Li Xu, Hrishikesh A. Chandanpurkar, James S. Famiglietti, Chong Zhang, Gionata Ghiggi, Shenglian Guo, Yun Pan, and Bramha Dutt Vishwakarma
Earth Syst. Sci. Data, 15, 4571–4597, https://doi.org/10.5194/essd-15-4571-2023, https://doi.org/10.5194/essd-15-4571-2023, 2023
Short summary
Short summary
To overcome the shortcomings associated with limited spatiotemporal coverage, input data quality, and model simplifications in prevailing evaporation (ET) estimates, we developed an ensemble of 4669 unique terrestrial ET subsets using an independent mass balance approach. Long-term mean annual ET is within 500–600 mm yr−1 with a unimodal seasonal cycle and several piecewise trends during 2002–2021. The uncertainty-constrained results underpin the notion of increasing ET in a warming climate.
Youjiang Shen, Karina Nielsen, Menaka Revel, Dedi Liu, and Dai Yamazaki
Earth Syst. Sci. Data, 15, 2781–2808, https://doi.org/10.5194/essd-15-2781-2023, https://doi.org/10.5194/essd-15-2781-2023, 2023
Short summary
Short summary
Res-CN fills a gap in a comprehensive and extensive dataset of reservoir-catchment characteristics for 3254 Chinese reservoirs with 512 catchment-level attributes and significantly enhanced spatial and temporal coverage (e.g., 67 % increase in water level and 225 % in storage anomaly) of time series of reservoir water level (data available for 20 % of 3254 reservoirs), water area (99 %), storage anomaly (92 %), and evaporation (98 %), supporting a wide range of applications and disciplines.
Youjiang Shen, Dedi Liu, Liguang Jiang, Karina Nielsen, Jiabo Yin, Jun Liu, and Peter Bauer-Gottwein
Earth Syst. Sci. Data, 14, 5671–5694, https://doi.org/10.5194/essd-14-5671-2022, https://doi.org/10.5194/essd-14-5671-2022, 2022
Short summary
Short summary
A data gap of 338 Chinese reservoirs with their surface water area (SWA), water surface elevation (WSE), and reservoir water storage change (RWSC) during 2010–2021. Validation against the in situ observations of 93 reservoirs indicates the relatively high accuracy and reliability of the datasets. The unique and novel remotely sensed dataset would benefit studies involving many aspects (e.g., hydrological models, water resources related studies, and more).
Jinghua Xiong, Shenglian Guo, Abhishek, Jie Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci., 26, 6457–6476, https://doi.org/10.5194/hess-26-6457-2022, https://doi.org/10.5194/hess-26-6457-2022, 2022
Short summary
Short summary
Although the "dry gets drier, and wet gets wetter (DDWW)" paradigm is prevalent in summarizing wetting and drying trends, we show that only 11.01 %–40.84 % of the global land confirms and 10.21 %–35.43 % contradicts the paradigm during 1985–2014 from a terrestrial water storage change perspective. Similar proportions that intensify with the increasing emission scenarios persist until the end of the 21st century. Findings benefit understanding of global hydrological responses to climate change.
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, and Yanghe Liu
Hydrol. Earth Syst. Sci., 26, 6379–6397, https://doi.org/10.5194/hess-26-6379-2022, https://doi.org/10.5194/hess-26-6379-2022, 2022
Short summary
Short summary
Multiyear drought has been demonstrated to cause non-stationary rainfall–runoff relationship. But whether changes can invalidate the most fundamental method (i.e., paired-catchment method (PCM)) for separating vegetation change impacts is still unknown. Using paired-catchment data with 10-year drought, PCM is shown to still be reliable even in catchments with non-stationarity. A new framework is further proposed to separate impacts of two non-stationary drivers, using paired-catchment data.
Wei Li, Jie Chen, Lu Li, Yvan J. Orsolini, Yiheng Xiang, Retish Senan, and Patricia de Rosnay
The Cryosphere, 16, 4985–5000, https://doi.org/10.5194/tc-16-4985-2022, https://doi.org/10.5194/tc-16-4985-2022, 2022
Short summary
Short summary
Snow assimilation over the Tibetan Plateau (TP) may influence seasonal forecasts over this region. To investigate the impacts of snow assimilation on the seasonal forecasts of snow, temperature and precipitation, twin ensemble reforecasts are initialized with and without snow assimilation above 1500 m altitude over the TP for spring and summer in 2018. The results show that snow assimilation can improve seasonal forecasts over the TP through the interaction between land and atmosphere.
Jing Tian, Zhengke Pan, Shenglian Guo, Jiabo Yin, Yanlai Zhou, and Jun Wang
Hydrol. Earth Syst. Sci., 26, 4853–4874, https://doi.org/10.5194/hess-26-4853-2022, https://doi.org/10.5194/hess-26-4853-2022, 2022
Short summary
Short summary
Most of the literature has focused on the runoff response to climate change, while neglecting the impacts of the potential variation in the active catchment water storage capacity (ACWSC) that plays an essential role in the transfer of climate inputs to the catchment runoff. This study aims to systematically identify the response of the ACWSC to a long-term meteorological drought and asymptotic climate change.
Shanlin Tong, Weiguang Wang, Jie Chen, Chong-Yu Xu, Hisashi Sato, and Guoqing Wang
Geosci. Model Dev., 15, 7075–7098, https://doi.org/10.5194/gmd-15-7075-2022, https://doi.org/10.5194/gmd-15-7075-2022, 2022
Short summary
Short summary
Plant carbon storage potential is central to moderate atmospheric CO2 concentration buildup and mitigation of climate change. There is an ongoing debate about the main driver of carbon storage. To reconcile this discrepancy, we use SEIB-DGVM to investigate the trend and response mechanism of carbon stock fractions among water limitation regions. Results show that the impact of CO2 and temperature on carbon stock depends on water limitation, offering a new perspective on carbon–water coupling.
Kang Xie, Pan Liu, Qian Xia, Xiao Li, Weibo Liu, Xiaojing Zhang, Lei Cheng, Guoqing Wang, and Jianyun Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-217, https://doi.org/10.5194/essd-2022-217, 2022
Revised manuscript not accepted
Short summary
Short summary
There are currently no available common datasets of the Soil moisture storage capacity (SMSC) on a global scale, especially for hydrological models. Here, we produce a dataset of the SMSC parameter for global hydrological models. The global SMSC is constructed based on the deep residual network at 0.5° resolution. SMSC products are validated on global grids and typical catchments from different climatic regions.
Yujie Zeng, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Jiabo Yin, and Zhenhui Wu
Hydrol. Earth Syst. Sci., 26, 3965–3988, https://doi.org/10.5194/hess-26-3965-2022, https://doi.org/10.5194/hess-26-3965-2022, 2022
Short summary
Short summary
The sustainability of the water–energy–food (WEF) nexus remains challenge, as interactions between WEF and human sensitivity and water resource allocation in water systems are often neglected. We incorporated human sensitivity and water resource allocation into a WEF nexus and assessed their impacts on the integrated system. This study can contribute to understanding the interactions across the water–energy–food–society nexus and improving the efficiency of resource management.
Jiacheng Chen, Jie Chen, Xunchang John Zhang, Peiyi Peng, and Camille Risi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-460, https://doi.org/10.5194/essd-2021-460, 2022
Manuscript not accepted for further review
Short summary
Short summary
To make full use of the advantages of isotope observations and simulations, this study generates a new dataset by integrating multi-GCM data based on data fusion and bias correction methods. This dataset contains monthly δ18Op over mainland China for the 1870–2017 period with a spatial resolution of 50–60 km. The built isoscape shows similar spatial and temporal distribution characteristics to observations, which is reliable and useful to extend the time and space of observations in China.
Jinghua Xiong, Shenglian Guo, Jie Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-645, https://doi.org/10.5194/hess-2021-645, 2022
Manuscript not accepted for further review
Short summary
Short summary
Although the “dry gets drier and wet gets wetter” (DDWW) paradigm is widely used to describe the trends in wetting and drying globally, we show that 27.1 % of global land agrees with the paradigm, while 22.4 % shows the opposite pattern during the period 1985–2014 from the perspective of terrestrial water storage change. Similar percentages are discovered under different scenarios during the future period. Our findings will benefit the understanding of hydrological responses under climate change.
Wei Li, Lu Li, Jie Chen, Qian Lin, and Hua Chen
Hydrol. Earth Syst. Sci., 25, 4531–4548, https://doi.org/10.5194/hess-25-4531-2021, https://doi.org/10.5194/hess-25-4531-2021, 2021
Short summary
Short summary
Reforestation can influence climate, but the sensitivity of summer rainfall to reforestation is rarely investigated. We take two reforestation scenarios to assess the impacts of reforestation on summer rainfall under different reforestation proportions and explore the potential mechanisms. This study concludes that reforestation increases summer rainfall amount and extremes through thermodynamics processes, and the effects are more pronounced in populated areas than over the whole basin.
Ren Wang, Pierre Gentine, Jiabo Yin, Lijuan Chen, Jianyao Chen, and Longhui Li
Hydrol. Earth Syst. Sci., 25, 3805–3818, https://doi.org/10.5194/hess-25-3805-2021, https://doi.org/10.5194/hess-25-3805-2021, 2021
Short summary
Short summary
Assessment of changes in the global water cycle has been a challenge. This study estimated long-term global latent heat and sensible heat fluxes for recent decades using machine learning and ground observations. The results found that the decline in evaporative fraction was typically accompanied by an increase in long-term runoff in over 27.06 % of the global land areas. The observation-driven findings emphasized that surface vegetation has great impacts in regulating water and energy cycles.
Xiaojing Zhang and Pan Liu
Hydrol. Earth Syst. Sci., 25, 711–733, https://doi.org/10.5194/hess-25-711-2021, https://doi.org/10.5194/hess-25-711-2021, 2021
Short summary
Short summary
Rainfall–runoff models are useful tools for streamflow simulation. However, efforts are needed to investigate how their parameters vary in response to climate changes and human activities. Thus, this study proposes a new method for estimating time-varying parameters, by considering both simulation accuracy and parameter continuity. The results show the proposed method is effective for identifying temporal variations of parameters and can simultaneously provide good streamflow simulation.
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, Yanghe Liu, and Jun Xia
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-5, https://doi.org/10.5194/hess-2021-5, 2021
Manuscript not accepted for further review
Short summary
Short summary
We use statistical methods and data assimilation method with physical model to verify that prolonged drought can induce non-stationarity in the control catchment rainfall-runoff relationship, which causes three inconsistent results at the Red Hill paired-catchment site. The findings are fundamental to correctly use long-term historical data and effectively assess ecohydrological impacts of vegetation change given that extreme climate events are projected to occur more frequently in the future.
Zhengke Pan, Pan Liu, Chong-Yu Xu, Lei Cheng, Jing Tian, Shujie Cheng, and Kang Xie
Hydrol. Earth Syst. Sci., 24, 4369–4387, https://doi.org/10.5194/hess-24-4369-2020, https://doi.org/10.5194/hess-24-4369-2020, 2020
Short summary
Short summary
This study aims to identify the response of catchment water storage capacity (CWSC) to meteorological drought by examining the changes of hydrological-model parameters after drought events. This study improves our understanding of possible changes in the CWSC induced by a prolonged meteorological drought, which will help improve our ability to simulate the hydrological system under climate change.
Jingwen Zhang, Ximing Cai, Xiaohui Lei, Pan Liu, and Hao Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-304, https://doi.org/10.5194/hess-2020-304, 2020
Preprint withdrawn
Short summary
Short summary
Real-time reservoir flood control operation is controlled manually by reservoir operators based on their experiences and justifications, rather than by computer automatically. We use a human-machine interactive modeling method to combine computer optimization model, human’s consideration, and reservoir stage observations for actual decisions on release for real-time reservoir flood control operation. The proposed method can reduce the flood risk and improve water use benefit simultaneously.
Quan Zhang, Huimin Lei, Dawen Yang, Lihua Xiong, Pan Liu, and Beijing Fang
Biogeosciences, 17, 2245–2262, https://doi.org/10.5194/bg-17-2245-2020, https://doi.org/10.5194/bg-17-2245-2020, 2020
Short summary
Short summary
Research into climate change has been popular over the past few decades. Greenhouse gas emissions are found to be responsible for climate change. Among all the ecosystems, cropland is the main food source for mankind, therefore its carbon cycle and contribution to the global carbon balance interest us. Our evaluation of the typical wheat–maize rotation cropland over the North China Plain shows it is a net CO2 emission to the atmosphere and that emissions will continue to rise in the future.
Shaokun He, Shenglian Guo, Chong-Yu Xu, Kebing Chen, Zhen Liao, Lele Deng, Huanhuan Ba, and Dimitri Solomatine
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-586, https://doi.org/10.5194/hess-2019-586, 2020
Manuscript not accepted for further review
Short summary
Short summary
Aiming at cascade impoundment operation, we develop a classification-aggregation-decomposition method to overcome the
curse of dimensionalityand inflow stochasticity problem. It is tested with a mixed 30-reservoir system in China. The results show that our method can provide lots of schemes to refer to different flood event scenarios. The best scheme outperforms the conventional operating rule, as it increases impoundment efficiency and hydropower generation while flood control risk is less.
Lei Gu, Jie Chen, Jiabo Yin, Sylvia C. Sullivan, Hui-Min Wang, Shenglian Guo, Liping Zhang, and Jong-Suk Kim
Hydrol. Earth Syst. Sci., 24, 451–472, https://doi.org/10.5194/hess-24-451-2020, https://doi.org/10.5194/hess-24-451-2020, 2020
Short summary
Short summary
Focusing on the multifaceted nature of droughts, this study quantifies the change in global drought risks for 1.5 and 2.0 °C warming trajectories by a multi-model ensemble under three representative concentration pathways (RCP2.6, 4.5 and 8.5). Socioeconomic exposures are investigated by incorporating the dynamic shared socioeconomic pathways (SSPs) into the drought impact assessment. The results show that even the ambitious 1.5 °C warming level can cause substantial increases on the global scale.
Bin Xiong, Lihua Xiong, Jun Xia, Chong-Yu Xu, Cong Jiang, and Tao Du
Hydrol. Earth Syst. Sci., 23, 4453–4470, https://doi.org/10.5194/hess-23-4453-2019, https://doi.org/10.5194/hess-23-4453-2019, 2019
Short summary
Short summary
We develop a new indicator of reservoir effects, called the rainfall–reservoir composite index (RRCI). RRCI, coupled with the effects of static reservoir capacity and scheduling-related multivariate rainfall, has a better performance than the previous indicator in terms of explaining the variation in the downstream floods affected by reservoir operation. A covariate-based flood frequency analysis using RRCI can provide more reliable downstream flood risk estimation.
Hui-Min Wang, Jie Chen, Chong-Yu Xu, Hua Chen, Shenglian Guo, Ping Xie, and Xiangquan Li
Hydrol. Earth Syst. Sci., 23, 4033–4050, https://doi.org/10.5194/hess-23-4033-2019, https://doi.org/10.5194/hess-23-4033-2019, 2019
Short summary
Short summary
When using large ensembles of global climate models in hydrological impact studies, there are pragmatic questions on whether it is necessary to weight climate models and how to weight them. We use eight methods to weight climate models straightforwardly, based on their performances in hydrological simulations, and investigate the influences of the assigned weights. This study concludes that using bias correction and equal weighting is likely viable and sufficient for hydrological impact studies.
Zhengke Pan, Pan Liu, Shida Gao, Jun Xia, Jie Chen, and Lei Cheng
Hydrol. Earth Syst. Sci., 23, 3405–3421, https://doi.org/10.5194/hess-23-3405-2019, https://doi.org/10.5194/hess-23-3405-2019, 2019
Short summary
Short summary
Understanding the projection performance of hydrological models under contrasting climatic conditions supports robust decision making, which highlights the need to adopt time-varying parameters in hydrological modeling to reduce performance degradation. This study improves our understanding of the spatial coherence of time-varying parameters, which will help improve the projection performance under differing climatic conditions.
Jong-Suk Kim, Phetlamphanh Xaiyaseng, Lihua Xiong, Sun-Kwon Yoon, and Taesam Lee
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-217, https://doi.org/10.5194/hess-2019-217, 2019
Publication in HESS not foreseen
Short summary
Short summary
The current study illustrates rainfall patterns over the Indochina Peninsula (ICP) to sea surface temperature in the Indian Ocean. During El Niño years and a positive IOD, rainfall is less than usual in Thailand, Cambodia, southern Laos, and Vietnam. Conversely, during La Niña years and the negative IOD, rainfall throughout the ICP is above normal. It shows that (1) the sensitivity of regional precipitation to the IOD and (2) the potential future impact of statistical changes.
Cong Jiang, Lihua Xiong, Lei Yan, Jianfan Dong, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 23, 1683–1704, https://doi.org/10.5194/hess-23-1683-2019, https://doi.org/10.5194/hess-23-1683-2019, 2019
Short summary
Short summary
We present the methods addressing the multivariate hydrologic design applied to the engineering practice under nonstationary conditions. A dynamic C-vine copula allowing for both time-varying marginal distributions and a time-varying dependence structure is developed to capture the nonstationarities of multivariate flood distribution. Then, the multivariate hydrologic design under nonstationary conditions is estimated through specifying the design criterion by average annual reliability.
Lu Li, Mingxi Shen, Yukun Hou, Chong-Yu Xu, Arthur F. Lutz, Jie Chen, Sharad K. Jain, Jingjing Li, and Hua Chen
Hydrol. Earth Syst. Sci., 23, 1483–1503, https://doi.org/10.5194/hess-23-1483-2019, https://doi.org/10.5194/hess-23-1483-2019, 2019
Short summary
Short summary
The study used an integrated glacio-hydrological model for the hydrological projections of the Himalayan Beas basin under climate change. It is very likely that the upper Beas basin will get warmer and wetter in the future. This loss in glacier area will result in a reduction in glacier discharge, while the future changes in total discharge are uncertain. The uncertainty in future hydrological change is not only from GCMs, but also from the bias-correction methods and hydrological modeling.
Hui-Min Wang, Jie Chen, Alex J. Cannon, Chong-Yu Xu, and Hua Chen
Hydrol. Earth Syst. Sci., 22, 3739–3759, https://doi.org/10.5194/hess-22-3739-2018, https://doi.org/10.5194/hess-22-3739-2018, 2018
Short summary
Short summary
Facing a growing number of climate models, many selection methods were proposed to select subsets in the field of climate simulation, but the transferability of their performances to hydrological impacts remains doubtful. We investigate the transferability of climate simulation uncertainty to hydrological impacts using two selection methods, and conclude that envelope-based selection of about 10 climate simulations based on properly chosen climate variables is suggested for impact studies.
Bin Xiong, Lihua Xiong, Jie Chen, Chong-Yu Xu, and Lingqi Li
Hydrol. Earth Syst. Sci., 22, 1525–1542, https://doi.org/10.5194/hess-22-1525-2018, https://doi.org/10.5194/hess-22-1525-2018, 2018
Short summary
Short summary
In changing environments, extreme low-flow events are expected to increase. Frequency analysis of low-flow events considering the impacts of changing environments has attracted increasing attention. This study developed a frequency analysis framework by applying 11 indices to trace the main causes of the change in the annual extreme low-flow events of the Weihe River. We showed that the fluctuation in annual low-flow series was affected by climate, streamflow recession and irrigation area.
Yanlai Zhou, Fi-John Chang, Shenglian Guo, Huanhuan Ba, and Shaokun He
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-457, https://doi.org/10.5194/hess-2017-457, 2017
Revised manuscript not accepted
Short summary
Short summary
Developing a robust recurrent ANFIS for modeling multi-step-ahead flood forecast. Fusing the LSE into GA for optimizing the parameters of recurrent ANFIS. Improving the robustness and generalization of recurrent ANFIS. An accurate and robust multi-step-ahead inflow forecast in the Three Gorges Reservoir will provide precious decision-making time for effectively managing contingencies and emergencies and greatly alleviating flood risk as well as loss of life and property.
Chao Deng, Pan Liu, Shenglian Guo, Zejun Li, and Dingbao Wang
Hydrol. Earth Syst. Sci., 20, 4949–4961, https://doi.org/10.5194/hess-20-4949-2016, https://doi.org/10.5194/hess-20-4949-2016, 2016
Short summary
Short summary
Hydrological model parameters may vary in time under nonstationary conditions, i.e., climate change and anthropogenic activities. The technique of the ensemble Kalman filter (EnKF) is proposed to identify the temporal variation of parameters for a two-parameter monthly water balance model. Through a synthesis experiment and two case studies, the EnKF is demonstrated to be useful for the identification of parameter variations.
Lingqi Li, Lihua Xiong, Chong-Yu Xu, Shenglian Guo, and Pan Liu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-619, https://doi.org/10.5194/hess-2016-619, 2016
Revised manuscript not accepted
Short summary
Short summary
The study offers insights into future design floods that are inferred with both AM and POT samplings under nonstationarity caused by changing climate. Future design floods in nonstationarity context are usually (lower than) but not necessarily more different from stationary estimates. AM-based projection is more sensitive to climate change than POT estimates. The over-dispersion in POT arrival rate leads to the invalidation of Poisson assumption that the misuse may induce overestimated floods.
Quan Zhang, Hui-Min Lei, Da-Wen Yang, Lihua Xiong, and Beijing Fang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-484, https://doi.org/10.5194/bg-2016-484, 2016
Revised manuscript not accepted
Short summary
Short summary
With the increasing concern about global warming, investigating carbon cycle becomes imperative to predict future climate trend. As cropland has great potentials in mitigating carbon emissions, therefore we designed a comprehensive carbon budget assessment in a typical cropland in North China Plain, the results indicate the high groundwater table contributes to carbon sink of this cropland. The conclusion confirms that field management has profound effect on cropland carbon cycle.
Chao Deng, Pan Liu, Shenglian Guo, Zejun Li, and Dingbao Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2015-407, https://doi.org/10.5194/hess-2015-407, 2016
Manuscript not accepted for further review
Short summary
Short summary
Hydrological model parameters may not be constant in a changing environment, i.e., climate change and human activities. The technique of ensemble Kalman filter (EnKF) is proposed to identify the temporal variation of parameters for a two-parameter monthly water balance model. Through a synthesis experiment and two case studies, the EnKF is demonstrated to be useful for the identification of parameter variation. The temporal variation parameter can be explained by catchment characteristic.
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
The value of hydroclimatic teleconnections for snow-based seasonal streamflow forecasting in central Asia
Thirsty Earth: a game-based approach to interdisciplinary water resource education
Is drought protection possible without compromising flood protection? Estimating the potential dual-use benefit of small flood reservoirs in southern Germany
A multiagent socio-hydrologic framework for integrated green infrastructures and water resource management at various spatial scales
Data-driven scaling methods for soil moisture cosmic ray neutron sensors
Can adaptations of crop and soil management prevent yield losses during water scarcity? A modeling study
Optimising ensemble streamflow predictions with bias correction and data assimilation techniques
Exploring the value of seasonal flow forecasts for drought management in South Korea
How well do hydrological models learn from limited discharge data? A comparison of process- and data-driven models
Evaluating an Earth system model from a water manager perspective
Creating a national urban flood dataset for China from news texts (2000–2022) at the county level
Drought and Salinity Intrusion in the Lower Chao Phraya River: Variability Analysis and Modeling Mitigation Approaches
Spatially explicit assessment of water stress and potential mitigating solutions in a large water-limited basin: the Yellow River basin in China
A scalable and modular reservoir implementation for large-scale integrated hydrologic simulations
The interprovincial green water flow in China and its teleconnected effects on the social economy
Modeling hydropower operations at the scale of a power grid: a demand-based approach
Mapping mining-affected water pollution in China: Status, patterns, risks, and implications
Determining the threshold of issuing flash flood warnings based on people's response process simulation
Modeling water balance components of conifer species using the Noah-MP model in an eastern Mediterranean ecosystem
Assessment of upscaling methodologies for daily crop transpiration using sap flows and two-source energy balance models in almonds under different water statuses and production systems
Making a case for power-sensitive water modelling: a literature review
Developing water supply reservoir operating rules for large-scale hydrological modelling
An investigation of anthropogenic influences on hydrologic connectivity using model stress tests
The H2Ours game to explore water use, resources and sustainability: connecting issues in two landscapes in Indonesia
Drainage assessment of irrigation districts: on the precision and accuracy of four parsimonious models
Impact of reservoir evaporation on future water availability in north-eastern Brazil: a multi-scenario assessment
How economically and environmentally viable are multiple dams in the upper Cauvery Basin, India? A hydro-economic analysis using a landscape-based hydrological model
Leveraging a novel hybrid ensemble and optimal interpolation approach for enhanced streamflow and flood prediction
A generalised ecohydrological landscape classification for assessing ecosystem risk in Australia due to an altering water regime
Process-based three-layer synergistic optimal-allocation model for complex water resource systems considering reclaimed water
Joint optimal operation of the South-to-North Water Diversion Project considering the evenness of water deficit
Employing the generalized Pareto distribution to analyze extreme rainfall events on consecutive rainy days in Thailand's Chi watershed: implications for flood management
How to account for irrigation withdrawals in a watershed model
Inferring reservoir filling strategies under limited-data-availability conditions using hydrological modeling and Earth observations: the case of the Grand Ethiopian Renaissance Dam (GERD)
The precision of satellite-based net irrigation quantification in the Indus and Ganges basins
Developing a Bayesian network model for understanding river catchment resilience under future change scenarios
Quantifying the trade-offs in re-operating dams for the environment in the Lower Volta River
Dynamically coupling system dynamics and SWAT+ models using Tinamït: application of modular tools for coupled human–water system models
Development of an integrated socio-hydrological modeling framework for assessing the impacts of shelter location arrangement and human behaviors on flood evacuation processes
Cooperation in a transboundary river basin: a large-scale socio-hydrological model of the Eastern Nile
Flexible forecast value metric suitable for a wide range of decisions: application using probabilistic subseasonal streamflow forecasts
An improved model of shade-affected stream temperature in Soil & Water Assessment Tool
Seasonal forecasting of snow resources at Alpine sites
Operationalizing equity in multipurpose water systems
Evaluation of a new observationally based channel parameterization for the National Water Model
High-resolution drought simulations and comparison to soil moisture observations in Germany
Cooperation under conflict: participatory hydrological modeling for science policy dialogues for the Aculeo Lake
Socio-hydrological modeling of the tradeoff between flood control and hydropower provided by the Columbia River Treaty
Challenges and benefits of quantifying irrigation through the assimilation of Sentinel-1 backscatter observations into Noah-MP
A system dynamic model to quantify the impacts of water resources allocation on water–energy–food–society (WEFS) nexus
Atabek Umirbekov, Mayra Daniela Peña-Guerrero, Iulii Didovets, Heiko Apel, Abror Gafurov, and Daniel Müller
Hydrol. Earth Syst. Sci., 29, 3055–3071, https://doi.org/10.5194/hess-29-3055-2025, https://doi.org/10.5194/hess-29-3055-2025, 2025
Short summary
Short summary
Seasonal streamflow forecasts for snowmelt-dominated catchments often rely on snowpack data, which are not always available and are prone to errors. Our study evaluates near-real-time global snow estimates and climate oscillation indices for predictions in the data-scarce mountains of central Asia. We show that climate indices can improve prediction accuracy at longer lead times, help offset snow data uncertainty, and enhance predictions where streamflow depends on in-season climate variability.
Lauren McGiven, Kinsey Poland, Caleb Reinking, and Marc F. Müller
Hydrol. Earth Syst. Sci., 29, 2961–2974, https://doi.org/10.5194/hess-29-2961-2025, https://doi.org/10.5194/hess-29-2961-2025, 2025
Short summary
Short summary
Thirsty Earth is an educational game where students are farmers making water decisions amid climate uncertainty, common-pool costs, and resource constraints. The game is web-based and adapted for remote learning either as a light Google Sheets version or as a fully interactive graphical interface. It bridges technical water management and governance concepts from the social sciences, providing experiential interdisciplinary learning that traditional science and engineering curricula often overlook.
Sarah Quỳnh-Giang Ho and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 2785–2810, https://doi.org/10.5194/hess-29-2785-2025, https://doi.org/10.5194/hess-29-2785-2025, 2025
Short summary
Short summary
In this paper, we use models to demonstrate that even small flood reservoirs – which capture water to avoid floods downstream – can be repurposed to release water in drier conditions without affecting their ability to protect against floods. By capturing water and releasing it once levels are low, we show that reservoirs can greatly increase the water available in drought. Having more water available to the reservoir, however, is not necessarily better for drought protection.
Mengxiang Zhang and Ting Fong May Chui
Hydrol. Earth Syst. Sci., 29, 2655–2695, https://doi.org/10.5194/hess-29-2655-2025, https://doi.org/10.5194/hess-29-2655-2025, 2025
Short summary
Short summary
This study introduces a multiagent socio-hydrologic framework for city-, inter-city-, and watershed-scale integrated green infrastructures (GIs) and water resource management. Applied to the Upper Mississippi River basin, it explores GI-driven water-sharing dynamics in a watershed. It identifies four city-scale water use patterns and characterizes cost and equity on broader scales, thereby enhancing comprehension of the role of GIs in water resource management and aiding decision-making.
Roland Baatz, Patrick Davies, Paolo Nasta, and Heye Bogena
Hydrol. Earth Syst. Sci., 29, 2583–2597, https://doi.org/10.5194/hess-29-2583-2025, https://doi.org/10.5194/hess-29-2583-2025, 2025
Short summary
Short summary
The data-driven approach enhances soil water content measurements by improving the precision of cosmic ray neutron sensors (CRNSs). This study demonstrates a new method to account for dynamics in air pressure, atmospheric humidity, and incoming neutron intensity. Soil water content measured by CRNSs showed reduced errors compared to reference measurements. The findings highlight the need for precise adjustments to better measure soil moisture for agricultural, water, and climate monitoring.
Malve Heinz, Maria Eliza Turek, Bettina Schaefli, Andreas Keiser, and Annelie Holzkämper
Hydrol. Earth Syst. Sci., 29, 1807–1827, https://doi.org/10.5194/hess-29-1807-2025, https://doi.org/10.5194/hess-29-1807-2025, 2025
Short summary
Short summary
Potato farmers in Switzerland are facing drier conditions and water restrictions. We explored how improving soil health and planting early-maturing potato varieties might help them to adapt. Using a computer model, we simulated potato yields and irrigation water needs under water scarcity. Our results show that earlier-maturing potato varieties reduce the reliance on irrigation but result in lower yields. However, improving soil health can significantly reduce yield losses.
Maliko Tanguy, Michael Eastman, Amulya Chevuturi, Eugene Magee, Elizabeth Cooper, Robert H. B. Johnson, Katie Facer-Childs, and Jamie Hannaford
Hydrol. Earth Syst. Sci., 29, 1587–1614, https://doi.org/10.5194/hess-29-1587-2025, https://doi.org/10.5194/hess-29-1587-2025, 2025
Short summary
Short summary
Our research compares two techniques, bias correction (BC) and data assimilation (DA), for improving river flow forecasts across 316 UK catchments. BC, which corrects errors after simulation, showed broad improvements, while DA, adjusting model states before forecast, excelled under specific conditions like snowmelt and high baseflows. Each method's unique strengths suit different scenarios. These insights can enhance forecasting systems, offering reliable and user-friendly hydrological predictions.
Yongshin Lee, Andres Peñuela, Francesca Pianosi, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 29, 1429–1447, https://doi.org/10.5194/hess-29-1429-2025, https://doi.org/10.5194/hess-29-1429-2025, 2025
Short summary
Short summary
This study assesses the value of seasonal flow forecasts (SFFs) in informing decision-making for drought management in South Korea and introduces a novel method for assessing values benchmarked against historical operations. Our results showed the importance of considering flow forecast uncertainty in reservoir operations. There was no significant correlation between the forecast accuracy and value. The method for selecting a compromise release schedule was a key control of the value.
Maria Staudinger, Anna Herzog, Ralf Loritz, Tobias Houska, Sandra Pool, Diana Spieler, Paul D. Wagner, Juliane Mai, Jens Kiesel, Stephan Thober, Björn Guse, and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2025-1076, https://doi.org/10.5194/egusphere-2025-1076, 2025
Short summary
Short summary
Four process-based and four data-driven hydrological models are compared using different training data. We found process-based models to perform better with small data sets but stop learning soon, while data-driven models learn longer. The study highlights the importance of memory in data and the impact of different data sampling methods on model performance. The direct comparison of these models is novel and provides a clear understanding of their performance under various data conditions.
Mari R. Tye, Ming Ge, Jadwiga H. Richter, Ethan D. Gutmann, Allyson Rugg, Cindy L. Bruyère, Sue Ellen Haupt, Flavio Lehner, Rachel McCrary, Andrew J. Newman, and Andy Wood
Hydrol. Earth Syst. Sci., 29, 1117–1133, https://doi.org/10.5194/hess-29-1117-2025, https://doi.org/10.5194/hess-29-1117-2025, 2025
Short summary
Short summary
There is a perceived mismatch between the spatial scales on which global climate models can produce data and those needed for water management decisions. However, poor communication of specific metrics relevant to local decisions is also a problem. We assessed the credibility of a set of water management decision metrics in the Community Earth System Model v2 (CESM2). CESM2 shows potentially greater use of its output in long-range water management decisions.
Shengnan Fu, David M. Schultz, Heng Lyu, Zhonghua Zheng, and Chi Zhang
Hydrol. Earth Syst. Sci., 29, 767–783, https://doi.org/10.5194/hess-29-767-2025, https://doi.org/10.5194/hess-29-767-2025, 2025
Short summary
Short summary
We create China’s first open county-level urban flood dataset (2000–2022) using news media data with the help of deep learning. The dataset reflects both natural and societal influences and includes 7595 urban flood events across 2051 counties, covering 46 % of China’s land area. It reveals the predominance of summer floods, an upward trend since 2000, and a decline from southeast to northwest. Notably, some highly developed regions show a decrease, likely due to improved flood management.
Saifhon Tomkratoke, Siriwat Kongkulsiri, Pornampai Narenpitak, and Sirod Sirisup
EGUsphere, https://doi.org/10.5194/egusphere-2024-4052, https://doi.org/10.5194/egusphere-2024-4052, 2025
Short summary
Short summary
Our research examines saltwater intrusion variability in the Lower Chao Phraya River, Thailand, focusing on key drivers like drought and sea-level fluctuations. By identifying patterns of dependence and independence, we assess fundamental drivers and develop a robust numerical model. The model validates our findings, highlights local factors, and proposes effective mitigation strategies. These insights are valuable for hydrology and environmental management communities.
Weibin Zhang, Xining Zhao, Xuerui Gao, Wei Liang, Junyi Li, and Baoqing Zhang
Hydrol. Earth Syst. Sci., 29, 507–524, https://doi.org/10.5194/hess-29-507-2025, https://doi.org/10.5194/hess-29-507-2025, 2025
Short summary
Short summary
The Yellow River basin shows worsening water stress indicators (WSIs) over 1965‒2020. Water withdrawal is the main factor driving WSI before 2000, balanced by water availability. Local water yield and upstream flows are key drivers of sub-basin water availability. Water demand is expected to rise by 6.5 % in the 2030s, creating an 8.36 km³ surface water deficit. Enhanced irrigation efficiency can cut this deficit by 25 %, maintaining the stress level but worsening it for 44.9% of the population.
Benjamin D. West, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 29, 245–259, https://doi.org/10.5194/hess-29-245-2025, https://doi.org/10.5194/hess-29-245-2025, 2025
Short summary
Short summary
This article describes the addition of reservoirs to the hydrologic model ParFlow. ParFlow is particularly good at helping us understand some of the broader drivers behind different parts of the water cycle. By having reservoirs in such a model, we hope to be able to better understand both our impacts on the environment and how to adjust our management of reservoirs to changing conditions.
Shan Sang, Yan Li, Chengcheng Hou, Shuangshuang Zi, and Huiqing Lin
Hydrol. Earth Syst. Sci., 29, 67–84, https://doi.org/10.5194/hess-29-67-2025, https://doi.org/10.5194/hess-29-67-2025, 2025
Short summary
Short summary
Green water exchanges between each province in China form an interconnected flow network and have substantial socioeconomic values. Green water flow and its teleconnected socioeconomic effects should be considered in water resource management in addition to blue water.
Laure Baratgin, Jan Polcher, Patrice Dumas, and Philippe Quirion
Hydrol. Earth Syst. Sci., 28, 5479–5509, https://doi.org/10.5194/hess-28-5479-2024, https://doi.org/10.5194/hess-28-5479-2024, 2024
Short summary
Short summary
Hydrological modeling is valuable for estimating the potential impact of climate change on hydropower generation. This study presents a comprehensive approach to modeling the management of hydroelectric reservoirs in hydrological models. The total power grid demand for hydropower is distributed to the various power plants to compute their release. The method is tested on the French national power grid, and it is demonstrated that it successfully reproduces the observed behavior of reservoirs.
Ziyue Yin, Jian Song, Dianguang Liu, Jianfeng Wu, Yun Yang, Yuanyuan Sun, and Jichun Wu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-387, https://doi.org/10.5194/hess-2024-387, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Mining activities threaten aquatic ecosystems, soil ecosystems, and human health worldwide. This study established a high-quality database and a national 0.5° gridded dataset to reveal the status and spatial pattern of mining-affected water pollution, human health risks, and their potential multifaceted challenges. It provides in-depth insights to guide policymakers in designing differentiated management strategies for the sustainable development of mines.
Ruikang Zhang, Dedi Liu, Lihua Xiong, Jie Chen, Hua Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci., 28, 5229–5247, https://doi.org/10.5194/hess-28-5229-2024, https://doi.org/10.5194/hess-28-5229-2024, 2024
Short summary
Short summary
Flash flood warnings cannot be effective without people’s responses to them. We propose a method to determine the threshold of issuing warnings based on a people’s response process simulation. The results show that adjusting the warning threshold according to people’s tolerance levels to the failed warnings can improve warning effectiveness, but the prerequisite is to increase forecasting accuracy and decrease forecasting variance.
Mohsen Amini Fasakhodi, Hakan Djuma, Ioannis Sofokleous, Marinos Eliades, and Adriana Bruggeman
Hydrol. Earth Syst. Sci., 28, 5209–5227, https://doi.org/10.5194/hess-28-5209-2024, https://doi.org/10.5194/hess-28-5209-2024, 2024
Short summary
Short summary
This study examined the water use of pine and cypress trees in a semiarid Mediterranean forest environment. We applied a widely used land surface model (Noah-MP) to simulate the water balance of the ecosystem. We found good modeling results for soil moisture. However, the model underestimated the transpiration of the trees during the dry summer months. These findings indicate that more research is needed to improve the modeling of ecosystem responses to climate and land use change.
Manuel Quintanilla-Albornoz, Xavier Miarnau, Ana Pelechá, Héctor Nieto, and Joaquim Bellvert
Hydrol. Earth Syst. Sci., 28, 4797–4818, https://doi.org/10.5194/hess-28-4797-2024, https://doi.org/10.5194/hess-28-4797-2024, 2024
Short summary
Short summary
Remote sensing can be a helpful tool for monitoring crop transpiration (T) for agricultural water management. Since remote sensing provides instantaneous data, upscaling techniques are required to estimate T on a daily scale. This study assesses optimal image acquisition times and four upscaling approaches to estimate daily T. The results indicate that the main errors derive from measurement time and water stress levels, which can be mitigated by choosing a proper upscaling approach.
Rozemarijn ter Horst, Rossella Alba, Jeroen Vos, Maria Rusca, Jonatan Godinez-Madrigal, Lucie V. Babel, Gert Jan Veldwisch, Jean-Philippe Venot, Bruno Bonté, David W. Walker, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4157–4186, https://doi.org/10.5194/hess-28-4157-2024, https://doi.org/10.5194/hess-28-4157-2024, 2024
Short summary
Short summary
The exact power of models often remains hidden, especially when neutrality is claimed. Our review of 61 scientific articles shows that in the scientific literature little attention is given to the power of water models to influence development processes and outcomes. However, there is a lot to learn from those who are openly reflexive. Based on lessons from the review, we call for power-sensitive modelling, which means that people are critical about how models are made and with what effects.
Saskia Salwey, Gemma Coxon, Francesca Pianosi, Rosanna Lane, Chris Hutton, Michael Bliss Singer, Hilary McMillan, and Jim Freer
Hydrol. Earth Syst. Sci., 28, 4203–4218, https://doi.org/10.5194/hess-28-4203-2024, https://doi.org/10.5194/hess-28-4203-2024, 2024
Short summary
Short summary
Reservoirs are essential for water resource management and can significantly impact downstream flow. However, representing reservoirs in hydrological models can be challenging, particularly across large scales. We design a new and simple method for simulating river flow downstream of water supply reservoirs using only open-access data. We demonstrate the approach in 264 reservoir catchments across Great Britain, where we can significantly improve the simulation of reservoir-impacted flow.
Amelie Herzog, Jost Hellwig, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 28, 4065–4083, https://doi.org/10.5194/hess-28-4065-2024, https://doi.org/10.5194/hess-28-4065-2024, 2024
Short summary
Short summary
Surface water–groundwater interaction can vary along a river. This study used a groundwater model that reproduced relative observed longitudinal and vertical connectivity patterns in the river network to assess the system's response to imposed stress tests. For the case study, imposed groundwater abstraction appears to influence connectivity relatively more than altered recharge, but a quantification of absolute exchange flows will require further model improvements.
Lisa Tanika, Rika Ratna Sari, Arief Lukman Hakim, Meine van Noordwijk, Marielos Peña-Claros, Beria Leimona, Edi Purwanto, and Erika N. Speelman
Hydrol. Earth Syst. Sci., 28, 3807–3835, https://doi.org/10.5194/hess-28-3807-2024, https://doi.org/10.5194/hess-28-3807-2024, 2024
Short summary
Short summary
The H2Ours game is designed to facilitate knowledge transfer and sharing among stakeholders to trigger commitment and collaborative action to restore hydrological conditions. The adaptability of the H2Ours game was proven in two different landscapes: groundwater recharge in upper to middle sub-watersheds with (over)use of water in the lowland zone and a peatland with drainage, rewetting, oil palm conversion and fire as issues. The game evaluation shows that the H2Ours game meets its purpose.
Pierre Laluet, Luis Olivera-Guerra, Víctor Altés, Vincent Rivalland, Alexis Jeantet, Julien Tournebize, Omar Cenobio-Cruz, Anaïs Barella-Ortiz, Pere Quintana-Seguí, Josep Maria Villar, and Olivier Merlin
Hydrol. Earth Syst. Sci., 28, 3695–3716, https://doi.org/10.5194/hess-28-3695-2024, https://doi.org/10.5194/hess-28-3695-2024, 2024
Short summary
Short summary
Monitoring agricultural drainage flow in irrigated areas is key to water and soil management. In this paper, four simple drainage models are evaluated on two irrigated sub-basins where drainage flow is measured daily. The evaluation of their precision shows that they simulate drainage very well when calibrated with drainage data and that one of them is slightly better. The evaluation of their accuracy shows that only one model can provide rough drainage estimates without calibration data.
Gláuber Pontes Rodrigues, Arlena Brosinsky, Ítalo Sampaio Rodrigues, George Leite Mamede, and José Carlos de Araújo
Hydrol. Earth Syst. Sci., 28, 3243–3260, https://doi.org/10.5194/hess-28-3243-2024, https://doi.org/10.5194/hess-28-3243-2024, 2024
Short summary
Short summary
The research focuses on a 4-million-inhabitant tropical region supplied by a network of open-water reservoirs where the dry season lasts for 8 months (Jun−Dec). We analysed the impact of four climate change scenarios on the evaporation rate and the associated availability (water yield distributed per year). The worst-case scenario shows that by the end of the century (2071−2099), the evaporation rate in the dry season could increase by 6 %, which would reduce stored water by about 80 %.
Anjana Ekka, Yong Jiang, Saket Pande, and Pieter van der Zaag
Hydrol. Earth Syst. Sci., 28, 3219–3241, https://doi.org/10.5194/hess-28-3219-2024, https://doi.org/10.5194/hess-28-3219-2024, 2024
Short summary
Short summary
For the first time, we analyse the economic and ecological performance of existing multiple big reservoirs on a daily timescale for a major river basin (upper Cauvery) in India, where pre-intervention data were not available but where there are increasing calls for such assessments. Results show that smaller reservoirs on smaller streams that maximize the economic value of stored water are better for the basin economy and the environment. The approach can help to prioritize dam removals.
Mohamad El Gharamti, Arezoo Rafieeinasab, and James L. McCreight
Hydrol. Earth Syst. Sci., 28, 3133–3159, https://doi.org/10.5194/hess-28-3133-2024, https://doi.org/10.5194/hess-28-3133-2024, 2024
Short summary
Short summary
This study introduces a hybrid data assimilation scheme for precise streamflow predictions during intense rainfall and hurricanes. Tested in real events, it outperforms traditional methods by up to 50 %, utilizing ensemble and climatological background covariances. The adaptive algorithm ensures reliability with a small ensemble, offering improved forecasts up to 18 h in advance, marking a significant advancement in flood prediction capabilities.
Alexander Herr, Linda E. Merrin, Patrick J. Mitchell, Anthony P. O'Grady, Kate L. Holland, Richard E. Mount, David A. Post, Chris R. Pavey, and Ashley D. Sparrow
Hydrol. Earth Syst. Sci., 28, 1957–1979, https://doi.org/10.5194/hess-28-1957-2024, https://doi.org/10.5194/hess-28-1957-2024, 2024
Short summary
Short summary
We develop an ecohydrological classification for regions with limited hydrological records. It provides causal links of landscape features and their water requirement. The classification is an essential framework for modelling the impact of future coal resource developments via water on the features. A rule set combines diverse data with prioritisation, resulting in a transparent, repeatable and adjustable approach. We show examples of linking ecohydrology with environmental impacts.
Jing Liu, Yue-Ping Xu, Wei Zhang, Shiwu Wang, and Siwei Chen
Hydrol. Earth Syst. Sci., 28, 1325–1350, https://doi.org/10.5194/hess-28-1325-2024, https://doi.org/10.5194/hess-28-1325-2024, 2024
Short summary
Short summary
Applying optimal water allocation models to simultaneously enable economic benefits, water preferences, and environmental demands at different decision levels, timescales, and regions is a challenge. In this study, a process-based three-layer synergistic optimal-allocation model (PTSOA) is established to achieve these goals. Reused, reclaimed water is also coupled to capture environmentally friendly solutions. Network analysis was introduced to reduce competition among different stakeholders.
Bing-Yi Zhou, Guo-Hua Fang, Xin Li, Jian Zhou, and Hua-Yu Zhong
Hydrol. Earth Syst. Sci., 28, 817–832, https://doi.org/10.5194/hess-28-817-2024, https://doi.org/10.5194/hess-28-817-2024, 2024
Short summary
Short summary
The current unreasonable inter-basin water transfer operation leads to the problem of spatial and temporal imbalances in water allocation. This paper defines a water deficit evenness index and incorporates it into a joint optimization model for the Jiangsu section of the South-to-North Water Diversion Project considering ecology and economy. At the same time, the lake storage capacity performs well, and the water transfer efficiency of the river is significantly improved.
Tossapol Phoophiwfa, Prapawan Chomphuwiset, Thanawan Prahadchai, Jeong-Soo Park, Arthit Apichottanakul, Watchara Theppang, and Piyapatr Busababodhin
Hydrol. Earth Syst. Sci., 28, 801–816, https://doi.org/10.5194/hess-28-801-2024, https://doi.org/10.5194/hess-28-801-2024, 2024
Short summary
Short summary
This study examines the impact of extreme rainfall events on flood risk management in Thailand's Chi watershed. By analyzing historical data, we identified regions, notably Udon Thani and Chaiyaphum, with a high risk of flash flooding. To aid in flood risk assessment, visual maps were created. The study underscores the importance of preparing for extreme rainfall events, particularly in the context of climate change, to effectively mitigate potential flood damage.
Elisabeth Brochet, Youen Grusson, Sabine Sauvage, Ludovic Lhuissier, and Valérie Demarez
Hydrol. Earth Syst. Sci., 28, 49–64, https://doi.org/10.5194/hess-28-49-2024, https://doi.org/10.5194/hess-28-49-2024, 2024
Short summary
Short summary
This study aims to take into account irrigation withdrawals in a watershed model. The model we used combines agriculture and hydrological modeling. Two different crop models were compared, the first based on air temperature and the second based on Sentinel-2 satellite data. Results show that including remote sensing data leads to better emergence dates. Both methods allow us to simulate the daily irrigation withdrawals and downstream flow with a good accuracy, especially during low-flow periods.
Awad M. Ali, Lieke A. Melsen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 27, 4057–4086, https://doi.org/10.5194/hess-27-4057-2023, https://doi.org/10.5194/hess-27-4057-2023, 2023
Short summary
Short summary
Using a new approach based on a combination of modeling and Earth observation, useful information about the filling of the Grand Ethiopian Renaissance Dam can be obtained with limited data and proper rainfall selection. While the monthly streamflow into Sudan has decreased significantly (1.2 × 109–5 × 109 m3) with respect to the non-dam scenario, the negative impact has been masked due to higher-than-average rainfall. We reveal that the dam will need 3–5 more years to complete filling.
Søren J. Kragh, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 27, 2463–2478, https://doi.org/10.5194/hess-27-2463-2023, https://doi.org/10.5194/hess-27-2463-2023, 2023
Short summary
Short summary
This study investigates the precision of irrigation estimates from a global hotspot of unsustainable irrigation practice, the Indus and Ganges basins. We show that irrigation water use can be estimated with high precision by comparing satellite and rainfed hydrological model estimates of evapotranspiration. We believe that our work can support sustainable water resource management, as it addresses the uncertainty of a key component of the water balance that remains challenging to quantify.
Kerr J. Adams, Christopher A. J. Macleod, Marc J. Metzger, Nicola Melville, Rachel C. Helliwell, Jim Pritchard, and Miriam Glendell
Hydrol. Earth Syst. Sci., 27, 2205–2225, https://doi.org/10.5194/hess-27-2205-2023, https://doi.org/10.5194/hess-27-2205-2023, 2023
Short summary
Short summary
We applied participatory methods to create a hybrid equation-based Bayesian network (BN) model to increase stakeholder understanding of catchment-scale resilience to the impacts of both climatic and socio-economic stressors to a 2050 time horizon. Our holistic systems-thinking approach enabled stakeholders to gain new perspectives on how future scenarios may influence their specific sectors and how their sector impacted other sectors and environmental conditions within the catchment system.
Afua Owusu, Jazmin Zatarain Salazar, Marloes Mul, Pieter van der Zaag, and Jill Slinger
Hydrol. Earth Syst. Sci., 27, 2001–2017, https://doi.org/10.5194/hess-27-2001-2023, https://doi.org/10.5194/hess-27-2001-2023, 2023
Short summary
Short summary
The construction of two dams in the Lower Volta River, Ghana, adversely affected downstream riverine ecosystems and communities. In contrast, Ghana has enjoyed vast economic benefits from the dams. Herein lies the challenge; there exists a trade-off between water for river ecosystems and water for anthropogenic water demands such hydropower. In this study, we quantify these trade-offs and show that there is room for providing environmental flows under current and future climatic conditions.
Joel Z. Harms, Julien J. Malard-Adam, Jan F. Adamowski, Ashutosh Sharma, and Albert Nkwasa
Hydrol. Earth Syst. Sci., 27, 1683–1693, https://doi.org/10.5194/hess-27-1683-2023, https://doi.org/10.5194/hess-27-1683-2023, 2023
Short summary
Short summary
To facilitate the meaningful participation of stakeholders in water management, model choice is crucial. We show how system dynamics models (SDMs), which are very visual and stakeholder-friendly, can be automatically combined with physically based hydrological models that may be more appropriate for modelling the water processes of a human–water system. This allows building participatory SDMs with stakeholders and delegating hydrological components to an external hydrological model.
Erhu Du, Feng Wu, Hao Jiang, Naliang Guo, Yong Tian, and Chunmiao Zheng
Hydrol. Earth Syst. Sci., 27, 1607–1626, https://doi.org/10.5194/hess-27-1607-2023, https://doi.org/10.5194/hess-27-1607-2023, 2023
Short summary
Short summary
This study develops an integrated socio-hydrological modeling framework that can simulate the entire flood management processes, including flood inundation, flood management policies, public responses, and evacuation activities. The model is able to holistically examine flood evacuation performance under the joint impacts of hydrological conditions, management policies (i.e., shelter location distribution), and human behaviors (i.e., evacuation preparation time and route-searching strategy).
Mohammad Ghoreishi, Amin Elshorbagy, Saman Razavi, Günter Blöschl, Murugesu Sivapalan, and Ahmed Abdelkader
Hydrol. Earth Syst. Sci., 27, 1201–1219, https://doi.org/10.5194/hess-27-1201-2023, https://doi.org/10.5194/hess-27-1201-2023, 2023
Short summary
Short summary
The study proposes a quantitative model of the willingness to cooperate in the Eastern Nile River basin. Our results suggest that the 2008 food crisis may account for Sudan recovering its willingness to cooperate with Ethiopia. Long-term lack of trust among the riparian countries may have reduced basin-wide cooperation. The model can be used to explore the effects of changes in future dam operations and other management decisions on the emergence of basin cooperation.
Richard Laugesen, Mark Thyer, David McInerney, and Dmitri Kavetski
Hydrol. Earth Syst. Sci., 27, 873–893, https://doi.org/10.5194/hess-27-873-2023, https://doi.org/10.5194/hess-27-873-2023, 2023
Short summary
Short summary
Forecasts may be valuable for user decisions, but current practice to quantify it has critical limitations. This study introduces RUV (relative utility value, a new metric that can be tailored to specific decisions and decision-makers. It illustrates how critical this decision context is when evaluating forecast value. This study paves the way for agencies to tailor the evaluation of their services to customer decisions and researchers to study model improvements through the lens of user impact.
Efrain Noa-Yarasca, Meghna Babbar-Sebens, and Chris Jordan
Hydrol. Earth Syst. Sci., 27, 739–759, https://doi.org/10.5194/hess-27-739-2023, https://doi.org/10.5194/hess-27-739-2023, 2023
Short summary
Short summary
Riparian vegetation has been identified as a strategy to control rising stream temperatures by shading streams. Riparian vegetation is included within a sub-basin-scale hydrological model and evaluated for full and efficient restoration scenarios. Results showed average temperature reductions of 0.91 and 0.86 °C for full and efficient riparian restoration, respectively. Notwithstanding the similar benefits, efficient restoration was 14.4 % cheaper than full riparian vegetation restoration.
Silvia Terzago, Giulio Bongiovanni, and Jost von Hardenberg
Hydrol. Earth Syst. Sci., 27, 519–542, https://doi.org/10.5194/hess-27-519-2023, https://doi.org/10.5194/hess-27-519-2023, 2023
Short summary
Short summary
Reliable seasonal forecasts of the abundance of mountain snowpack over the winter/spring ahead provide valuable information for water management, hydropower production and ski tourism. We present a climate service prototype to generate multi-model ensemble seasonal forecasts of mountain snow depth, based on Copernicus seasonal forecast system meteorological data used to force the SNOWPACK model. The prototype shows skill at predicting snow depth below and above normal and extremely dry seasons.
Guang Yang, Matteo Giuliani, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 27, 69–81, https://doi.org/10.5194/hess-27-69-2023, https://doi.org/10.5194/hess-27-69-2023, 2023
Short summary
Short summary
Participatory decision-making is a well-established approach to address the increasing pressure on water systems that searches for system-wise efficient solutions but often does not quantify how the resulting benefits are distributed across stakeholders. In this work, we show how including equity principles into the design of water system operations enriches the solution space by generating more compromise solutions that balance efficiency and justice.
Aaron Heldmyer, Ben Livneh, James McCreight, Laura Read, Joseph Kasprzyk, and Toby Minear
Hydrol. Earth Syst. Sci., 26, 6121–6136, https://doi.org/10.5194/hess-26-6121-2022, https://doi.org/10.5194/hess-26-6121-2022, 2022
Short summary
Short summary
Measurements of channel characteristics are important for accurate forecasting in the NOAA National Water Model (NWM) but are scarcely available. We seek to improve channel representativeness in the NWM by updating channel geometry and roughness parameters using a large, previously unpublished, dataset of approximately 48 000 gauges. We find that the updated channel parameterization from this new dataset leads to improvements in simulated streamflow performance and channel representation.
Friedrich Boeing, Oldrich Rakovec, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, Sabine Attinger, and Andreas Marx
Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, https://doi.org/10.5194/hess-26-5137-2022, 2022
Short summary
Short summary
In this paper, we deliver an evaluation of the second generation operational German drought monitor (https://www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that the agreement of simulated and observed soil moisture dynamics can be moderately improved.
Anahi Ocampo-Melgar, Pilar Barría, Cristián Chadwick, and Cesar Rivas
Hydrol. Earth Syst. Sci., 26, 5103–5118, https://doi.org/10.5194/hess-26-5103-2022, https://doi.org/10.5194/hess-26-5103-2022, 2022
Short summary
Short summary
This article examines how a hydrological model exploring the causes of a lake desiccation was turned into a 5-step participatory process to better adjust the model to address questions that were causing suspicions and conflicts in the community. Although the process was key in finding a combination of strategies that were of moderate impact and higher local acceptability, we address the challenges of such collaboration in modeling when conflict is deeply embedded in the context.
Ashish Shrestha, Felipe Augusto Arguello Souza, Samuel Park, Charlotte Cherry, Margaret Garcia, David J. Yu, and Eduardo Mario Mendiondo
Hydrol. Earth Syst. Sci., 26, 4893–4917, https://doi.org/10.5194/hess-26-4893-2022, https://doi.org/10.5194/hess-26-4893-2022, 2022
Short summary
Short summary
Equitable sharing of benefits is key to successful cooperation in transboundary water resource management. However, external changes can shift the split of benefits and shifts in the preferences regarding how an actor’s benefits compare to the other’s benefits. To understand how these changes can impact the robustness of cooperative agreements, we develop a socio-hydrological system dynamics model of the benefit sharing provision of the Columbia River Treaty and assess a series of scenarios.
Sara Modanesi, Christian Massari, Michel Bechtold, Hans Lievens, Angelica Tarpanelli, Luca Brocca, Luca Zappa, and Gabriëlle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 26, 4685–4706, https://doi.org/10.5194/hess-26-4685-2022, https://doi.org/10.5194/hess-26-4685-2022, 2022
Short summary
Short summary
Given the crucial impact of irrigation practices on the water cycle, this study aims at estimating irrigation through the development of an innovative data assimilation system able to ingest high-resolution Sentinel-1 radar observations into the Noah-MP land surface model. The developed methodology has important implications for global water resource management and the comprehension of human impacts on the water cycle and identifies main challenges and outlooks for future research.
Yujie Zeng, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Jiabo Yin, and Zhenhui Wu
Hydrol. Earth Syst. Sci., 26, 3965–3988, https://doi.org/10.5194/hess-26-3965-2022, https://doi.org/10.5194/hess-26-3965-2022, 2022
Short summary
Short summary
The sustainability of the water–energy–food (WEF) nexus remains challenge, as interactions between WEF and human sensitivity and water resource allocation in water systems are often neglected. We incorporated human sensitivity and water resource allocation into a WEF nexus and assessed their impacts on the integrated system. This study can contribute to understanding the interactions across the water–energy–food–society nexus and improving the efficiency of resource management.
Cited articles
Bai, T., Li, L., Mu, P., Pan, B., and Liu, J.: Impact of Climate Change on Water Transfer Scale of Inter-basin Water Diversion Project, Water Resour. Manag., 37, 2505–2525, https://doi.org/10.1007/s11269-022-03387-8, 2023.
Bland, M. J. and Altman, G.: Statistical methods for assessing agreement between two methods of clinical measurement, Lancet, 1, 307–310, https://doi.org/10.1016/S0140-6736(86)90837-8, 1986.
Botelho, A., Ferreira, P., Lima, F., Pinto, L. M. C., and Sousa, S.: Assessment of the environmental impacts associated with hydropower, Renew. Sust. Energ. Rev., 70, 896–904. https://doi.org/10.1016/j.rser.2016.11.271, 2017.
Chen, Y., Mei, Y., Cai, H., and Xu, X.: Multi-objective optimal operation of key reservoirs in Ganjiang River oriented to power generation, water supply and ecology, J. Hydraul. Eng., 49, 628–638, https://doi.org/10.13243/j.cnki.slxb.20180130, 2018 (in Chinese).
Chen, L., Huang, K. D., Zhou, J. Z., Duan, H. F., Zhang, J. H., Wang, D. W., and Qiu, H.: Multiple-risk assessment of water supply, hydropower and environment nexus in the water resources system, J. Clean. Prod., 268, 122057, https://doi.org/10.1016/j.jclepro.2020.122057, 2020.
Chung, M., Frank, K. A., Pokhrel, Y., Dietz, T., and Liu, J.: Natural infrastructure in sustaining global urban freshwater ecosystem services, Nat. Sustain., 4, 1068–1075, https://doi.org/10.1038/s41893-021-00786-4, 2021.
Conway, D., van Garderen, E. A., Deryng, D., Dorling, S., Krueger, T., Landman, W., Lankford, B., Lebek, K., Osborn, T., Ringler, C., Thurlow, J., Zhu, T., and Dalin, C.: Climate and southern Africa's water-energy-food nexus, Nat. Clim. Change, 5, 837–846, https://doi.org/10.1038/NCLIMATE2735, 2015.
Dong, J., Chen, X., Li, Y., Gao, M., Wei, L., Tangdamrongsu, N., Crow, T. W.: Inter-Basin Water Transfer Effectively Compensates for Regional Unsustainable Water Use, Water Resour. Res., 59, e2023WR035129, https://doi.org/10.1029/2023WR035129, 2023.
Dong, Q., Zhang, X., Chen, Y., and Fang, D.: Dynamic Management of a Water Resources-Socioeconomic-Environmental System Based on Feedbacks Using System Dynamics, Water Resour. Manag., 33, 2093–2108, https://doi.org/10.1007/s11269-019-02233-8, 2019.
Doummar, J., Massoud, M. A., Khoury, R., and Khawlie, M.: Optimal Water Resources Management: Case of Lower Litani River, Lebanon, Water Resour. Manag., 23, 2343–2360, https://doi.org/10.1007/s11269-008-9384-z, 2009.
Endo, A., Tsurita, I., Burnett, K., and Orencio, P. M.: A review of the current state of research on the water, energy, and food nexus, J. Hydrol. Reg. Stud., 11, 20–30, https://doi.org/10.1016/j.ejrh.2015.11.010, 2017.
FAO: The water-energy-food nexus-A new approach in support of food security and sustainable agriculture, Food and Agriculture Organization of the United Nations, Rome, 2014.
Feng, M., Liu, P., Guo, S., Yu, J. D., Cheng, L., Yang, G., and Xie, A.: Adapting reservoir operations to the nexus across water supply, power generation, and environment systems: An explanatory tool for policy makers, J. Hydrol., 574, 257–275, https://doi.org/10.1016/j.jhydrol.2019.04.048, 2019.
Franchini, M., Ventaglio, E., and Bonoli, A.: A Procedurefor Evaluating the Compatibility of Surface Water Resourceswith Environmental and Human Requirements, Water Resour. Manag., 25, 3613–3634, https://doi.org/10.1007/s11269-011-9873-3, 2011.
Gao, Y., Xiong, W., and Wang, C.: numerical modelling of a dam-regulated river network for balancing water supply and ecological flow downstream, Water, 15, 1962, https://doi.org/10.3390/W15101962, 2023.
Gou, J., Miao, C., Duan, Q., Tang, Q., Di, Z., Liao, W., Wu, J., and Zhou, R.: Sensitivity Analysis-Based Automatic Parameter Calibration of the VIC Model for Streamflow Simulations Over China, Water Resour. Res., 56, e2019WR025968, https://doi.org/10.1029/2019WR025968, 2020.
Gupta, D. A.: Implication of environmental flows in river basin management, Phys. Chem. Earth., 33, 298–303, https://doi.org/10.1016/j.pce.2008.02.004, 2008.
Hansen, M., DeFries, R., Townshend, J. R. G., and Sohlberg, R.: UMD Global Land Cover Classification, 1 Kilometer, 1.0, Department of Geography, University of Maryland, College Park, 1981–1994, 1998.
He, Y. Y., Feng, X. Q., and Wang, X. B.: Study of water resources allocation model of North Hubei Water Transfer Project and operation schemes comparison, Express Water Resources & Hydropower Information, 41, 26–29, https://doi.org/10.15974/j.cnki.slsdkb.2020.10.005, 2020.
Hong, X., Guo, S., Le Wang, Yang, G., Liu, D., Guo, H., and Wang, J.: Evaluating Water Supply Risk in the Middle and Lower Reaches of Hanjiang River Basin Based on an Integrated Optimal Water Resources Allocation Model, Water, 8, 364, https://doi.org/10.3390/w8090364, 2016.
Jiang, Z., Wu, W., Qin, H., and Zhou, J.: Credibility theory based panoramic fuzzy risk analysis of hydropower station operation near the boundary, J. Hydrol., 565, 474–488, https://doi.org/10.1016/j.jhydrol.2018.08.048, 2018.
Kattel, G. R., Shang, W., Wang, Z., and Langford, J.: China's South-to-North Water Diversion Project Empowers Sustainable Water Resources System in the North, Sustainability, 11, 3735, https://doi.org/10.3390/su11133735, 2019.
Keyhanpour, M. J., Jahromi, S. H. M., and Ebrahimi, H.: System dynamics model of sustainable water resources management using the Nexus Water-Food-Energy approach, Ain Shams Eng. J., 12, 1267–1281, https://doi.org/10.1109/MCDM.2007.369107, 2021.
Khalkhali, M., Westphal, K., and Mo, W.: The water-energy nexus at water supply and its implications on the integrated water and energy management, Sci. Total Environ., 636, 1257–1267, https://doi.org/10.1016/j.scitotenv.2018.04.408, 2018.
Koohi, S., Azizian, A., and Brocca, L.: Calibration of a Distributed Hydrological Model (VIC-3L) Based on Global Water Resources Reanalysis Datasets, Water Resour. Manag., 36, 1287–1306, https://doi.org/10.1007/s11269-022-03081-9, 2022.
Li, C. and Kang, L.: A New Modified Tennant Method with Spatial-Temporal Variability, Water Resour. Manag., 28, 4911–4926, https://doi.org/10.1007/s11269-014-0746-4, 2014.
Li, C., Kang, L., Zhang S., and Zhou, L.: A Modied FDC Method with Multi-level Ecological Flow Criteria, J. Yangtze River Sci. Res. Inst., 32, 1–6, https://doi.org/10.11988/ckyyb.20140814, 2015 (in Chinese).
Li, Y., Xiong, W., Zhang, W., Wang, C., and Wang, P.: Life cycle assessment of water supply alternatives in water-receiving areas of the South-to-North Water Diversion Project in China, Water Res., 89, 9–19, https://doi.org/10.1007/s11269-011-9873-3, 2016.
Liang, X., Lettenmaier, D. P.: Wood, E. F., and Burges, S. J.: A Simple Hydrologically Based Model Of Land-Surface Water And Energy Fluxes For General-Circulation Models, J. Geophys. Res.-Atmos., 99, 14415–14428, https://doi.org/10.1029/94JD00483, 1994.
Liu, D., Guo, S., Shao, Q., Liu, P., Xiong, L., Wang, L., Hong, X., Xu, Y., and Wang, Z.: Assessing the effects of adaptation measures on optimal water resources allocation under varied water availability conditions, J. Hydrol., 556, 759–774, https://doi.org/10.1016/j.jhydrol.2017.12.002, 2018.
Liu, J., Yuan, X., Zeng, J., Jiao, Y., Li, Y., Zhong, L., and Yao, L.: Ensemble streamflow forecasting over a cascade reservoir catchment with integrated hydrometeorological modeling and machine learning, Hydrol. Earth Syst. Sci., 26, 265–278, https://doi.org/10.5194/hess-26-265-2022, 2022.
Long, D., Yang, W., Scanlon, B. R., Zhao, J., Liu, D., Burek, P., Pan, Y., You, L., and Wada, Y.: South-to-North Water Diversion stabilizing Beijing's groundwater levels, Nat. Commun., 11, 3665, https://doi.org/10.1038/s41467-020-17428-6, 2020.
MacGregor, J. J.: Natural Resources in the United States, Nature, 200, 518–520, https://doi.org/10.1038/200518a0, 1963.
Mansour, F., Al-Hindi, M., Najm, M. A., and Yassine, A.: The water energy food nexus: A multi-objective optimization tool, Comput. Chem. Eng., 187, 108718, https://doi.org/10.1016/J.COMPCHEMENG.2024.108718, 2024.
Martinez, J., Deng, Z., Tian, C., Mueller, R., Phonekhampheng, O., Singhanouvong, D., Thorncraft, G., Phommavong, T., and Phommachan, K.: In situ characterization of turbine hydraulic environment to support development of fish-friendly hydropower guidelines in the lower Mekong River region, Ecol. Eng., 133, 88–97, https://doi.org/10.1016/j.ecoleng.2019.04.028, 2019.
Mok, K. Y., Shen, G., and Yang, J.: Stakeholder management studies in mega construction projects: A review and future directions, Int. J. Proj. Manag., 33, 446–457, https://doi.org/10.1016/j.ijproman.2014.08.007, 2015.
Mu, L., Bai, T., Liu, D., and Li, L.: Impact of Climate Change on Water Diversion Risk of Inter-Basin Water Diversion Project, Water Resour. Manag., 38, 2731–2752, https://doi.org/10.1007/s11269-024-03777-0, 2024.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I — A discussion of principles, J. Hydrol., 3, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Ouyang, S., Qin, H., Shao, J., Zhang, R., and Dai, M.: Operation Mode of Danjiangkou Reservoir under Water Diversion Conditions of South-to-North Water Diversion Middle Route Project, IOP Conf. Ser.-Mater. Sci. Eng., 366, https://doi.org/10.1088/1757-899X/366/1/012010, 2018.
Ouyang, S., Qin, H., Shao, J., Lu, J., Bing, J., Wang, X., and Zhang, R.: Multi-objective optimal water supply scheduling model for an inter-basin water transfer system: the South-to-North Water Diversion Middle Route Project, China, Water Supp., 20, 550–564, https://doi.org/10.2166/ws.2019.187, 2020.
Patrick, C. J., Kominoski, J. S., McDowell, W. H., Branoff, B., Lagomasino, D., Leon, M., Hensel, E., Hensel, M. J. S., Strickland, B. A., Aide, T. M., Armitage, A., Campos-Cerqueira, M., Congdon, V. M., Crowl, T. A., Devlin, D. J., Douglas, S., Erisman, B. E., Feagin, R. A., Geist, S. J., Hall, N. S., Hardison, A. K., Heithaus, M. R., Hogan, J. A., Hogan, J. D., Kinard, S., Kiszka, J. J., Lin, T., Lu, K., Madden, C. J., Montagna, P. A., O'Connell, C. S., Proffitt, C. E., Reese, B. K., Reustle, J. W., Robinson, K. L., Rush, S. A., Santos, R. O., Schnetzer, A., Smee, D. L., Smith, R. S., Starr, G., Stauffer, B. A., Walker, L. M., Weaver, C. A., Wetz, M. S., Whitman, E. R., Wilson, S. S., Xue, J., and Zou, X.: A general pattern of trade-offs between ecosystem resistance and resilience to tropical cyclones, Sci. Adv., 8, eabl9155, https://doi.org/10.1126/sciadv.abl9155, 2022.
Qiu, H., Chen, L., Zhou, J., He, Z., and Zhang, H.: Risk analysis of water supply-hydropower generation-environment nexus in the cascade reservoir operation, J. Clean. Prod., 283, 124239, https://doi.org/10.1016/j.jclepro.2020.124239, 2021.
Quer, A. M. I., Larsson, Y., Johansen, A., Arias, C. A., and Carvalho, P. N.: Cyanobacterial blooms in surface waters – Nature-based solutions, cyanotoxins and their biotransformation products, Water Res., 251, 121122, https://doi.org/10.1016/j.watres.2024.121122, 2024.
Rousseeuw, P. J. and Leroy, A. M.: Robust Regression and Outlier Detection, John Wiley & Sons, New York, https://doi.org/10.1002/0471725382, 1987.
Sanders, K. T. and Webber, M. E.: Evaluating the energy consumed for water use in the United States, Environ. Res. Lett., 7, 034034, https://doi.org/10.1088/1748-9326/7/3/034034, 2012.
Sheng, J., Zhang, R., and Yang, H.: Inter-basin water transfers and water rebound effects: The South-North water transfer Project in China, J. Hydrol., 638, 131516, https://doi.org/10.1016/J.JHYDROL.2024.131516, 2024.
Siddik, M. A. B., Dickson, K. E., Rising, J., Ruddell, B. L., and Marston, L. T.: Interbasin water transfers in the United States and Canada, Sci. Data, 10, 27, https://doi.org/10.1038/s41597-023-01935-4, 2023.
Stickler, C. M., Coe, M. T., Costa, M. H., Nepstad, D. C., McGrath, D. G., Dias, L. C. P., Rodrigues, H. O., and Soares-Filho, B. S.: Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales, P. Natl. Acad. Sci. USA, 110, 9601–9606, https://doi.org/10.1073/pnas.1215331110, 2013.
Stone, R. and Jia, H.: Hydroengineering – Going against the flow, Science, 313, 1034–1037, https://doi.org/10.1126/science.313.5790.1034, 2006.
Su, L., Lettenmaier, D. P., Pan, M., and Bass, B.: Improving runoff simulation in the Western United States with Noah-MP and VIC models, Hydrol. Earth Syst. Sci., 28, 3079–3097, https://doi.org/10.5194/hess-28-3079-2024, 2024.
Tang, M., Xu, W., Zhang, C., Shao, D., Zhou, H., and Li, Y.: Risk assessment of sectional water quality based on deterioration rate of water quality indicators: A case study of the main canal of the Middle Route of South-to-North Water Diversion Project, Ecol. Indic., 135, 108776, https://doi.org/10.1016/j.ecolind.2022.108592, 2022.
Tang, X., Huang, Y., Pan, X., Liu, T., Ling, Y., and Peng, J.: Managing the water-agriculture-environment-energy nexus: Trade-offs and synergies in an arid area of Northwest China, Agr. Water Manage., 295, 108776, https://doi.org/10.1016/j.agwat.2024.108776, 2024.
Tao, H., Gemmer, M., Song, Y., and Jiang, T.: Ecohydrological responses on water diversion in the lower reaches of the Tarim River, China, Water Resour. Res., 44, W08422, https://doi.org/10.1029/2007WR006186, 2008.
Tauro, F.: River basins on the edge of change Water scarcity after the Millennium Drought reveals the finite resilience of water systems, Science, 372, 680–681, https://doi.org/10.1126/science.abi8770, 2021.
Tennant, D. L.: Instream Flow Regimens for Fish, Wildlife, Recreation and Related Environmental Resources, Fisheries, 4, 6–10, https://doi.org/10.1577/1548-8446(1976)001<0006:IFRFFW>2.0.CO;2, 1976.
Tharme, R. E.: A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers, River Res. Appl., 19, 397–441, https://doi.org/10.1002/rra.736, 2003.
Tian, J., Guo, S. L., Wang, J., Wang, H. Y., Pan, Z. K.: Preemptive warning and control strategies for algal blooms in the downstream of Han River, China, Ecol. Indic., 142, 109190, https://doi.org/10.1016/J.ECOLIND.2022.109190, 2022.
Wang, C., Li, Z., Ni, X., Shi, W., Zhang, J., Bian, J., and Liu, Y.: Residential water and energy consumption prediction at hourly resolution based on a hybrid machine learning approach, Water Res., 246, 120733, https://doi.org/10.1016/j.watres.2023.120733, 2023.
Wang, G. Q., Zhang, J. Y., Jin, J. L., Pagano, T. C., Calow, R., Bao, Z. X., Liu, C. S., Liu, Y. L., and Yan, X. L.: Assessing water resources in China using PRECIS projections and a VIC model, Hydrol. Earth Syst. Sci., 16, 231–240, https://doi.org/10.5194/hess-16-231-2012, 2012.
Wang, H., Liu, J., Klaar, M., Chen, A., Gudmundsson, L., and Holden, J.: Anthropogenic climate change has influenced global river flow seasonality, Science, 383, 1009–1014, https://doi.org/10.1126/science.adi9501, 2024.
Wei, J., Zhang, Q., Yin, Y., Peng, K., Wang, L., Cai, Y., and Gong, Z.: Limited Impacts of Water Diversion on Micro-eukaryotic Community along the Eastern Route of China's South-to-North Water Diversion Project, Water Res., 262, 122109, https://doi.org/10.1016/j.watres.2024.122109, 2024.
Wei, N., Yang, F. L., Lu, K. M., Xie, J. C., Zhang, S. F.: A Method of Multi-Objective Optimization and Multi-Attribute Decision-Making for Huangjinxia Reservoir, Appl. Sci., 12, 6300, https://doi.org/10.3390/APP12136300, 2022.
Wei, X., Zhang, H., Singh, V. P., Dang, C., Shao, S., and Wu, Y.: Coincidence probability of streamflow in water resources area, water receiving area and impacted area: implications for water supply risk and potential impact of water transfer, Hydrol. Res., 51, 1120–1135, https://doi.org/10.2166/nh.2020.106, 2020.
Wu, J., Luo, J., Du, X., Zhang, H., and Qin, S.: Optimizing water allocation in an inter-basin water diversion project with equity-efficiency tradeoff: A bi-level multiobjective programming model under uncertainty, J. Clean. Prod., 371, 133606, https://doi.org/10.1016/j.jclepro.2022.133606, 2022.
Wu, Z., Mei, Y., Cheng, B., and Hu, T.: Use of a Multi-Objective Correlation Index to Analyze the Power Generation, Water Supply and Ecological Flow Mutual Feedback Relationship of a Reservoir, Water Resour. Manag., 35, 465–480. https://doi.org/10.1007/s11269-020-02726-x, 2021.
Wu, Z., Liu, D., Mei, Y., Guo, S., Xiong, L., Liu, P., Chen, J., Yin, J., and Zeng, Y.: A nonlinear model for evaluating dynamic resilience of water supply hydropower generation-environment conservation nexus system, Water Resour. Res., 59, e2023WR034922. https://doi.org/10.1029/2023WR034922, 2023.
Xia, R., Wang, G., Zhang, Y., Yang, P., Yang, Z., Ding, S., Jia, X., Yang, C., Liu, C., Ma, S., Lin, J., Wang, X., Hou, X., Zhang, K., Gao, X., Duan, P., and Qian, C.: River algal blooms are well predicted by antecedent environmental conditions, Water Res., 185, 116221, https://doi.org/10.1016/j.watres.2020.116221, 2020.
Xu, F., Jia, Y., Niu, C., Liu, J., and Hao, C.: Changes in Annual, Seasonal and Monthly Climate and Its Impacts on Runoff in the Hutuo River Basin, China, Water, 10, w10030278, https://doi.org/10.3390/w10030278, 2018.
Yan, Z., Zhou, Z., Liu, J., Wen, T., Sang, X., and Zhang, F.: Multiobjective Optimal Operation of Reservoirs Based on Water Supply, Power Generation, and River Ecosystem with a New Water Resource Allocation Model, J. Water Res. Pl.-ASCE, 146, 12, https://doi.org/10.1061/(ASCE)WR.1943-5452.0001302, 2020.
Yang, Q., Xie, P., Shen, H., Xu, J., Wang, P., and Zhang, B.: A novel flushing strategy for diatom bloom prevention in the lower-middle Hanjiang River, Water Res., 46, 2525–2534, https://doi.org/10.1016/j.watres.2012.01.051, 2012.
Yang, Y., Chen, S., Zhou, Y., Ma, G., Huang, W., and Zhu, Y.: Method for quantitatively assessing the impact of an inter-basin water transfer project on ecological environment-power generation in a water supply region, J. Hydrol., 618, 129250, https://doi.org/10.1016/j.jhydrol.2023.129250, 2023.
Yeste, P., García-Valdecasas Ojeda, M., Gámiz-Fortis, S. R., Castro-Díez, Y., Bronstert, A., and Esteban-Parra, M. J.: A large-sample modelling approach towards integrating streamflow and evaporation data for the Spanish catchments, Hydrol. Earth Syst. Sci., 28, 5331–5352, https://doi.org/10.5194/hess-28-5331-2024, 2024.
Zeng, Y., Liu, D., Guo, S., Xiong, L., Liu, P., Chen, J., Yin, J., Wu, Z., and Zhou, W.: Assessing the effects of water resources allocation on the uncertainty propagation in the water-energy-food-society (WEFS) nexus, Agr. Water Manage., 282, https://doi.org/10.1016/j.agwat.2023.108279, 2023.
Zhang, B. H. M. M.: Selection of installed capacity of XinglongHydropower Station, Hydropower and New Energy, 1, 66–68, https://doi.org/10.13622/j.cnki.cn42-1800/tv.2008.01.020, 2008 (in Chinese).
Zhang, J., Xu, L., Yu, B., and Li, X.: Environmentally feasible potential for hydropower development regarding environmental constraints, Energ. Policy, 73, 552–562, https://doi.org/10.1016/j.enpol.2014.04.040, 2014.
Zhang, J., Bing, J., Li, X., Guo, L., Deng, Z., Wang, D., and Liu, L.: Inter-basin water transfer enhances the human health risk of heavy metals in the middle and lower Han River, China, J. Hydrol., 613, 128423, https://doi.org/10.1016/j.jhydrol.2022.128423, 2022.
Zhao, D., Liu, J., Sun, L., Ye, B., Hubacek, K., Feng, K., and Varis, O.: Quantifying economic-social-environmental trade-offs and synergies of water-supply constraints: An application to the capital region of China, Water Res., 195, 116986–116986, https://doi.org/10.1016/j.watres.2021.116986, 2021.
Zhao, Z., Zuo, J., and Zillante, G.: Transformation of water resource management: a case study of the South-to-North Water Diversion project, J. Clean. Prod., 163, 136–145, https://doi.org/10.1016/j.jclepro.2015.08.066, 2017.
Zitzler, E.: Two decades of evolutionary multi-criterion optimization: A glance back and a look ahead, in: 2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision Making, Honolulu, HI, USA, 318–318, https://doi.org/10.1109/MCDM.2007.369107, 2007.
Short summary
The unclear feedback loops of water supply–hydropower generation–environmental conservation (SHE) nexuses with inter-basin water diversion projects (IWDPs) increase the uncertainty in the rational scheduling of water resources for water receiving and water donation areas. To address the different impacts of IWDPs on dynamic SHE nexuses and explore synergies, a framework is proposed to identify these effects across the different temporal and spatial scales in a reservoir group.
The unclear feedback loops of water supply–hydropower generation–environmental conservation...