Articles | Volume 29, issue 11
https://doi.org/10.5194/hess-29-2445-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-2445-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cold climates, complex hydrology: can a land surface model accurately simulate deep percolation?
Alireza Amani
CORRESPONDING AUTHOR
Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
Marie-Amélie Boucher
Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
Alexandre R. Cabral
Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, Quebec, Canada
Vincent Vionnet
Environmental Numerical Weather Prediction Research, Environment and Climate Change Canada, Dorval, Quebec, Canada
Étienne Gaborit
Environmental Numerical Weather Prediction Research, Environment and Climate Change Canada, Dorval, Quebec, Canada
Related authors
No articles found.
Benoit Montpetit, Julien Meloche, Vincent Vionnet, Chris Derksen, Georgina Wooley, Nicolas R. Leroux, Paul Siqueira, J. Max Adams, and Mike Brady
EGUsphere, https://doi.org/10.5194/egusphere-2025-2317, https://doi.org/10.5194/egusphere-2025-2317, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This paper presents the workflow to retrieve snow water equivalent from radar measurements for the future Canadian radar satellite mission, TSMM. The workflow is validated by using airborne radar data collected at Trail Valley Creek, Canada, during winter 2018–19. We detail important considerations to have in the context of an Earth Observation mission over a vast region such as Canada. The results show that it is possible to achieve the desired accuracy for TSMM, over an Arctic environment.
Georgina J. Woolley, Nick Rutter, Leanne Wake, Vincent Vionnet, Chris Derksen, Julien Meloche, Benoit Montpetit, Nicolas R. Leroux, Richard Essery, Gabriel Hould Gosselin, and Philip Marsh
EGUsphere, https://doi.org/10.5194/egusphere-2025-1498, https://doi.org/10.5194/egusphere-2025-1498, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The impact of uncertainties in the simulation of snow density and SSA by the snow model Crocus (embedded within the Soil, Vegetation and Snow version 2 land surface model) on the simulation of snow backscatter (13.5 GHz) using the Snow Microwave Radiative Transfer model were quantified. The simulation of SSA was found to be a key model uncertainty. Underestimated SSA values lead to high errors in the simulation of snow backscatter, reduced by implementing a minimum SSA value (8.7 m2 kg-1).
Manon Gaillard, Vincent Vionnet, Matthieu Lafaysse, Marie Dumont, and Paul Ginoux
The Cryosphere, 19, 769–792, https://doi.org/10.5194/tc-19-769-2025, https://doi.org/10.5194/tc-19-769-2025, 2025
Short summary
Short summary
This study presents an efficient method to improve large-scale snow albedo simulations by considering the spatial variability in light-absorbing particles (LAPs) like black carbon and dust. A global climatology of LAP deposition was created and used to optimize a parameter in the Crocus snow model. Testing at 10 global sites improved albedo predictions by 10 % on average and over 25 % in the Arctic. This method can enhance other snow models' predictions without complex simulations.
Colleen Mortimer and Vincent Vionnet
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-602, https://doi.org/10.5194/essd-2024-602, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
In situ observations of snow water equivalent (SWE) are critical for climate applications and resource management. NorSWE is a dataset of in situ SWE observations covering North America, Finland and Russia over the period 1979–2021. It includes >11 million observations from >10 thousand different locations compiled from nine different sources. Snow depth and derived bulk snow density are included when available.
Georgina J. Woolley, Nick Rutter, Leanne Wake, Vincent Vionnet, Chris Derksen, Richard Essery, Philip Marsh, Rosamond Tutton, Branden Walker, Matthieu Lafaysse, and David Pritchard
The Cryosphere, 18, 5685–5711, https://doi.org/10.5194/tc-18-5685-2024, https://doi.org/10.5194/tc-18-5685-2024, 2024
Short summary
Short summary
Parameterisations of Arctic snow processes were implemented into the multi-physics ensemble version of the snow model Crocus (embedded within the Soil, Vegetation, and Snow version 2 land surface model) and evaluated at an Arctic tundra site. Optimal combinations of parameterisations that improved the simulation of density and specific surface area featured modifications that raise wind speeds to increase compaction in surface layers, prevent snowdrift, and increase viscosity in basal layers.
Julien Meloche, Nicolas R. Leroux, Benoit Montpetit, Vincent Vionnet, and Chris Derksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3169, https://doi.org/10.5194/egusphere-2024-3169, 2024
Short summary
Short summary
Measuring the snow mass from radar measurements is possible with information on the snow and a radar model to link the measurements to snow. A key variable in a retrieval is the number of snow layers, with more layer yielding richer information but at increased computational cost. Here, we show the capabilities of a new method to simplify a complex snowpack, while preserving the scattering behavior of the snowpack and conserving the mass.
Giulia Mazzotti, Jari-Pekka Nousu, Vincent Vionnet, Tobias Jonas, Rafife Nheili, and Matthieu Lafaysse
The Cryosphere, 18, 4607–4632, https://doi.org/10.5194/tc-18-4607-2024, https://doi.org/10.5194/tc-18-4607-2024, 2024
Short summary
Short summary
As many boreal and alpine forests have seasonal snow, models are needed to predict forest snow under future environmental conditions. We have created a new forest snow model by combining existing, very detailed model components for the canopy and the snowpack. We applied it to forests in Switzerland and Finland and showed how complex forest cover leads to a snowpack layering that is very variable in space and time because different processes prevail at different locations in the forest.
Louise Arnal, Martyn P. Clark, Alain Pietroniro, Vincent Vionnet, David R. Casson, Paul H. Whitfield, Vincent Fortin, Andrew W. Wood, Wouter J. M. Knoben, Brandi W. Newton, and Colleen Walford
Hydrol. Earth Syst. Sci., 28, 4127–4155, https://doi.org/10.5194/hess-28-4127-2024, https://doi.org/10.5194/hess-28-4127-2024, 2024
Short summary
Short summary
Forecasting river flow months in advance is crucial for water sectors and society. In North America, snowmelt is a key driver of flow. This study presents a statistical workflow using snow data to forecast flow months ahead in North American snow-fed rivers. Variations in the river flow predictability across the continent are evident, raising concerns about future predictability in a changing (snow) climate. The reproducible workflow hosted on GitHub supports collaborative and open science.
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux
The Cryosphere, 18, 3857–3874, https://doi.org/10.5194/tc-18-3857-2024, https://doi.org/10.5194/tc-18-3857-2024, 2024
Short summary
Short summary
This paper validates the use of free open-source models to link distributed snow measurements to radar measurements in the Canadian Arctic. Using multiple radar sensors, we can decouple the soil from the snow contribution. We then retrieve the "microwave snow grain size" to characterize the interaction between the snow mass and the radar signal. This work supports future satellite mission development to retrieve snow mass information such as the future Canadian Terrestrial Snow Mass Mission.
Ange Haddjeri, Matthieu Baron, Matthieu Lafaysse, Louis Le Toumelin, César Deschamps-Berger, Vincent Vionnet, Simon Gascoin, Matthieu Vernay, and Marie Dumont
The Cryosphere, 18, 3081–3116, https://doi.org/10.5194/tc-18-3081-2024, https://doi.org/10.5194/tc-18-3081-2024, 2024
Short summary
Short summary
Our study addresses the complex challenge of evaluating distributed alpine snow simulations with snow transport against snow depths from Pléiades stereo imagery and snow melt-out dates from Sentinel-2 and Landsat-8 satellites. Additionally, we disentangle error contributions between blowing snow, precipitation heterogeneity, and unresolved subgrid variability. Snow transport enhances the snow simulations at high elevations, while precipitation biases are the main error source in other areas.
Matthieu Baron, Ange Haddjeri, Matthieu Lafaysse, Louis Le Toumelin, Vincent Vionnet, and Mathieu Fructus
Geosci. Model Dev., 17, 1297–1326, https://doi.org/10.5194/gmd-17-1297-2024, https://doi.org/10.5194/gmd-17-1297-2024, 2024
Short summary
Short summary
Increasing the spatial resolution of numerical systems simulating snowpack evolution in mountain areas requires representing small-scale processes such as wind-induced snow transport. We present SnowPappus, a simple scheme coupled with the Crocus snow model to compute blowing-snow fluxes and redistribute snow among grid points at 250 m resolution. In terms of numerical cost, it is suitable for large-scale applications. We present point-scale evaluations of fluxes and snow transport occurrence.
Hadleigh D. Thompson, Julie M. Thériault, Stephen J. Déry, Ronald E. Stewart, Dominique Boisvert, Lisa Rickard, Nicolas R. Leroux, Matteo Colli, and Vincent Vionnet
Earth Syst. Sci. Data, 15, 5785–5806, https://doi.org/10.5194/essd-15-5785-2023, https://doi.org/10.5194/essd-15-5785-2023, 2023
Short summary
Short summary
The Saint John River experiment on Cold Season Storms was conducted in northwest New Brunswick, Canada, to investigate the types of precipitation that can lead to ice jams and flooding along the river. We deployed meteorological instruments, took precipitation measurements and photographs of snowflakes, and launched weather balloons. These data will help us to better understand the atmospheric conditions that can affect local communities and townships downstream during the spring melt season.
Valérie Jean, Marie-Amélie Boucher, Anissa Frini, and Dominic Roussel
Hydrol. Earth Syst. Sci., 27, 3351–3373, https://doi.org/10.5194/hess-27-3351-2023, https://doi.org/10.5194/hess-27-3351-2023, 2023
Short summary
Short summary
Flood forecasts are only useful if they are understood correctly. They are also uncertain, and it is difficult to present all of the information about the forecast and its uncertainty on a map, as it is three dimensional (water depth and extent, in all directions). To overcome this, we interviewed 139 people to understand their preferences in terms of forecast visualization. We propose simple and effective ways of presenting flood forecast maps so that they can be understood and useful.
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023, https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Short summary
Hybrid forecasting systems combine data-driven methods with physics-based weather and climate models to improve the accuracy of predictions for meteorological and hydroclimatic events such as rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. We review recent developments in hybrid forecasting and outline key challenges and opportunities in the field.
Jean Odry, Marie-Amélie Boucher, Simon Lachance-Cloutier, Richard Turcotte, and Pierre-Yves St-Louis
The Cryosphere, 16, 3489–3506, https://doi.org/10.5194/tc-16-3489-2022, https://doi.org/10.5194/tc-16-3489-2022, 2022
Short summary
Short summary
The research deals with the assimilation of in-situ local snow observations in a large-scale spatialized snow modeling framework over the province of Quebec (eastern Canada). The methodology is based on proposing multiple spatialized snow scenarios using the snow model and weighting them according to the available observations. The paper especially focuses on the spatial coherence of the snow scenario proposed in the framework.
Juliane Mai, Hongren Shen, Bryan A. Tolson, Étienne Gaborit, Richard Arsenault, James R. Craig, Vincent Fortin, Lauren M. Fry, Martin Gauch, Daniel Klotz, Frederik Kratzert, Nicole O'Brien, Daniel G. Princz, Sinan Rasiya Koya, Tirthankar Roy, Frank Seglenieks, Narayan K. Shrestha, André G. T. Temgoua, Vincent Vionnet, and Jonathan W. Waddell
Hydrol. Earth Syst. Sci., 26, 3537–3572, https://doi.org/10.5194/hess-26-3537-2022, https://doi.org/10.5194/hess-26-3537-2022, 2022
Short summary
Short summary
Model intercomparison studies are carried out to test various models and compare the quality of their outputs over the same domain. In this study, 13 diverse model setups using the same input data are evaluated over the Great Lakes region. Various model outputs – such as streamflow, evaporation, soil moisture, and amount of snow on the ground – are compared using standardized methods and metrics. The basin-wise model outputs and observations are made available through an interactive website.
Jing Xu, François Anctil, and Marie-Amélie Boucher
Hydrol. Earth Syst. Sci., 26, 1001–1017, https://doi.org/10.5194/hess-26-1001-2022, https://doi.org/10.5194/hess-26-1001-2022, 2022
Short summary
Short summary
The performance of the non-dominated sorting genetic algorithm II (NSGA-II) is compared with a conventional post-processing method of affine kernel dressing. NSGA-II showed its superiority in improving the forecast skill and communicating trade-offs with end-users. It allows the enhancement of the forecast quality since it allows for setting multiple specific objectives from scratch. This flexibility should be considered as a reason to implement hydrologic ensemble prediction systems (H-EPSs).
Vincent Vionnet, Colleen Mortimer, Mike Brady, Louise Arnal, and Ross Brown
Earth Syst. Sci. Data, 13, 4603–4619, https://doi.org/10.5194/essd-13-4603-2021, https://doi.org/10.5194/essd-13-4603-2021, 2021
Short summary
Short summary
Water equivalent of snow cover (SWE) is a key variable for water management, hydrological forecasting and climate monitoring. A new Canadian SWE dataset (CanSWE) is presented in this paper. It compiles data collected by multiple agencies and companies at more than 2500 different locations across Canada over the period 1928–2020. Snow depth and derived bulk snow density are also included when available.
Konstantin F. F. Ntokas, Jean Odry, Marie-Amélie Boucher, and Camille Garnaud
Hydrol. Earth Syst. Sci., 25, 3017–3040, https://doi.org/10.5194/hess-25-3017-2021, https://doi.org/10.5194/hess-25-3017-2021, 2021
Short summary
Short summary
This article shows a conversion model of snow depth into snow water equivalent (SWE) using an ensemble of artificial neural networks. The novelty is a direct estimation of SWE and the improvement of the estimation by in-depth analysis of network structures. The usage of an ensemble allows a probabilistic estimation and, therefore, a deeper insight. It is a follow-up study of a similar study over Quebec but extends it to the whole area of Canada and improves it further.
Vincent Vionnet, Christopher B. Marsh, Brian Menounos, Simon Gascoin, Nicholas E. Wayand, Joseph Shea, Kriti Mukherjee, and John W. Pomeroy
The Cryosphere, 15, 743–769, https://doi.org/10.5194/tc-15-743-2021, https://doi.org/10.5194/tc-15-743-2021, 2021
Short summary
Short summary
Mountain snow cover provides critical supplies of fresh water to downstream users. Its accurate prediction requires inclusion of often-ignored processes. A multi-scale modelling strategy is presented that efficiently accounts for snow redistribution. Model accuracy is assessed via airborne lidar and optical satellite imagery. With redistribution the model captures the elevation–snow depth relation. Redistribution processes are required to reproduce spatial variability, such as around ridges.
Guoqiang Tang, Martyn P. Clark, Andrew J. Newman, Andrew W. Wood, Simon Michael Papalexiou, Vincent Vionnet, and Paul H. Whitfield
Earth Syst. Sci. Data, 12, 2381–2409, https://doi.org/10.5194/essd-12-2381-2020, https://doi.org/10.5194/essd-12-2381-2020, 2020
Short summary
Short summary
Station observations are critical for hydrological and meteorological studies, but they often contain missing values and have short measurement periods. This study developed a serially complete dataset for North America (SCDNA) from 1979 to 2018 for 27 276 precipitation and temperature stations. SCDNA is built on multiple data sources and infilling/reconstruction strategies to achieve high-quality estimates which can be used for a variety of applications.
Vincent Vionnet, Vincent Fortin, Etienne Gaborit, Guy Roy, Maria Abrahamowicz, Nicolas Gasset, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 24, 2141–2165, https://doi.org/10.5194/hess-24-2141-2020, https://doi.org/10.5194/hess-24-2141-2020, 2020
Short summary
Short summary
The 2013 Alberta flood in Canada was typical of late-spring floods in mountain basins combining intense precipitation with rapid melting of late-lying snowpack. Hydrological simulations of this event are mainly influenced by (i) the spatial resolution of the atmospheric forcing due to the best estimate of precipitation at the kilometer scale and changes in turbulent fluxes contributing to snowmelt and (ii) uncertainties in initial snow conditions at high elevations. Soil texture has less impact.
Louis Quéno, Fatima Karbou, Vincent Vionnet, and Ingrid Dombrowski-Etchevers
Hydrol. Earth Syst. Sci., 24, 2083–2104, https://doi.org/10.5194/hess-24-2083-2020, https://doi.org/10.5194/hess-24-2083-2020, 2020
Short summary
Short summary
In mountainous terrain, the snowpack is strongly affected by incoming shortwave and longwave radiation. Satellite-derived products of incoming radiation were assessed in the French Alps and the Pyrenees and compared to meteorological forecasts, reanalyses and in situ measurements. We showed their good quality in mountains. The different radiation datasets were used as radiative forcing for snowpack simulations with the detailed model Crocus. Their impact on the snowpack evolution was explored.
Satoru Yamaguchi, Masaaki Ishizaka, Hiroki Motoyoshi, Sent Nakai, Vincent Vionnet, Teruo Aoki, Katsuya Yamashita, Akihiro Hashimoto, and Akihiro Hachikubo
The Cryosphere, 13, 2713–2732, https://doi.org/10.5194/tc-13-2713-2019, https://doi.org/10.5194/tc-13-2713-2019, 2019
Short summary
Short summary
The specific surface area (SSA) of solid precipitation particles (PPs) includes detailed information of PP. This work is based on field measurement of SSA of PPs in Nagaoka, the city with the heaviest snowfall in Japan. The values of SSA strongly depend on wind speed (WS) and wet-bulb temperature (Tw) on the ground. An equation to empirically estimate the SSA of fresh PPs with WS and Tw was established and the equation successfully reproduced the fluctuation of SSA in Nagaoka.
Gilbert Guyomarc'h, Hervé Bellot, Vincent Vionnet, Florence Naaim-Bouvet, Yannick Déliot, Firmin Fontaine, Philippe Puglièse, Kouichi Nishimura, Yves Durand, and Mohamed Naaim
Earth Syst. Sci. Data, 11, 57–69, https://doi.org/10.5194/essd-11-57-2019, https://doi.org/10.5194/essd-11-57-2019, 2019
Short summary
Short summary
The paper introduces a meteorological and blowing snow data set from Col du Lac Blanc (2720 m a.s.l., French Alps) allowing physical parameterizations and numerical models of blowing snow to be developed and evaluated. In situ winter season data consist of wind, snow depth, air temperature measurements and a database of blowing snow occurrence (2000–2016) complemented by measurements of blowing snow fluxes (2010–2016). Atmospheric data from a meteorological reanalysis and a DEM are also provided.
Christine Lac, Jean-Pierre Chaboureau, Valéry Masson, Jean-Pierre Pinty, Pierre Tulet, Juan Escobar, Maud Leriche, Christelle Barthe, Benjamin Aouizerats, Clotilde Augros, Pierre Aumond, Franck Auguste, Peter Bechtold, Sarah Berthet, Soline Bielli, Frédéric Bosseur, Olivier Caumont, Jean-Martial Cohard, Jeanne Colin, Fleur Couvreux, Joan Cuxart, Gaëlle Delautier, Thibaut Dauhut, Véronique Ducrocq, Jean-Baptiste Filippi, Didier Gazen, Olivier Geoffroy, François Gheusi, Rachel Honnert, Jean-Philippe Lafore, Cindy Lebeaupin Brossier, Quentin Libois, Thibaut Lunet, Céline Mari, Tomislav Maric, Patrick Mascart, Maxime Mogé, Gilles Molinié, Olivier Nuissier, Florian Pantillon, Philippe Peyrillé, Julien Pergaud, Emilie Perraud, Joris Pianezze, Jean-Luc Redelsperger, Didier Ricard, Evelyne Richard, Sébastien Riette, Quentin Rodier, Robert Schoetter, Léo Seyfried, Joël Stein, Karsten Suhre, Marie Taufour, Odile Thouron, Sandra Turner, Antoine Verrelle, Benoît Vié, Florian Visentin, Vincent Vionnet, and Philippe Wautelet
Geosci. Model Dev., 11, 1929–1969, https://doi.org/10.5194/gmd-11-1929-2018, https://doi.org/10.5194/gmd-11-1929-2018, 2018
Short summary
Short summary
This paper presents the Meso-NH model version 5.4, which is an atmospheric non-hydrostatic research model that is applied on synoptic to turbulent scales. The model includes advanced numerical techniques and state-of-the-art physics parameterization schemes. It has been expanded to provide capabilities for a range of Earth system prediction applications such as chemistry and aerosols, electricity and lightning, hydrology, wildland fires, volcanic eruptions, and cyclones with ocean coupling.
Marion Réveillet, Delphine Six, Christian Vincent, Antoine Rabatel, Marie Dumont, Matthieu Lafaysse, Samuel Morin, Vincent Vionnet, and Maxime Litt
The Cryosphere, 12, 1367–1386, https://doi.org/10.5194/tc-12-1367-2018, https://doi.org/10.5194/tc-12-1367-2018, 2018
Lawrence R. Mudryk, Chris Derksen, Stephen Howell, Fred Laliberté, Chad Thackeray, Reinel Sospedra-Alfonso, Vincent Vionnet, Paul J. Kushner, and Ross Brown
The Cryosphere, 12, 1157–1176, https://doi.org/10.5194/tc-12-1157-2018, https://doi.org/10.5194/tc-12-1157-2018, 2018
Short summary
Short summary
This paper presents changes in both snow and sea ice that have occurred over Canada during the recent past and shows climate model estimates for future changes expected to occur by the year 2050. The historical changes of snow and sea ice are generally coherent and consistent with the regional history of temperature and precipitation changes. It is expected that snow and sea ice will continue to decrease in the future, declining by an additional 15–30 % from present day values by the year 2050.
Rachel Bazile, Marie-Amélie Boucher, Luc Perreault, and Robert Leconte
Hydrol. Earth Syst. Sci., 21, 5747–5762, https://doi.org/10.5194/hess-21-5747-2017, https://doi.org/10.5194/hess-21-5747-2017, 2017
Short summary
Short summary
Meteorological forecasting agencies constantly work on pushing the limit of predictability farther in time. However, some end users need proof that climate model outputs are ready to be implemented operationally. We show that bias correction is crucial for the use of ECMWF System4 forecasts for the studied area and there is a potential for the use of 1-month-ahead forecasts. Beyond this, forecast performance is equivalent to using past climatology series as inputs to the hydrological model.
Jesús Revuelto, Grégoire Lecourt, Matthieu Lafaysse, Isabella Zin, Luc Charrois, Vincent Vionnet, Marie Dumont, Antoine Rabatel, Delphine Six, Thomas Condom, Samuel Morin, Alessandra Viani, and Pascal Sirguey
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-184, https://doi.org/10.5194/tc-2017-184, 2017
Revised manuscript not accepted
Short summary
Short summary
We evaluated distributed and semi-distributed modeling approaches to simulating the spatial and temporal evolution of snow and ice over an extended mountain catchment, using the Crocus snowpack model. The distributed approach simulated the snowpack dynamics on a 250-m grid, enabling inclusion of terrain shadowing effects. The semi-distributed approach simulated the snowpack dynamics for discrete topographic classes characterized by elevation range, aspect, and slope.
Mathieu Barrere, Florent Domine, Bertrand Decharme, Samuel Morin, Vincent Vionnet, and Matthieu Lafaysse
Geosci. Model Dev., 10, 3461–3479, https://doi.org/10.5194/gmd-10-3461-2017, https://doi.org/10.5194/gmd-10-3461-2017, 2017
Short summary
Short summary
Global warming projections still suffer from a limited representation of the permafrost–carbon feedback. This study assesses the capacity of snow-soil coupled models to simulate the permafrost thermal regime at Bylot Island, a high Arctic site. Significant flaws are found in the description of Arctic snow properties, resulting in erroneous heat transfers between the soil and the snow in simulations. Improved snow schemes are needed to accurately predict the future of permafrost.
Simon Matte, Marie-Amélie Boucher, Vincent Boucher, and Thomas-Charles Fortier Filion
Hydrol. Earth Syst. Sci., 21, 2967–2986, https://doi.org/10.5194/hess-21-2967-2017, https://doi.org/10.5194/hess-21-2967-2017, 2017
Short summary
Short summary
In this study we set the basis of an alternative framework to replace the popular cost-loss ratio for the economic assessment of flood forecasting systems. The C-L ratio implicitly considers the decision maker to be risk-neutral, whereas it is rarely the case in real-life emergency situations. Instead of the cost-loss ratio, we propose using a utility function. We show that the decision-maker’s level of risk aversion is a crucial factor in the assessment of the economic value of flood forecasts.
Matthieu Lafaysse, Bertrand Cluzet, Marie Dumont, Yves Lejeune, Vincent Vionnet, and Samuel Morin
The Cryosphere, 11, 1173–1198, https://doi.org/10.5194/tc-11-1173-2017, https://doi.org/10.5194/tc-11-1173-2017, 2017
Short summary
Short summary
Physically based multilayer snowpack models suffer from various modelling errors. To represent these errors, we built the new multiphysical ensemble system ESCROC by implementing new representations of different physical processes in a coupled multilayer ground/snowpack model. This system is a promising tool to integrate snow modelling errors in ensemble forecasting and ensemble assimilation systems in support of avalanche hazard forecasting and other snowpack modelling applications.
Louis Quéno, Vincent Vionnet, Ingrid Dombrowski-Etchevers, Matthieu Lafaysse, Marie Dumont, and Fatima Karbou
The Cryosphere, 10, 1571–1589, https://doi.org/10.5194/tc-10-1571-2016, https://doi.org/10.5194/tc-10-1571-2016, 2016
Short summary
Short summary
Simulations are carried out in the Pyrenees with the snowpack model Crocus, driven by meteorological forecasts from the model AROME at kilometer resolution. The evaluation is done with ground-based measurements, satellite data and reference simulations. Studying daily snow depth variations allows to separate different physical processes affecting the snowpack. We show the benefits of AROME kilometric resolution and dynamical behavior in terms of snowpack spatial variability in a mountain range.
Antoine Thiboult, François Anctil, and Marie-Amélie Boucher
Hydrol. Earth Syst. Sci., 20, 1809–1825, https://doi.org/10.5194/hess-20-1809-2016, https://doi.org/10.5194/hess-20-1809-2016, 2016
Short summary
Short summary
Issuing a good hydrological forecast is challenging because of the numerous sources of uncertainty that lay in the description of the hydrometeorological processes. Several modeling techniques are investigated in this paper to assess how they contribute to the forecast quality. It is shown that the best modeling approach uses several dissimilar techniques that each tackle one source of uncertainty.
V. Vionnet, E. Martin, V. Masson, G. Guyomarc'h, F. Naaim-Bouvet, A. Prokop, Y. Durand, and C. Lac
The Cryosphere, 8, 395–415, https://doi.org/10.5194/tc-8-395-2014, https://doi.org/10.5194/tc-8-395-2014, 2014
V. Masson, P. Le Moigne, E. Martin, S. Faroux, A. Alias, R. Alkama, S. Belamari, A. Barbu, A. Boone, F. Bouyssel, P. Brousseau, E. Brun, J.-C. Calvet, D. Carrer, B. Decharme, C. Delire, S. Donier, K. Essaouini, A.-L. Gibelin, H. Giordani, F. Habets, M. Jidane, G. Kerdraon, E. Kourzeneva, M. Lafaysse, S. Lafont, C. Lebeaupin Brossier, A. Lemonsu, J.-F. Mahfouf, P. Marguinaud, M. Mokhtari, S. Morin, G. Pigeon, R. Salgado, Y. Seity, F. Taillefer, G. Tanguy, P. Tulet, B. Vincendon, V. Vionnet, and A. Voldoire
Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, https://doi.org/10.5194/gmd-6-929-2013, 2013
Related subject area
Subject: Vadose Zone Hydrology | Techniques and Approaches: Modelling approaches
From hydraulic root architecture models to efficient macroscopic sink terms including perirhizal resistance: quantifying accuracy and computational speed
Quantifying the potential of using Soil Moisture Active Passive (SMAP) soil moisture variability to predict subsurface water dynamics
Modeling 2D gravity-driven flow in unsaturated porous media for different infiltration rates
Quantitative soil characterization using frequency domain electromagnetic induction method in heterogeneous fields
Mesoscale permeability variations estimated from natural airflows in the decorated Cosquer Cave (southeastern France)
Identification of parameter importance for benzene transport in the unsaturated zone using global sensitivity analysis
Evapotranspiration prediction for European forest sites does not improve with assimilation of in situ soil water content data
A comprehensive study of deep learning for soil moisture prediction
Modelling groundwater recharge, actual evaporation, and transpiration in semi-arid sites of the Lake Chad basin: the role of soil and vegetation in groundwater recharge
Predicting soil hydraulic properties for binary mixtures – concept and application for constructed Technosols
Application of an improved distributed hydrological model based on the soil–gravel structure in the Niyang River basin, Qinghai–Tibet Plateau
Assessment of the interactions between soil–biosphere–atmosphere (ISBA) land surface model soil hydrology, using four closed-form soil water relationships and several lysimeters
Soil–vegetation–water interactions controlling solute flow and chemical weathering in volcanic ash soils of the high Andes
Estimating vadose zone water fluxes from soil water monitoring data: a comprehensive field study in Austria
Semi-continuum modeling of unsaturated porous media flow to explain Bauters' paradox
Effects of dynamic changes of desiccation cracks on preferential flow: experimental investigation and numerical modeling
Numerical assessment of morphological and hydraulic properties of moss, lichen and peat from a permafrost peatland
A robust upwind mixed hybrid finite element method for transport in variably saturated porous media
Stepping beyond perfectly mixed conditions in soil hydrological modelling using a Lagrangian approach
Using machine learning to predict optimal electromagnetic induction instrument configurations for characterizing the shallow subsurface
Gravity as a tool to improve the hydrologic mass budget in karstic areas
A scaling procedure for straightforward computation of sorptivity
From hydraulic root architecture models to macroscopic representations of root hydraulics in soil water flow and land surface models
Simulated or measured soil moisture: which one is adding more value to regional landslide early warning?
Interaction of soil water and groundwater during the freezing–thawing cycle: field observations and numerical modeling
Assessing the dynamics of soil salinity with time-lapse inversion of electromagnetic data guided by hydrological modelling
Simulation of reactive solute transport in the critical zone: a Lagrangian model for transient flow and preferential transport
Investigating the impact of exit effects on solute transport in macroporous media
Comparison of root water uptake models in simulating CO2 and H2O fluxes and growth of wheat
Understanding the mass, momentum, and energy transfer in the frozen soil with three levels of model complexities
A field-validated surrogate crop model for predicting root-zone moisture and salt content in regions with shallow groundwater
Characterizing uncertainty in the hydraulic parameters of oil sands mine reclamation covers and its influence on water balance predictions
Simulating preferential soil water flow and tracer transport using the Lagrangian Soil Water and Solute Transport Model
Assessment of simulated soil moisture from WRF Noah, Noah-MP, and CLM land surface schemes for landslide hazard application
Efficient estimation of effective hydraulic properties of stratal undulating surface layer using time-lapse multi-channel GPR
Partitioning snowmelt and rainfall in the critical zone: effects of climate type and soil properties
A unique vadose zone model for shallow aquifers: the Hetao irrigation district, China
Modelling of shallow water table dynamics using conceptual and physically based integrated surface-water–groundwater hydrologic models
Capturing soil-water and groundwater interactions with an iterative feedback coupling scheme: new HYDRUS package for MODFLOW
Caffeine vs. carbamazepine as indicators of wastewater pollution in a karst aquifer
Predicting the soil water retention curve from the particle size distribution based on a pore space geometry containing slit-shaped spaces
Technical note: Saturated hydraulic conductivity and textural heterogeneity of soils
Water ages in the critical zone of long-term experimental sites in northern latitudes
Ecohydrological particle model based on representative domains
Impact of capillary rise and recirculation on simulated crop yields
Soil hydraulic material properties and layered architecture from time-lapse GPR
Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions
Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values
Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips – Part 1: nonuniform infiltration and soil water redistribution
Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips – Part 2: model coupling, application, factor importance, and uncertainty
Daniel Leitner, Andrea Schnepf, and Jan Vanderborght
Hydrol. Earth Syst. Sci., 29, 1759–1782, https://doi.org/10.5194/hess-29-1759-2025, https://doi.org/10.5194/hess-29-1759-2025, 2025
Short summary
Short summary
Root water uptake strongly affects plant development and soil water balance. We use novel upscaling methods to develop land surface and crop models from detailed mechanistic models. We examine the mathematics behind this upscaling, pinpointing where errors occur. By simulating different crops and soils, we found that the accuracy loss varies based on root architecture and soil type. Our findings offer insights into balancing model complexity and accuracy for better predictions in agriculture.
Aruna Kumar Nayak, Xiaoyong Xu, Steven K. Frey, Omar Khader, Andre R. Erler, David R. Lapen, Hazen A. J. Russell, and Edward A. Sudicky
Hydrol. Earth Syst. Sci., 29, 215–244, https://doi.org/10.5194/hess-29-215-2025, https://doi.org/10.5194/hess-29-215-2025, 2025
Short summary
Short summary
Satellite remote sensing only measures the near-surface soil water content. We demonstrate that satellite-based near-surface soil water variability is a strong reflection of deeper subsurface water fluctuation and quantifies the response time differences between dynamics of satellite near-surface soil water and water in the deeper subsurface. Result support the use of satellite near-surface soil water measurements as indicators and/or predictors of water resources in the deeper subsurface.
Jakub Kmec and Miloslav Šír
Hydrol. Earth Syst. Sci., 28, 4947–4970, https://doi.org/10.5194/hess-28-4947-2024, https://doi.org/10.5194/hess-28-4947-2024, 2024
Short summary
Short summary
The most mysterious part of the hydrological cycle is the infiltration of water into porous soil. In this process, water enters the soil, some of it is retained in the soil or evaporates, and the remaining water continues to move below and through the rock environment. The physical description of infiltration, specifically the dependence of the infiltration rate on the flow, shows very unusual features that are beyond the normal human experience. Our paper is devoted to their elucidation.
Gaston Matias Mendoza Veirana, Guillaume Blanchy, Ellen Van De Vijver, Jeroen Verhegge, Wim Cornelis, and Philippe De Smedt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2693, https://doi.org/10.5194/egusphere-2024-2693, 2024
Short summary
Short summary
This study explores two methods for predicting soil properties using the FDEM technique in Belgium. We compared deterministic models, which often require extensive data adjustments, to stochastic models. Our findings suggest that stochastic models are generally more effective for soil analysis, although each method has its limitations. This research helps improve soil property prediction, crucial for agriculture and environmental management.
Hugo Pellet, Bruno Arfib, Pierre Henry, Stéphanie Touron, and Ghislain Gassier
Hydrol. Earth Syst. Sci., 28, 4035–4057, https://doi.org/10.5194/hess-28-4035-2024, https://doi.org/10.5194/hess-28-4035-2024, 2024
Short summary
Short summary
Conservation of decorated caves is highly dependent on airflows and is correlated with rock formation permeability. We present the first conceptual model of flows around the Paleolithic decorated Cosquer coastal cave (southeastern France), quantify air permeability, and show how its variation affects water levels inside the cave. This study highlights that airflows may change in karst unsaturated zones in response to changes in the water cycle and may thus be affected by climate change.
Meirav Cohen, Nimrod Schwartz, and Ravid Rosenzweig
Hydrol. Earth Syst. Sci., 28, 1585–1604, https://doi.org/10.5194/hess-28-1585-2024, https://doi.org/10.5194/hess-28-1585-2024, 2024
Short summary
Short summary
Contamination from fuel constituents poses a major threat to groundwater. However, studies devoted to identification of the driving parameters for fuel derivative transport in soils are scarce, and none have dealt with heterogeneous layered media. Here, we performed global sensitivity analysis (GSA) on a model of benzene transport to groundwater. The results identified the parameters controlling benzene transport in soils and showed that GSA is as an important tool for transport model analysis.
Lukas Strebel, Heye Bogena, Harry Vereecken, Mie Andreasen, Sergio Aranda-Barranco, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 28, 1001–1026, https://doi.org/10.5194/hess-28-1001-2024, https://doi.org/10.5194/hess-28-1001-2024, 2024
Short summary
Short summary
We present results from using soil water content measurements from 13 European forest sites in a state-of-the-art land surface model. We use data assimilation to perform a combination of observed and modeled soil water content and show the improvements in the representation of soil water content. However, we also look at the impact on evapotranspiration and see no corresponding improvements.
Yanling Wang, Liangsheng Shi, Yaan Hu, Xiaolong Hu, Wenxiang Song, and Lijun Wang
Hydrol. Earth Syst. Sci., 28, 917–943, https://doi.org/10.5194/hess-28-917-2024, https://doi.org/10.5194/hess-28-917-2024, 2024
Short summary
Short summary
LSTM temporal modeling suits soil moisture prediction; attention mechanisms enhance feature learning efficiently, as their feature selection capabilities are proven through Transformer and attention–LSTM hybrids. Adversarial training strategies help extract additional information from time series’ data. SHAP analysis and t-SNE visualization reveal differences in encoded features across models. This work serves as a reference for time series’ data processing in hydrology problems.
Christoph Neukum, Angela Morales-Santos, Melanie Ronelngar, Aminu Bala, and Sara Vassolo
Hydrol. Earth Syst. Sci., 27, 3601–3619, https://doi.org/10.5194/hess-27-3601-2023, https://doi.org/10.5194/hess-27-3601-2023, 2023
Short summary
Short summary
A generalized approach that requires limited field data and well-established models is tested for assessing groundwater recharge in the southern Lake Chad basin. E and T coefficients are estimated with the FAO-dual Kc concept at six locations. Measured soil water content and chloride concentrations along vertical soil profiles together with different scenarios for E and T partitioning and a Bayesian calibration approach are used to simulate water flow and chloride transport using Hydrus-1D.
Moreen Willaredt, Thomas Nehls, and Andre Peters
Hydrol. Earth Syst. Sci., 27, 3125–3142, https://doi.org/10.5194/hess-27-3125-2023, https://doi.org/10.5194/hess-27-3125-2023, 2023
Short summary
Short summary
This study proposes a model to predict soil hydraulic properties (SHPs) of constructed Technosols for urban greening. The SHPs are determined by the Technosol composition and describe their capacity to store and supply water to plants. The model predicts SHPs of any binary mixture based on the SHPs of its two pure components, facilitating simulations of flow and transport processes before production. This can help create Technosols designed for efficient urban greening and water management.
Pengxiang Wang, Zuhao Zhou, Jiajia Liu, Chongyu Xu, Kang Wang, Yangli Liu, Jia Li, Yuqing Li, Yangwen Jia, and Hao Wang
Hydrol. Earth Syst. Sci., 27, 2681–2701, https://doi.org/10.5194/hess-27-2681-2023, https://doi.org/10.5194/hess-27-2681-2023, 2023
Short summary
Short summary
Considering the impact of the special geological and climatic conditions of the Qinghai–Tibet Plateau on the hydrological cycle, this study established the WEP-QTP hydrological model. The snow cover and gravel layers affected the temporal and spatial changes in frozen soil and improved the regulation of groundwater on the flow process. Ignoring he influence of special underlying surface conditions has a great impact on the hydrological forecast and water resource utilization in this area.
Antoine Sobaga, Bertrand Decharme, Florence Habets, Christine Delire, Noële Enjelvin, Paul-Olivier Redon, Pierre Faure-Catteloin, and Patrick Le Moigne
Hydrol. Earth Syst. Sci., 27, 2437–2461, https://doi.org/10.5194/hess-27-2437-2023, https://doi.org/10.5194/hess-27-2437-2023, 2023
Short summary
Short summary
Seven instrumented lysimeters are used to assess the simulation of the soil water dynamic in one land surface model. Four water potential and hydraulic conductivity closed-form equations, including one mixed form, are evaluated. One form is more relevant for simulating drainage, especially during intense drainage events. The soil profile heterogeneity of one parameter of the closed-form equations is shown to be important.
Sebastián Páez-Bimos, Armando Molina, Marlon Calispa, Pierre Delmelle, Braulio Lahuatte, Marcos Villacís, Teresa Muñoz, and Veerle Vanacker
Hydrol. Earth Syst. Sci., 27, 1507–1529, https://doi.org/10.5194/hess-27-1507-2023, https://doi.org/10.5194/hess-27-1507-2023, 2023
Short summary
Short summary
This study analyzes how vegetation influences soil hydrology, water fluxes, and chemical weathering rates in the high Andes. There are clear differences in the A horizon. The extent of soil chemical weathering varies depending on vegetation type. This difference is attributed mainly to the water fluxes. Our findings reveal that vegetation can modify soil properties in the uppermost horizon, altering the water balance, solutes, and chemical weathering throughout the entire soil profile.
Marleen Schübl, Giuseppe Brunetti, Gabriele Fuchs, and Christine Stumpp
Hydrol. Earth Syst. Sci., 27, 1431–1455, https://doi.org/10.5194/hess-27-1431-2023, https://doi.org/10.5194/hess-27-1431-2023, 2023
Short summary
Short summary
Estimating groundwater recharge through the unsaturated zone is a difficult task that is fundamentally associated with uncertainties. One of the few methods available is inverse modeling based on soil water measurements. Here, we used a nested sampling algorithm within a Bayesian probabilistic framework to assess model uncertainties at 14 sites in Austria. Further, we analyzed simulated recharge rates to identify factors influencing groundwater recharge rates and their temporal variability.
Jakub Kmec, Miloslav Šír, Tomáš Fürst, and Rostislav Vodák
Hydrol. Earth Syst. Sci., 27, 1279–1300, https://doi.org/10.5194/hess-27-1279-2023, https://doi.org/10.5194/hess-27-1279-2023, 2023
Short summary
Short summary
When rain falls on the ground, most of the water subsequently flows through the soil. The movement of water through the partially wet soil layer is surprisingly complicated. For decades, no mathematical model has been able to capture this process in its entire complexity. Here, we present a model that aims to solve this long-standing problem. In this paper, we show that the model correctly reproduces the transition between diffusion and preferential flow regimes.
Yi Luo, Jiaming Zhang, Zhi Zhou, Juan P. Aguilar-Lopez, Roberto Greco, and Thom Bogaard
Hydrol. Earth Syst. Sci., 27, 783–808, https://doi.org/10.5194/hess-27-783-2023, https://doi.org/10.5194/hess-27-783-2023, 2023
Short summary
Short summary
This paper describes an experiment and modeling of the hydrological response of desiccation cracks under long-term wetting–drying cycles. We developed a new dynamic dual-permeability model to quantify the dynamic evolution of desiccation cracks and associated preferential flow and moisture distribution. Compared to other models, the dynamic dual-permeability model could describe the experimental data much better, but it also provided an improved description of the underlying physics.
Simon Cazaurang, Manuel Marcoux, Oleg S. Pokrovsky, Sergey V. Loiko, Artem G. Lim, Stéphane Audry, Liudmila S. Shirokova, and Laurent Orgogozo
Hydrol. Earth Syst. Sci., 27, 431–451, https://doi.org/10.5194/hess-27-431-2023, https://doi.org/10.5194/hess-27-431-2023, 2023
Short summary
Short summary
Moss, lichen and peat samples are reconstructed using X-ray tomography. Most samples can be cut down to a representative volume based on porosity. However, only homogeneous samples could be reduced to a representative volume based on hydraulic conductivity. For heterogeneous samples, a devoted pore network model is computed. The studied samples are mostly highly porous and water-conductive. These results must be put into perspective with compressibility phenomena occurring in field tests.
Anis Younes, Hussein Hoteit, Rainer Helmig, and Marwan Fahs
Hydrol. Earth Syst. Sci., 26, 5227–5239, https://doi.org/10.5194/hess-26-5227-2022, https://doi.org/10.5194/hess-26-5227-2022, 2022
Short summary
Short summary
Despite its advantages for the simulation of flow in heterogeneous and fractured porous media, the mixed hybrid finite element method has been rarely used for transport as it suffers from strong unphysical oscillations. We develop here a new upwind scheme for the mixed hybrid finite element that can avoid oscillations. Numerical examples confirm the robustness of this new scheme for the simulation of contaminant transport in both saturated and unsaturated conditions.
Alexander Sternagel, Ralf Loritz, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 1615–1629, https://doi.org/10.5194/hess-26-1615-2022, https://doi.org/10.5194/hess-26-1615-2022, 2022
Short summary
Short summary
We present a (physically based) Lagrangian approach to simulate diffusive mixing processes on the pore scale beyond perfectly mixed conditions. Results show the feasibility of the approach for reproducing measured mixing times and concentrations of isotopes over pore sizes and that typical shapes of breakthrough curves (normally associated with non-uniform transport in heterogeneous soils) may also occur as a result of imperfect subscale mixing in a macroscopically homogeneous soil matrix.
Kim Madsen van't Veen, Ty Paul Andrew Ferré, Bo Vangsø Iversen, and Christen Duus Børgesen
Hydrol. Earth Syst. Sci., 26, 55–70, https://doi.org/10.5194/hess-26-55-2022, https://doi.org/10.5194/hess-26-55-2022, 2022
Short summary
Short summary
Geophysical instruments are often used in hydrological surveys. A geophysical model that couples electrical conductivity in the subsurface layers with measurements from an electromagnetic induction instrument was combined with a machine learning algorithm. The study reveals that this combination can estimate the identifiability of electrical conductivity in a layered soil and provide insight into the best way to configure the instrument for a specific field site.
Tommaso Pivetta, Carla Braitenberg, Franci Gabrovšek, Gerald Gabriel, and Bruno Meurers
Hydrol. Earth Syst. Sci., 25, 6001–6021, https://doi.org/10.5194/hess-25-6001-2021, https://doi.org/10.5194/hess-25-6001-2021, 2021
Short summary
Short summary
Gravimetry offers a valid complement to classical hydrologic measurements in order to characterize karstic systems in which the recharge process causes fast accumulation of large water volumes in the voids of the epi-phreatic system. In this contribution we show an innovative integration of gravimetric and hydrologic observations to constrain a hydrodynamic model of the Škocjan Caves (Slovenia). We demonstrate how the inclusion of gravity observations improves the water mass budget estimates.
Laurent Lassabatere, Pierre-Emmanuel Peyneau, Deniz Yilmaz, Joseph Pollacco, Jesús Fernández-Gálvez, Borja Latorre, David Moret-Fernández, Simone Di Prima, Mehdi Rahmati, Ryan D. Stewart, Majdi Abou Najm, Claude Hammecker, and Rafael Angulo-Jaramillo
Hydrol. Earth Syst. Sci., 25, 5083–5104, https://doi.org/10.5194/hess-25-5083-2021, https://doi.org/10.5194/hess-25-5083-2021, 2021
Short summary
Short summary
Soil sorptivity is a crucial parameter for the modeling of water infiltration into soils. The standard equation used to compute sorptivity from the soil water retention curve, the unsaturated hydraulic conductivity, and initial and final water contents may lead to erroneous estimates due to its complexity. This study proposes a new straightforward scaling procedure for estimations of sorptivity for four famous and commonly used hydraulic models.
Jan Vanderborght, Valentin Couvreur, Felicien Meunier, Andrea Schnepf, Harry Vereecken, Martin Bouda, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 25, 4835–4860, https://doi.org/10.5194/hess-25-4835-2021, https://doi.org/10.5194/hess-25-4835-2021, 2021
Short summary
Short summary
Root water uptake is an important process in the terrestrial water cycle. How this process depends on soil water content, root distributions, and root properties is a soil–root hydraulic problem. We compare different approaches to implementing root hydraulics in macroscopic soil water flow and land surface models.
Adrian Wicki, Per-Erik Jansson, Peter Lehmann, Christian Hauck, and Manfred Stähli
Hydrol. Earth Syst. Sci., 25, 4585–4610, https://doi.org/10.5194/hess-25-4585-2021, https://doi.org/10.5194/hess-25-4585-2021, 2021
Short summary
Short summary
Soil moisture information was shown to be valuable for landslide prediction. Soil moisture was simulated at 133 sites in Switzerland, and the temporal variability was compared to the regional occurrence of landslides. We found that simulated soil moisture is a good predictor for landslides, and that the forecast goodness is similar to using in situ measurements. This encourages the use of models for complementing existing soil moisture monitoring networks for regional landslide early warning.
Hong-Yu Xie, Xiao-Wei Jiang, Shu-Cong Tan, Li Wan, Xu-Sheng Wang, Si-Hai Liang, and Yijian Zeng
Hydrol. Earth Syst. Sci., 25, 4243–4257, https://doi.org/10.5194/hess-25-4243-2021, https://doi.org/10.5194/hess-25-4243-2021, 2021
Short summary
Short summary
Freezing-induced groundwater migration and water table decline are widely observed, but quantitative understanding of these processes is lacking. By considering wintertime atmospheric conditions and occurrence of lateral groundwater inflow, a model coupling soil water and groundwater reproduced field observations of soil temperature, soil water content, and groundwater level well. The model results led to a clear understanding of the balance of the water budget during the freezing–thawing cycle.
Mohammad Farzamian, Dario Autovino, Angelo Basile, Roberto De Mascellis, Giovanna Dragonetti, Fernando Monteiro Santos, Andrew Binley, and Antonio Coppola
Hydrol. Earth Syst. Sci., 25, 1509–1527, https://doi.org/10.5194/hess-25-1509-2021, https://doi.org/10.5194/hess-25-1509-2021, 2021
Short summary
Short summary
Soil salinity is a serious threat in numerous arid and semi-arid areas of the world. Given this threat, efficient field assessment methods are needed to monitor the dynamics of soil salinity in salt-affected lands efficiently. We demonstrate that rapid and non-invasive geophysical measurements modelled by advanced numerical analysis of the signals and coupled with hydrological modelling can provide valuable information to assess the spatio-temporal variability in soil salinity over large areas.
Alexander Sternagel, Ralf Loritz, Julian Klaus, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 1483–1508, https://doi.org/10.5194/hess-25-1483-2021, https://doi.org/10.5194/hess-25-1483-2021, 2021
Short summary
Short summary
The key innovation of the study is a method to simulate reactive solute transport in the vadose zone within a Lagrangian framework. We extend the LAST-Model with a method to account for non-linear sorption and first-order degradation processes during unsaturated transport of reactive substances in the matrix and macropores. Model evaluations using bromide and pesticide data from irrigation experiments under different flow conditions on various timescales show the feasibility of the method.
Jérôme Raimbault, Pierre-Emmanuel Peyneau, Denis Courtier-Murias, Thomas Bigot, Jaime Gil Roca, Béatrice Béchet, and Laurent Lassabatère
Hydrol. Earth Syst. Sci., 25, 671–683, https://doi.org/10.5194/hess-25-671-2021, https://doi.org/10.5194/hess-25-671-2021, 2021
Short summary
Short summary
Contaminant transport in soils is known to be affected by soil heterogeneities such as macropores. The transport properties of heterogeneous porous media can be studied in laboratory columns. However, the results reported in this study (a combination of breakthrough experiments, magnetic resonance imaging and computer simulations of transport) show that these properties can be largely affected by the boundary devices of the columns, thus highlighting the need to take their effect into account.
Thuy Huu Nguyen, Matthias Langensiepen, Jan Vanderborght, Hubert Hüging, Cho Miltin Mboh, and Frank Ewert
Hydrol. Earth Syst. Sci., 24, 4943–4969, https://doi.org/10.5194/hess-24-4943-2020, https://doi.org/10.5194/hess-24-4943-2020, 2020
Short summary
Short summary
The mechanistic Couvreur root water uptake (RWU) model that is based on plant hydraulics and links root system properties to RWU, water stress, and crop development can evaluate the impact of certain crop properties on crop performance in different environments and soils, while the Feddes RWU approach does not possess such flexibility. This study also shows the importance of modeling root development and how it responds to water deficiency to predict the impact of water stress on crop growth.
Lianyu Yu, Yijian Zeng, and Zhongbo Su
Hydrol. Earth Syst. Sci., 24, 4813–4830, https://doi.org/10.5194/hess-24-4813-2020, https://doi.org/10.5194/hess-24-4813-2020, 2020
Short summary
Short summary
Soil mass and heat transfer processes were represented in three levels of model complexities to understand soil freeze–thaw mechanisms. Results indicate that coupled mass and heat transfer models considerably improved simulations of the soil hydrothermal regime. Vapor flow and thermal effects on water flow are the main mechanisms for the improvements. Given the explicit consideration of airflow, vapor flow and its effects on heat transfer were enhanced during the freeze–thaw transition period.
Zhongyi Liu, Zailin Huo, Chaozi Wang, Limin Zhang, Xianghao Wang, Guanhua Huang, Xu Xu, and Tammo Siert Steenhuis
Hydrol. Earth Syst. Sci., 24, 4213–4237, https://doi.org/10.5194/hess-24-4213-2020, https://doi.org/10.5194/hess-24-4213-2020, 2020
Short summary
Short summary
We have developed an integrated surrogate model for arid irrigated areas with shallow groundwater that links crop growth with soil water and salinity in the vadose zone. The model recognizes that field capacity is reached when the matric potential is equal to the height above the groundwater table. The model applies areas with shallow groundwater for which only very few surrogate models are available for most surface irrigation systems in the world without suffering from high groundwater.
M. Shahabul Alam, S. Lee Barbour, and Mingbin Huang
Hydrol. Earth Syst. Sci., 24, 735–759, https://doi.org/10.5194/hess-24-735-2020, https://doi.org/10.5194/hess-24-735-2020, 2020
Short summary
Short summary
This study quantifies uncertainties in the prediction of long-term water balance for mine reclamation soil covers using random sampling of model parameter distributions. Parameter distributions were obtained from model optimization for field monitoring data. Variability in climate is a greater source of uncertainty than the model parameters in evaporation predictions, while climate variability and model parameters exert similar uncertainty on predictions of net percolation.
Alexander Sternagel, Ralf Loritz, Wolfgang Wilcke, and Erwin Zehe
Hydrol. Earth Syst. Sci., 23, 4249–4267, https://doi.org/10.5194/hess-23-4249-2019, https://doi.org/10.5194/hess-23-4249-2019, 2019
Short summary
Short summary
We present our hydrological LAST-Model to simulate preferential soil water flow and tracer transport in macroporous soils. It relies on a Lagrangian perspective of the movement of discrete water particles carrying tracer masses through the subsoil and is hence an alternative approach to common models. Sensitivity analyses reveal the physical validity of the model concept and evaluation tests show that LAST can depict well observed tracer mass profiles with fingerprints of preferential flow.
Lu Zhuo, Qiang Dai, Dawei Han, Ningsheng Chen, and Binru Zhao
Hydrol. Earth Syst. Sci., 23, 4199–4218, https://doi.org/10.5194/hess-23-4199-2019, https://doi.org/10.5194/hess-23-4199-2019, 2019
Short summary
Short summary
This study assesses the usability of WRF model-simulated soil moisture for landslide monitoring in northern Italy. In particular, three advanced land surface model schemes (Noah, Noah-MP, and CLM4) are used to provide multi-layer soil moisture data. The results have shown Noah-MP can provide the best landslide monitoring performance. It is also demonstrated that a single soil moisture sensor located in plain area has a high correlation with a significant proportion of the study area.
Xicai Pan, Stefan Jaumann, Jiabao Zhang, and Kurt Roth
Hydrol. Earth Syst. Sci., 23, 3653–3663, https://doi.org/10.5194/hess-23-3653-2019, https://doi.org/10.5194/hess-23-3653-2019, 2019
Short summary
Short summary
This study suggests an efficient approach to obtain plot-scale soil hydraulic properties for the shallow structural soils via non-invasive ground-penetrating radar measurements. Facilitated by spatial information of lateral water flow, this approach is more efficient than the widely used inversion approaches relying on intensive soil moisture monitoring. The acquisition of such quantitative information is of great interest to fields such as hydrology and precision agriculture.
John C. Hammond, Adrian A. Harpold, Sydney Weiss, and Stephanie K. Kampf
Hydrol. Earth Syst. Sci., 23, 3553–3570, https://doi.org/10.5194/hess-23-3553-2019, https://doi.org/10.5194/hess-23-3553-2019, 2019
Short summary
Short summary
Streamflow in high-elevation and high-latitude areas may be vulnerable to snow loss, making it important to quantify how snowmelt and rainfall are divided between soil storage, drainage below plant roots, evapotranspiration and runoff. We examine this separation in different climates and soils using a physically based model. Results show runoff may be reduced with snowpack decline in all climates. The mechanisms responsible help explain recent observations of streamflow sensitivity to snow loss.
Zhongyi Liu, Xingwang Wang, Zailin Huo, and Tammo Siert Steenhuis
Hydrol. Earth Syst. Sci., 23, 3097–3115, https://doi.org/10.5194/hess-23-3097-2019, https://doi.org/10.5194/hess-23-3097-2019, 2019
Short summary
Short summary
A novel approach is taken in simulating the hydrology of the vadose zone in areas with shallow groundwater. The model recognizes that field capacity is reached when the matric potential is equal to the height above the groundwater table. The model can be used in areas with shallow groundwater to optimize irrigation water use and minimize tailwater losses.
Mohammad Bizhanimanzar, Robert Leconte, and Mathieu Nuth
Hydrol. Earth Syst. Sci., 23, 2245–2260, https://doi.org/10.5194/hess-23-2245-2019, https://doi.org/10.5194/hess-23-2245-2019, 2019
Short summary
Short summary
Modelling of shallow water table fluctuations is usually carried out using physically based numerical models. These models have notable limitations regarding intensive required data and computational burden. This paper presents an alternative modelling approach for modelling of such cases by introducing modifications to the calculation of groundwater recharge and saturated flow of a conceptual hydrologic model.
Jicai Zeng, Jinzhong Yang, Yuanyuan Zha, and Liangsheng Shi
Hydrol. Earth Syst. Sci., 23, 637–655, https://doi.org/10.5194/hess-23-637-2019, https://doi.org/10.5194/hess-23-637-2019, 2019
Short summary
Short summary
Accurately capturing the soil-water–groundwater interaction is vital for all disciplines related to subsurface flow but is difficult when undergoing significant nonlinearity in the modeling system. A new soil-water flow package is developed to solve the switching-form Richards’ equation. A multi-scale water balance analysis joins unsaturated–saturated models at separated scales. The whole system is solved efficiently with an iterative feedback coupling scheme.
Noam Zach Dvory, Yakov Livshitz, Michael Kuznetsov, Eilon Adar, Guy Gasser, Irena Pankratov, Ovadia Lev, and Alexander Yakirevich
Hydrol. Earth Syst. Sci., 22, 6371–6381, https://doi.org/10.5194/hess-22-6371-2018, https://doi.org/10.5194/hess-22-6371-2018, 2018
Short summary
Short summary
This research is paramount given the significance of karst aquifers as essential drinking water sources. While CBZ is considered conservative, CAF is subject to sorption and degradation, and therefore each of these two pollutants can be considered effective tracers for specific assessment of aquifer contamination. The model presented in this paper shows how each of the mentioned contaminants could serve as a better tool for aquifer contamination characterization and its treatment.
Chen-Chao Chang and Dong-Hui Cheng
Hydrol. Earth Syst. Sci., 22, 4621–4632, https://doi.org/10.5194/hess-22-4621-2018, https://doi.org/10.5194/hess-22-4621-2018, 2018
Short summary
Short summary
The soil water retention curve (SWRC) is fundamental to researching water flow and chemical transport in unsaturated media. However, the traditional prediction models underestimate the water content in the dry range of the SWRC. A method was therefore proposed to improve the estimation of the SWRC using a pore model containing slit-shaped spaces. The results show that the predicted SWRCs using the improved method reasonably approximated the measured SWRCs.
Carlos García-Gutiérrez, Yakov Pachepsky, and Miguel Ángel Martín
Hydrol. Earth Syst. Sci., 22, 3923–3932, https://doi.org/10.5194/hess-22-3923-2018, https://doi.org/10.5194/hess-22-3923-2018, 2018
Short summary
Short summary
Saturated hydraulic conductivity (Ksat) is an important soil parameter that highly depends on soil's particle size distribution (PSD). The nature of this dependency is explored in this work in two ways, (1) by using the information entropy as a heterogeneity parameter of the PSD and (2) by using descriptions of PSD in forms of textural triplets, different than the usual description in terms of the triplet of sand, silt, and clay contents.
Matthias Sprenger, Doerthe Tetzlaff, Jim Buttle, Hjalmar Laudon, and Chris Soulsby
Hydrol. Earth Syst. Sci., 22, 3965–3981, https://doi.org/10.5194/hess-22-3965-2018, https://doi.org/10.5194/hess-22-3965-2018, 2018
Short summary
Short summary
We estimated water ages in the upper critical zone with a soil physical model (SWIS) and found that the age of water stored in the soil, as well as of water leaving the soil via evaporation, transpiration, or recharge, was younger the higher soil water storage (inverse storage effect). Travel times of transpiration and evaporation were different. We conceptualized the subsurface into fast and slow flow domains and the water was usually half as young in the fast as in the slow flow domain.
Conrad Jackisch and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 3639–3662, https://doi.org/10.5194/hess-22-3639-2018, https://doi.org/10.5194/hess-22-3639-2018, 2018
Short summary
Short summary
We present a Lagrangian model for non-uniform soil water dynamics. It handles 2-D diffusion (based on a spatial random walk and implicit pore space redistribution) and 1-D advection in representative macropores (as film flow with dynamic interaction with the soil matrix). The interplay between the domains is calculated based on an energy-balance approach which does not require any additional parameterisation. Model tests give insight into the evolution of the non-uniform infiltration patterns.
Joop Kroes, Iwan Supit, Jos van Dam, Paul van Walsum, and Martin Mulder
Hydrol. Earth Syst. Sci., 22, 2937–2952, https://doi.org/10.5194/hess-22-2937-2018, https://doi.org/10.5194/hess-22-2937-2018, 2018
Short summary
Short summary
Impact of upward flow by capillary rise and recirculation on crop yields is often neglected or underestimated. Case studies and model experiments are used to illustrate the impact of this upward flow in the Dutch delta. Neglecting upward flow results in yield reductions for grassland, maize and potatoes. Half of the withheld water behind these yield effects comes from recirculated percolation water as occurs in free-drainage conditions; the other half from increased upward capillary rise.
Stefan Jaumann and Kurt Roth
Hydrol. Earth Syst. Sci., 22, 2551–2573, https://doi.org/10.5194/hess-22-2551-2018, https://doi.org/10.5194/hess-22-2551-2018, 2018
Short summary
Short summary
Ground-penetrating radar (GPR) is a noninvasive and nondestructive measurement method to monitor the hydraulic processes precisely and efficiently. We analyze synthetic as well as measured data from the ASSESS test site and show that the analysis yields accurate estimates for the soil hydraulic material properties as well as for the subsurface architecture by comparing the results to references derived from time domain reflectometry (TDR) and subsurface architecture ground truth data.
Gaochao Cai, Jan Vanderborght, Matthias Langensiepen, Andrea Schnepf, Hubert Hüging, and Harry Vereecken
Hydrol. Earth Syst. Sci., 22, 2449–2470, https://doi.org/10.5194/hess-22-2449-2018, https://doi.org/10.5194/hess-22-2449-2018, 2018
Short summary
Short summary
Different crop growths had consequences for the parameterization of root water uptake models. The root hydraulic parameters of the Couvreur model but not the water stress parameters of the Feddes–Jarvis model could be constrained by the field data measured from rhizotron facilities. The simulated differences in transpiration from the two soils and the different water treatments could be confirmed by sap flow measurements. The Couvreur model predicted the ratios of transpiration fluxes better.
Coleen D. U. Carranza, Martine J. van der Ploeg, and Paul J. J. F. Torfs
Hydrol. Earth Syst. Sci., 22, 2255–2267, https://doi.org/10.5194/hess-22-2255-2018, https://doi.org/10.5194/hess-22-2255-2018, 2018
Short summary
Short summary
Remote sensing has been popular for mapping surface soil moisture. However, estimating subsurface values using surface soil moisture remains a challenge, as decoupling can occur. Depth-integrated soil moisture values used in hydrological models are affected by vertical variability. Using statistical methods, we investigate vertical variability between the surface (5 cm) and subsurface (40 cm) to quantify decoupling. We also discuss potential controls for decoupling during wet and dry conditions.
Rafael Muñoz-Carpena, Claire Lauvernet, and Nadia Carluer
Hydrol. Earth Syst. Sci., 22, 53–70, https://doi.org/10.5194/hess-22-53-2018, https://doi.org/10.5194/hess-22-53-2018, 2018
Short summary
Short summary
Seasonal shallow water tables (WTs) in lowlands limit vegetation-buffer efficiency to control runoff pollution. Mechanistic models are needed to quantify true field efficiency. A new simplified algorithm for soil infiltration over WTs is tested against reference models and lab data showing WT effects depend on local settings but are negligible after 2 m depth. The algorithm is coupled to a complete vegetation buffer model in a companion paper to analyze pesticide and sediment control in situ.
Claire Lauvernet and Rafael Muñoz-Carpena
Hydrol. Earth Syst. Sci., 22, 71–87, https://doi.org/10.5194/hess-22-71-2018, https://doi.org/10.5194/hess-22-71-2018, 2018
Short summary
Short summary
Vegetation buffers, often placed in lowlands to control runoff pollution, can exhibit limited efficiency due to seasonal shallow water tables (WTs). A new shallow water table infiltration algorithm developed in a companion paper is coupled to a complete vegetation buffer model to quantify pesticide and sediment control in the field. We evaluated the model on two field experiments in France with and without WT conditions and show WTs can control efficiency depending on land and climate settings.
Cited articles
Abdolahzadeh, A. M., Lacroix Vachon, B., and Cabral, A. R.: Assessment of the design of an experimental cover with capillary barrier effect using 4 years of field data, Geotechnical and Geological Engineering, 29, 783–802, 2011. a
Agnihotri, J., Behrangi, A., Tavakoly, A., Geheran, M., Farmani, M. A., and Niu, G.-Y.: Higher frozen soil permeability represented in a hydrological model improves spring streamflow prediction from river basin to continental scales, Water Resour. Res., 59, e2022WR033075, https://doi.org/10.1029/2022WR033075, 2023. a
Al Atawneh, D., Cartwright, N., and Bertone, E.: Climate change and its impact on the projected values of groundwater recharge: A review, J. Hydrol., 601, 126602, https://doi.org/10.1016/j.jhydrol.2021.126602, 2021. a
Al-Houri, Z., Barber, M., Yonge, D., Ullman, J., and Beutel, M.: Impacts of frozen soils on the performance of infiltration treatment facilities, Cold Reg. Sci. Technol., 59, 51–57, 2009. a
Bakker, M., Bartholomeus, R. P., and Ferré, T. P. A.: Preface “Groundwater recharge: processes and quantification”, Hydrol. Earth Syst. Sci., 17, 2653–2655, https://doi.org/10.5194/hess-17-2653-2013, 2013. a
Baringhaus, L. and Franz, C.: On a new multivariate two-sample test, J. Multivariate Anal., 88, 190–206, 2004. a
Bethune, M., Selle, B., and Wang, Q.: Understanding and predicting deep percolation under surface irrigation, Water Resour. Res., 44, 12, https://doi.org/10.1029/2007WR006380, 2008. a
Beven, K. and Young, P.: A guide to good practice in modeling semantics for authors and referees, Water Resour. Res., 49, 5092–5098, 2013. a
Bhumralkar, C. M.: Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model, J. Appl. Meteorol. Climatol., 14, 1246–1258, 1975. a
Blackadar, A. K.: Modelng the nocturnal boundary layer, in: Preprints, Third Symp. on Atmospheric Turbulence, Diffusion, and Air Quality, Raleigh, Amer. Meteor. Soc., edited by: Hanna, S. R., Talley, W. K., Blackadar, A. K., and Blair, F., https://www.jstor.org/stable/26217779 (last access: 20 March 2025), 1976. a
Boussetta, S., Balsamo, G., Arduini, G., Dutra, E., McNorton, J., Choulga, M., Agustí-Panareda, A., Beljaars, A., Wedi, N., Munõz-Sabater, J., de Rosnay, P., Sandu, I., Hadade, I., Carver, G., Mazzetti, C., Prudhomme, C., Dai, Y., and Zsoter, E.: ECLand: The ECMWF land surface modelling system, Atmosphere, 12, 723, https://doi.org/10.3390/atmos12060723, 2021. a, b
Cabral, A. R., Amani, A., Kahale, T., Ouédraogo,, O., and Duarte Neto, M.: Integrated Lysimeter Study (Deep Percolation) Data from Saint-Nicéphore, Quebec, Zenodo [data set], https://doi.org/10.5281/zenodo.10582140, 2024. a
Cao, G., Scanlon, B. R., Han, D., and Zheng, C.: Impacts of thickening unsaturated zone on groundwater recharge in the North China Plain, J. Hydrol., 537, 260–270, 2016. a
Chadburn, S., Burke, E., Essery, R., Boike, J., Langer, M., Heikenfeld, M., Cox, P., and Friedlingstein, P.: An improved representation of physical permafrost dynamics in the JULES land-surface model, Geosci. Model Dev., 8, 1493–1508, https://doi.org/10.5194/gmd-8-1493-2015, 2015. a
Chamberlain, E., Iskandar, I., and Hunsicker, S.: Effect of freeze-thaw cycles on the permeability and macrostructure of soils, Cold Reg, Res, Eng, Lab,, 90, 145–155, 1990. a
Chamberlain, E. J. and Gow, A. J.: Effect of freezing and thawing on the permeability and structure of soils, in: Developments in Geotechnical Engineering, Elsevier, 26, 73–92, 1979. a
Charrois, L., Cosme, E., Dumont, M., Lafaysse, M., Morin, S., Libois, Q., and Picard, G.: On the assimilation of optical reflectances and snow depth observations into a detailed snowpack model, The Cryosphere, 10, 1021–1038, https://doi.org/10.5194/tc-10-1021-2016, 2016. a, b
Cohen, J., Ye, H., and Jones, J.: Trends and variability in rain-on-snow events, Geophys. Res. Lett., 42, 7115–7122, 2015. a
Colli, M., Lanza, L., and Chan, P.: Co-located tipping-bucket and optical drop counter RI measurements and a simulated correction algorithm, Atmos. Res., 119, 3–12, 2013. a
Cordeiro, M. R. C., Wilson, H. F., Vanrobaeys, J., Pomeroy, J. W., Fang, X., and The Red-Assiniboine Project Biophysical Modelling Team: Simulating cold-region hydrology in an intensively drained agricultural watershed in Manitoba, Canada, using the Cold Regions Hydrological Model, Hydrol. Earth Syst. Sci., 21, 3483–3506, https://doi.org/10.5194/hess-21-3483-2017, 2017. a
Dalin, C., Wada, Y., Kastner, T., and Puma, M. J.: Groundwater depletion embedded in international food trade, Nature, 543, 700–704, 2017. a
Decharme, B. and Douville, H.: Introduction of a sub-grid hydrology in the ISBA land surface model, Clim. Dynam., 26, 65–78, 2006. a
Demand, D., Selker, J. S., and Weiler, M.: Influences of macropores on infiltration into seasonally frozen soil, Vadose Zone J., 18, 1–14, 2019. a
Denager, T., Sonnenborg, T. O., Looms, M. C., Bogena, H., and Jensen, K. H.: Point-scale multi-objective calibration of the Community Land Model (version 5.0) using in situ observations of water and energy fluxes and variables, Hydrol. Earth Syst. Sci., 27, 2827–2845, https://doi.org/10.5194/hess-27-2827-2023, 2023. a
Dore, M. H.: Climate change and changes in global precipitation patterns: what do we know?, Environ. Int., 31, 1167–1181, 2005. a
Fayer, M. J.: UNSAT-H version 3.0: Unsaturated soil water and heat flow model theory, user manual, and examples, Tech. rep., Pacific Northwest National Lab.(PNNL), Richland, WA (United States), 2000. a
Fisher, R. A. and Koven, C. D.: Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems, J. Adv. Model. Earth Sy., 12, e2018MS001453, https://doi.org/10.1029/2018MS001453, 2020. a
Gaborit, É., Fortin, V., Xu, X., Seglenieks, F., Tolson, B., Fry, L. M., Hunter, T., Anctil, F., and Gronewold, A. D.: A hydrological prediction system based on the SVS land-surface scheme: efficient calibration of GEM-Hydro for streamflow simulation over the Lake Ontario basin, Hydrol. Earth Syst. Sci., 21, 4825–4839, https://doi.org/10.5194/hess-21-4825-2017, 2017. a
Ganji, A., Sushama, L., Verseghy, D., and Harvey, R.: On improving cold region hydrological processes in the Canadian Land Surface Scheme, Theor. Appl. Climatol., 127, 45–59, 2017. a
Gao, C., Ye, W.-M., Lu, P.-H., Liu, Z.-R., Wang, Q., and Chen, Y.-G.: An infiltration model for inclined covers with consideration of capillary barrier effect, Eng. Geol., 326, 107318, https://doi.org/10.1016/j.enggeo.2023.107318, 2023. a
Ghasemizade, M., Moeck, C., and Schirmer, M.: The effect of model complexity in simulating unsaturated zone flow processes on recharge estimation at varying time scales, J. Hydrol., 529, 1173–1184, 2015. a
Gleeson, T., Wada, Y., Bierkens, M. F., and Van Beek, L. P.: Water balance of global aquifers revealed by groundwater footprint, Nature, 488, 197–200, 2012. a
Graham, S. L., Srinivasan, M., Faulkner, N., and Carrick, S.: Soil hydraulic modeling outcomes with four parameterization methods: Comparing soil description and inverse estimation approaches, Vadose Zone J., 17, 1–10, 2018. a
Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., Treidel, H., and Aureli, A.: Beneath the surface of global change: Impacts of climate change on groundwater, J. Hydrol., 405, 532–560, 2011. a
Grimit, E. P., Gneiting, T., Berrocal, V. J., and Johnson, N. A.: The continuous ranked probability score for circular variables and its application to mesoscale forecast ensemble verification, Q. J. Roy. Meteor. Soc., 132, 2925–2942, 2006. a
Gurdak, J. J. and Roe, C. D.: Recharge rates and chemistry beneath playas of the High Plains aquifer, USA, Hydrogeol. J., 18, 1747, https://doi.org/10.1007/s10040-010-0672-3, 2010. a
Harpold, A. A. and Molotch, N. P.: Sensitivity of soil water availability to changing snowmelt timing in the western US, Geophys. Res. Lett., 42, 8011–8020, 2015. a
He, H., Liu, L., Dyck, M., Si, B., and Lv, J.: Modelling dry soil thermal conductivity, Soil Till. Res., 213, 105093, https://doi.org/10.1016/j.still.2021.105093, 2021. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, 2020. a
Ho, C. K., Arnold, B. W., Cochran, J. R., Taira, R. Y., and Pelton, M. A.: A probabilistic model and software tool for evaluating the long-term performance of landfill covers, Environ. Model. Softw., 19, 63–88, 2004. a
Huang, F., Zhang, Y., Zhang, D., and Chen, X.: Environmental groundwater depth for groundwater-dependent terrestrial ecosystems in arid/semiarid regions: A review, Int. J. Env. Res. Pub. He., 16, 763, https://doi.org/10.3390/ijerph16050763, 2019. a
Hübner, R., Günther, T., Heller, K., Noell, U., and Kleber, A.: Impacts of a capillary barrier on infiltration and subsurface stormflow in layered slope deposits monitored with 3-D ERT and hydrometric measurements, Hydrol. Earth Syst. Sci., 21, 5181–5199, https://doi.org/10.5194/hess-21-5181-2017, 2017. a
Iwata, Y., Hayashi, M., Suzuki, S., Hirota, T., and Hasegawa, S.: Effects of snow cover on soil freezing, water movement, and snowmelt infiltration: A paired plot experiment, Water Resour. Res., 46, 9, https://doi.org/10.1029/2009WR008070, 2010. a
Iwata, Y., Yanai, Y., Yazaki, T., and Hirota, T.: Effects of a snow-compaction treatment on soil freezing, snowmelt runoff, and soil nitrate movement: A field-scale paired-plot experiment, J. Hydrol., 567, 280–289, 2018. a
Jennings, K. S., Winchell, T. S., Livneh, B., and Molotch, N. P.: Spatial variation of the rain–snow temperature threshold across the Northern Hemisphere, Nat. Commun., 9, 1–9, 2018. a
Jiang, R., Li, T., Liu, D., Fu, Q., Hou, R., Li, Q., Cui, S., and Li, M.: Soil infiltration characteristics and pore distribution under freezing–thawing conditions, The Cryosphere, 15, 2133–2146, https://doi.org/10.5194/tc-15-2133-2021, 2021. a
Johansen, O.: Varmeledningsevne av jordarter (Thermal conductivity of soils). Trondheim, Norway: University of Trondheim US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, N.H., CRREL draft English Translation 637, 1975. a
Juras, R., Würzer, S., Pavlásek, J., Vitvar, T., and Jonas, T.: Rainwater propagation through snowpack during rain-on-snow sprinkling experiments under different snow conditions, Hydrol. Earth Syst. Sci., 21, 4973–4987, https://doi.org/10.5194/hess-21-4973-2017, 2017. a
Kahale, T. and Cabral, A. R.: Field and numerical evaluation of breakthrough suction effects in lysimeter design, Environ. Technol., 45, 1169–1182, 2024. a
Kahale, T., Ouédraogo, O., Duarte Neto, M., Simard, V., and Cabral, A. R.: Field-based assessment of the design of lysimeters for landfill final cover seepage control, J. Air Waste Manage. A., 72, 1477–1488, 2022. a
Khire, M. V., Benson, C. H., and Bosscher, P. J.: Water balance modeling of earthen final covers, J. Geotech. Geoenviron., 123, 744–754, 1997. a
Kochendorfer, J., Rasmussen, R., Wolff, M., Baker, B., Hall, M. E., Meyers, T., Landolt, S., Jachcik, A., Isaksen, K., Brækkan, R., and Leeper, R.: The quantification and correction of wind-induced precipitation measurement errors, Hydrol. Earth Syst. Sci., 21, 1973–1989, https://doi.org/10.5194/hess-21-1973-2017, 2017. a
Kurylyk, B. L., MacQuarrie, K. T., and McKenzie, J. M.: Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools, Earth-Sci. Rev., 138, 313–334, 2014. a
Lanza, L., Leroy, M., Alexandropoulos, C., Stagi, L., and Wauben, W.: Laboratory intercomparison of rainfall intensity gauges, World Meteorological Organisation–Instruments and Observing Methods Rep, 84, 2005. a
Leonardini, G., Anctil, F., Vionnet, V., Abrahamowicz, M., Nadeau, D. F., and Fortin, V.: Evaluation of the Snow Cover in the Soil, Vegetation, and Snow (SVS) Land Surface Model, J. Hydrometeorol., 22, 1663–1680, https://doi.org/10.1175/jhm-d-20-0249.1, 2021. a, b, c
Li, D. and Shao, M.: Temporal stability analysis for estimating spatial mean soil water storage and deep percolation in irrigated maize crops, Agr. Water Manage., 144, 140–149, 2014. a
Li, Y., Fu, Q., Li, T., Liu, D., Hou, R., Li, Q., Yi, J., Li, M., and Meng, F.: Snow melting water infiltration mechanism of farmland freezing-thawing soil and determination of meltwater infiltration parameter in seasonal frozen soil areas, Agr. Water Manage., 258, 107165, https://doi.org/10.1016/j.agwat.2021.107165, 2021. a
Loh, W.-L.: On Latin hypercube sampling, Ann. Stat., 24, 2058–2080, 1996. a
Malusis, M. A. and Benson, C. H.: Lysimeters versus water-content sensors for performance monitoring of alternative earthen final covers, Unsaturated Soils 2006, 741–752, 2006. a
Manabe, S.: Climate and the ocean circulation: II. The atmospheric circulation and the effect of heat transfer by ocean currents, Mon. Weather Rev., 97, 775–805, 1969. a
Mancarella, D. and Simeone, V.: Capillary barrier effects in unsaturated layered soils, with special reference to the pyroclastic veneer of the Pizzo d’Alvano, Campania, Italy, B. Eng. Geol. Environ., 71, 791–801, 2012. a
Matheson, J. E. and Winkler, R. L.: Scoring rules for continuous probability distributions, Management Science, 22, 1087–1096, 1976. a
May, R. M., Goebbert, K. H., Thielen, J. E., Leeman, J. R., Camron, M. D., Bruick, Z., Bruning, E. C., Manser, R. P., Arms, S. C., and Marsh, P. T.: MetPy: A meteorological Python library for data analysis and visualization, B. Am. Meteorol. Soc., 103, E2273–E2284, 2022. a
Mazurkiewicz, A. B., Callery, D. G., and McDonnell, J. J.: Assessing the controls of the snow energy balance and water available for runoff in a rain-on-snow environment, J. Hydrol., 354, 1–14, 2008. a
McCabe, G. J., Clark, M. P., and Hay, L. E.: Rain-on-snow events in the western United States, B. Am. Meteorol. Soc., 88, 319–328, 2007. a
McCartney, J. S. and Zornberg, J. G.: Effects of infiltration and evaporation on geosynthetic capillary barrier performance, Can. Geotech. J., 47, 1201–1213, 2010. a
Meissner, R., Rupp, H., and Seyfarth, M.: Advances in out door lysimeter techniques, Water Air Soil Poll. Focus, 8, 217–225, 2008. a
Mittelbach, H., Lehner, I., and Seneviratne, S. I.: Comparison of four soil moisture sensor types under field conditions in Switzerland, J. Hydrol., 430, 39–49, 2012. a
Mohammed, A. A., Kurylyk, B. L., Cey, E. E., and Hayashi, M.: Snowmelt infiltration and macropore flow in frozen soils: Overview, knowledge gaps, and a conceptual framework, Vadose Zone J., 17, 1–15, 2018. a
Mohammed, A. A., Pavlovskii, I., Cey, E. E., and Hayashi, M.: Effects of preferential flow on snowmelt partitioning and groundwater recharge in frozen soils, Hydrol. Earth Syst. Sci., 23, 5017–5031, https://doi.org/10.5194/hess-23-5017-2019, 2019. a
Mohammed, G. A., Hayashi, M., Farrow, C. R., and Takano, Y.: Improved characterization of frozen soil processes in the Versatile Soil Moisture Budget model, Can. J. Soil Sci., 93, 511–531, 2013. a
Musselman, K. N., Clark, M. P., Liu, C., Ikeda, K., and Rasmussen, R.: Slower snowmelt in a warmer world, Nat. Clim. Change, 7, 214–219, 2017. a
Naik, A. P., Ghosh, B., and Pekkat, S.: Estimating soil hydraulic properties using mini disk infiltrometer, ISH J. Hydraul. Eng., 25, 62–70, 2019. a
Niu, G.-Y. and Yang, Z.-L.: An observation-based formulation of snow cover fraction and its evaluation over large North American river basins, J. Geophys. Res.-Atmos., 112, D21101, https://doi.org/10.1029/2007JD008674, 2007. a, b, c
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements, J. Geophys. Res.-Atmos., 116, https://doi.org/10.1029/2010JD015139, 2011. a
Noori, R., Maghrebi, M., Jessen, S., Bateni, S. M., Heggy, E., Javadi, S., Noury, M., Pistre, S., Abolfathi, S., and AghaKouchak, A.: Decline in Iran’s groundwater recharge, Nat. Commun., 14, 6674, https://doi.org/10.1038/s41467-023-42411-2, 2023. a
Nygren, M., Giese, M., and Barthel, R.: Recent trends in hydroclimate and groundwater levels in a region with seasonal frost cover, J. Hydrol., 602, 126732, https://doi.org/10.1016/j.jhydrol.2021.126732, 2021. a
Ogorzalek, A., Bohnhoff, G., Shackelford, C., Benson, C., and Apiwantragoon, P.: Comparison of field data and water-balance predictions for a capillary barrier cover, J. Geotech. Geoenviron., 134, 470–486, 2008. a
Oldecop, L. A., Rodari, G. J., and Muñoz, J. J.: Atmosphere interaction and capillary barrier in filtered tailings, Geotech. Geol. Eng., 35, 1803–1817, 2017. a
Orellana, F., Verma, P., Loheide, S. P., and Daly, E.: Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems, Rev. Geophys., 50, https://doi.org/10.1029/2011RG000383, 2012. a
Oreskes, N., Shrader-Frechette, K., and Belitz, K.: Verification, validation, and confirmation of numerical models in the earth sciences, Science, 263, 641–646, 1994. a
Ouédraogo, O., Duarte, M., Kahale, T., Abichou, T., and Cabral, A.: Parametric analysis of the efficacy of lysimeter designs using numerical modelling, Geotech. Geol. Eng., 40, 5361–5375, 2022. a
Payero, J. O. and Irmak, S.: Construction, installation, and performance of two repacked weighing lysimeters, Irrig. Sci., 26, 191–202, 2008. a
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007. a
Peters-Lidard, C., Blackburn, E., Liang, X., and Wood, E. F.: The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures, J. Atmos. Sci., 55, 1209–1224, 1998. a
Pomeroy, J., Brown, T., Fang, X., Shook, K. R., Pradhananga, D., Armstrong, R., Harder, P., Marsh, C., Costa, D., Krogh, S., Aubry-Wake, C., Annand, H., Lawford, P., He, Z., Kompanizare, M., and Lopez Moreno, J. I.: The cold regions hydrological modelling platform for hydrological diagnosis and prediction based on process understanding, J. Hydrol., 615, 128711, https://doi.org/10.1016/j.jhydrol.2022.128711, 2022. a
Raleigh, M. S., Lundquist, J. D., and Clark, M. P.: Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework, Hydrol. Earth Syst. Sci., 19, 3153–3179, https://doi.org/10.5194/hess-19-3153-2015, 2015. a
Sammartino, S., Lissy, A.-S., Bogner, C., Van Den Bogaert, R., Capowiez, Y., Ruy, S., and Cornu, S.: Identifying the functional macropore network related to preferential flow in structured soils, Vadose Zone J., 14, vzj2015–05, https://doi.org/10.2136/vzj2015.05.0070, 2015. a
Schindler, U., von Unold, G., Durner, W., and Mueller, L.: Recent progress in measuring soil hydraulic properties, in: Proceedings of the International Conference on Environment and Civil Engineering, 24–25 April 2015, Pattaya (Thailand), 24–25, https://doi.org/10.15242/iae.iae0415401, 2015. a
Schindler, U. G. and Müller, L.: Soil hydraulic functions of international soils measured with the Extended Evaporation Method (EEM) and the HYPROP device, Open Data Journal for Agricultural Research, 3, 2017. a
Schwemmle, R. and Weiler, M.: Consistent modeling of transport processes and travel times–coupling soil hydrologic processes with StorAge Selection functions, Water Resour. Res., 60, e2023WR034441, https://doi.org/10.1029/2023WR034441, 2024. a
Selim, T., Elkefafy, S. M., Berndtsson, R., Elkiki, M., and El-Kharbotly, A. A.: Heavy Metal Transport in Different Drip-Irrigated Soil Types with Potato Crop, Sustainability, 15, 10542, https://doi.org/10.3390/su151310542, 2023. a
Selle, B., Minasny, B., Bethune, M., Thayalakumaran, T., and Chandra, S.: Applicability of Richards' equation models to predict deep percolation under surface irrigation, Geoderma, 160, 569–578, 2011. a
Séré, G., Ouvrard, S., Magnenet, V., Pey, B., Morel, J. L., and Schwartz, C.: Predictability of the evolution of the soil structure using water flow modeling for a constructed technosol, Vadose Zone J., 11, 1, https://doi.org/10.2136/vzj2011.0069, 2012. a
Shirazi, T., Allen, D., Quinton, W., and Pomeroy, J.: Estimating soil thaw energy in sub-Alpine tundra at the hillslope scale, Wolf Creek, Yukon Territory, Canada, Hydrol. Res., 40, 1–18, 2009. a
Simunek, J., Van Genuchten, M. T., and Sejna, M.: The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media, University of California-Riverside Research Reports, 3, 1–240, 2005. a
Sobaga, A., Decharme, B., Habets, F., Delire, C., Enjelvin, N., Redon, P.-O., Faure-Catteloin, P., and Le Moigne, P.: Assessment of the interactions between soil–biosphere–atmosphere (ISBA) land surface model soil hydrology, using four closed-form soil water relationships and several lysimeters, Hydrol. Earth Syst. Sci., 27, 2437–2461, https://doi.org/10.5194/hess-27-2437-2023, 2023. a
Stähli, M., Jansson, P.-E., and Lundin, L.-C.: Preferential Water Flow in a Frozen Soil - a Two-Domain Model Approach, Hydrol. Process., 10, 1305–1316, 1996. a
Stumpp, C., Stichler, W., Kandolf, M., and Simunek, Jiri, J.: Effects of Land Cover and Fertilization Method on Water Flow and Solute Transport in Five Lysimeters: A Long-Term Study Using Stable Water Isotopes, Vadose Zone J., 11, 1, https://doi.org/10.2136/vzj2011.0075, 2012. a
Székely, G. J. and Rizzo, M. L.: A new test for multivariate normality, J. Multivariate Anal., 93, 58–80, 2005. a
Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., MacDonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., Gurdak, J. J., Allen, D. M., Shamsudduha, M., Hiscock, K., Yeh, P. J.-F., Holman, I., and Treidel, H.: Ground water and climate change, Nat. Clim. Change, 3, 322–329, 2013. a
Trenberth, K. E.: Changes in precipitation with climate change, Climate Res., 47, 123–138, 2011. a
Trigo, I., Boussetta, S., Viterbo, P., Balsamo, G., Beljaars, A., and Sandu, I.: Comparison of model land skin temperature with remotely sensed estimates and assessment of surface-atmosphere coupling, J. Geophys. Res.-Atmos., 120, 12096–12111, 2015. a
Trubilowicz, J. W. and Moore, R. D.: Quantifying the role of the snowpack in generating water available for run-off during rain-on-snow events from snow pillow records, Hydrol. Process., 31, 4136–4150, 2017. a
Vásquez, V., Thomsen, A., Iversen, B. V., Jensen, R., Ringgaard, R., and Schelde, K.: Integrating lysimeter drainage and eddy covariance flux measurements in a groundwater recharge model, Hydrol. Sci. J., 60, 1520–1537, 2015. a
Vereecken, H., Weihermüller, L., Assouline, S., Šimůnek, J., Verhoef, A., Herbst, M., Archer, N., Mohanty, B., Montzka, C., Vanderborght, J., Balsamo, G., Bechtold, M., Boone, A., Chadburn, S., Cuntz, M., Decharme, B., Ducharne, A., Ek, M., Garrigues, S., Goergen, K., Ingwersen, J., Kollet, S., Lawrence, D. M., Li, Q., Or, D., Swenson, S., de Vrese, P., Walko, R., Wu, Y., and Xue, Y.: Infiltration from the pedon to global grid scales: An overview and outlook for land surface modeling, Vadose Zone J., 18, 1–53, 2019. a
Verseghy, D. L.: CLASS – A Canadian land surface scheme for GCMs. I. Soil model, Int. J. Climatol., 11, 111–133, 1991. a
Wada, Y., Van Beek, L. P., Van Kempen, C. M., Reckman, J. W., Vasak, S., and Bierkens, M. F.: Global depletion of groundwater resources, Geophys. Res. Lett., 37, 20, https://doi.org/10.1029/2010GL044571, 2010. a
Walvoord, M. A. and Kurylyk, B. L.: Hydrologic impacts of thawing permafrost – A review, Vadose Zone J., 15, vzj2016–01, https://doi.org/10.2136/vzj2016.01.0010, 2016. a
Watanabe, K., Kito, T., Dun, S., Wu, J. Q., Greer, R. C., and Flury, M.: Water infiltration into a frozen soil with simultaneous melting of the frozen layer, Vadose Zone J., 12, vzj2011–0188, https://doi.org/10.2136/vzj2011.0188, 2013. a
Wheater, H. S., Pomeroy, J. W., Pietroniro, A., Davison, B., Elshamy, M., Yassin, F., Rokaya, P., Fayad, A., Tesemma, Z., Princz, D., Loukili, Y., DeBeer, C. M., Ireson, A. M., Razavi, S., Lindenschmidt, K.-E., Elshorbagy, A., MacDonald, M., Abdelhamed, M., Haghnegahdar, A., and Bahrami, A.: Advances in modelling large river basins in cold regions with Modélisation Environmentale Communautaire–Surface and Hydrology (MESH), the Canadian hydrological land surface scheme, Hydrol. Process., 36, e1457, https://doi.org/10.1002/hyp.14557, 2022. a, b
Willcox, K. E., Ghattas, O., and Heimbach, P.: The imperative of physics-based modeling and inverse theory in computational science, Nature Computational Science, 1, 166–168, 2021. a
Williams, M. R., McAfee, S. J., and Kent, B. E.: Dye tracers reveal potential edge-flow effects in undisturbed lysimeters sealed with petrolatum, Vadose Zone J., 18, 1–9, 2019. a
Williams, M. R., Coronel, O., McAfee, S. J., and Sanders, L. L.: Preferential flow of surface-applied solutes: Effect of lysimeter design and initial soil water content, Vadose Zone J., 19, e20052, https://doi.org/10.1002/vzj2.20052, 2020. a
Wilson, C., Guivarch, C., Kriegler, E., Van Ruijven, B., Van Vuuren, D. P., Krey, V., Schwanitz, V. J., and Thompson, E. L.: Evaluating process-based integrated assessment models of climate change mitigation, Clim. Change, 166, 1–22, 2021. a
Wu, W.-Y., Lo, M.-H., Wada, Y., Famiglietti, J. S., Reager, J. T., Yeh, P. J.-F., Ducharne, A., and Yang, Z.-L.: Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers, Nat. Commun., 11, 3710, https://doi.org/10.1038/s41467-020-17581-y, 2020. a
Yang, Y., Chen, R., Liu, G., Liu, Z., and Wang, X.: Trends and variability in snowmelt in China under climate change, Hydrol. Earth Syst. Sci., 26, 305–329, https://doi.org/10.5194/hess-26-305-2022, 2022. a
Yang, Z.-L.: Modeling land surface processes in short-term weather and climate studies, in: Observation, Theory And Modeling Of Atmospheric Variability: Selected Papers of Nanjing Institute of Meteorology Alumni in Commemoration of Professor Jijia Zhang, 288–313, World Scientific, 2004. a
Zhang, L., Mao, J., Shi, X., Ricciuto, D., He, H., Thornton, P., Yu, G., Li, P., Liu, M., Ren, X., Han, S., Li, Y., Yan, J., Hao, Y., and Wang, H.: Evaluation of the Community Land Model simulated carbon and water fluxes against observations over ChinaFLUX sites, Agr. Forest Meteorol., 226, 174–185, 2016. a
Zhao, L., Gray, D. M., and Male, D. H.: Numerical analysis of simultaneous heat and mass transfer during infiltration into frozen ground, J. Hydrol., 200, 345–363, 1997. a
Short summary
Accurately estimating groundwater recharge using numerical models is particularly difficult in cold regions with snow and soil freezing. This study evaluated a physics-based model against high-resolution field measurements. Our findings highlight a need for a better representation of soil-freezing processes, offering a roadmap for future model development. This leads to more accurate models to aid in water resource management decisions in cold climates.
Accurately estimating groundwater recharge using numerical models is particularly difficult in...