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Abstract. Cold regions present unique challenges for land
surface models in simulating deep percolation or potential
groundwater recharge. Previous model evaluation efforts of-
ten overlooked these regions and did not account for vari-
ous sources of uncertainties influencing model performance.
This study uses high-resolution integrated lysimeter mea-
surements to comprehensively assess the performance of the
Soil, Vegetation, and Snow (SVS) land surface model in a
cold climate. SVS performs well in the daily snow depth sim-
ulation, with a correlation coefficient (r) greater than 0.94
and a mean bias error (MBE) smaller than 3.0 cm for most of
the simulation period. The newly implemented soil-freezing
scheme simulates the near-surface soil temperature reason-
ably well (r: 0.89), with a slight cold bias (MBE: − 0.8 °C).
However, the results show that SVS is limited in matching
the temporal dynamics of deep percolation (daily timescale).
In addition, it significantly underestimates deep percolation
(r: 0.35, MBE:−0.8 mm d−1) and near-surface soil moisture
(MBE: −0.058 m3 m−3) during cold months. This is likely
to be related to the model’s inability to represent frozen-soil
infiltration and preferential flow. These limitations must be
addressed to make SVS a reliable tool for simulating deep
percolation in cold environments. The findings highlight the
importance of a comprehensive model evaluation to identify
key deficiencies and to guide future model development ef-
forts to improve hydrological simulations in cold regions.
Such improvements lead to more informed decision-making
regarding groundwater resource management in a changing
climate.

1 Introduction

Groundwater is a vital resource facing increasing pressure
worldwide, with declining recharge rates threatening its sus-
tainability (Noori et al., 2023; Wada et al., 2010; Gleeson
et al., 2012; Dalin et al., 2017; Nygren et al., 2021). Recharge
is mainly driven by the deep-percolation process (Cao et al.,
2016; Gurdak and Roe, 2010; Bakker et al., 2013; Ghasem-
izade et al., 2015), which refers to the net downward flux of
water below the root zone (Bethune et al., 2008; Selle et al.,
2011). Understanding and accurately estimating deep perco-
lation poses a significant challenge for hydrologists (Blöschl
et al., 2019). This challenge increases substantially in cold
regions (Kurylyk et al., 2014), where the movement of wa-
ter on the land surface is influenced by processes such as
soil freezing and thawing (Iwata et al., 2010), snowmelt and
accumulation dynamics (Harpold and Molotch, 2015), and
rain-on-snow (ROS) events (Mazurkiewicz et al., 2008; Tru-
bilowicz and Moore, 2017). These processes can substan-
tially affect the timing and magnitude of deep percolation and
groundwater recharge. For example, soil freezing and thaw-
ing cycles can change soil structure and permeability (Cham-
berlain et al., 1990; Chamberlain and Gow, 1979). Frozen
soil can significantly affect water partitioning at the surface
by impeding water infiltration and creating an impermeable
layer (Li et al., 2021; Al-Houri et al., 2009). This is partic-
ularly consequential during snowmelt periods where the in-
flux of meltwater mainly leads to surface runoff rather than
to deep percolation (Iwata et al., 2018). Macropores within
the frozen-soil layer during thawing can serve as preferen-
tial flow pathways and allow water to bypass the frozen ma-
trix and reach the underlying unfrozen soil (Watanabe and
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Kugisaki, 2017; Sammartino et al., 2015). This preferential
flow facilitates infiltration. Additionally, it significantly influ-
ences the hydraulic and thermal properties of the frozen soil
by altering water and heat transport (Watanabe and Kugisaki,
2017; Walvoord and Kurylyk, 2016; Shirazi et al., 2009).

Despite the aforementioned challenges, accurate estima-
tion of deep percolation remains a critical priority in cold
regions. This is particularly crucial given that climate change
is driving shifts in precipitation patterns (Trenberth, 2011;
Dore, 2005) and snowmelt dynamics (Yang et al., 2022; Mus-
selman et al., 2017), which, in turn, can impact groundwa-
ter recharge (Al Atawneh et al., 2021). Therefore, accurate
modeling of deep percolation is essential for simulating the
effects of climate change on water availability, which in-
forms sustainable water management strategies in cold re-
gions. Physics-based numerical (hydrological) models, such
as land surface models (LSMs), are valuable tools for under-
standing and modeling deep percolation. Atmospheric sci-
entists originally developed LSMs to address the limitations
in early general circulation models (GCMs) that used fixed
boundary conditions for land surfaces and failed to capture
the complex interactions between the atmosphere and the
land surface (Fisher and Koven, 2020). Manabe (1969) de-
veloped one of the first-generation LSMs to simulate these
interactions using a simple “bucket” model for representing
soil moisture. This model simplified land surface processes
by focusing on the top meter of soil, where precipitation in-
stantly infiltrated, evapotranspiration was the only way water
left the soil, and runoff occurred when the soil became sat-
urated (Yang, 2004). Subsequent generations of LSMs, such
as Noah (Niu et al., 2011), and ISBA (Decharme and Dou-
ville, 2006), recognized the need for more realistic repre-
sentations of vegetation and soil, which have a crucial role
in the exchange of water and energy at the land surface.
These complex models can explore hypothetical scenarios,
enhance our understanding of physical processes, and pro-
vide explanatory, process-based predictions (Willcox et al.,
2021). For example, they help quantify how changing precip-
itation patterns impact groundwater recharge (Taylor et al.,
2013; Green et al., 2011; Wu et al., 2020). This is particu-
larly important in regions where fluctuations in groundwa-
ter resources heavily influence ecosystem water availability
(Huang et al., 2019; Orellana et al., 2012). Beyond natural
systems, LSMs can guide the design of landfill final covers.
By simulating the interaction of prospective covers with local
hydrometeorological conditions (Ho et al., 2004), designers
can optimize these covers to minimize leachate production,
thereby saving time and resources.

Considering the complexities of cold regions and potential
model limitations (Pomeroy et al., 2022), a key question re-
lates to whether these models can accurately simulate deep
percolation and its response to climate change. This is par-
ticularly crucial in cold environments with intricately linked
water and energy fluxes (Wheater et al., 2022; Cordeiro
et al., 2017). This necessitates a rigorous evaluation. Ro-

bust process-based model evaluation is integral to assess-
ing the LSMs’ “fits for purpose” (Beven and Young, 2013)
and to identifying areas for targeted improvement (Wilson
et al., 2021). A point-scale evaluation, in contrast to larger-
scale evaluations, may allow for a detailed assessment of the
model’s ability to capture hydrological processes in cold en-
vironments by reducing the uncertainty in model parameters
and meteorological data. This approach has been success-
fully employed in similar studies (Zhang et al., 2016; De-
nager et al., 2023; Chadburn et al., 2015). Evaluating deep-
percolation simulations necessitates not only assessing the
final output but also examining how well an LSM repre-
sents the key physical processes influencing it. Several fac-
tors complicate such evaluations.

First, direct measurements of deep percolation by lysime-
ters are difficult, costly, and scarce (Li and Shao, 2014).
Lysimeters are containers or vessels, like a soil column, filled
with soil or other material. They come in various forms, such
as weighing (Payero and Irmak, 2008) or non-weighing pan
lysimeters. Pan or zero-tension lysimeters are large-scale and
are typically used for measuring percolation over a relatively
large area. Pan lysimeters that are carefully designed can ac-
count for the spatial variability of the soil and the presence of
preferential flow pathways and can resolve percolation rates
as low as 0.1 mm yr−1 (Malusis and Benson, 2006). While
indirect methods, such as those using soil water content data,
are critically limited in accounting for deep percolation due
to preferential flow (Khire et al., 1997; Benson et al., 2001),
lysimeters minimize errors substantially and can be used to
calibrate the indirect methods (Benson et al., 2001; Meissner
et al., 2008; Ouédraogo et al., 2022).

Second, pinpointing limitations in models’ structures and
parameterizations requires accounting for uncertainties in
forcing data and parameter values (Oreskes et al., 1994). Fi-
nally, choosing an appropriate temporal resolution for model
evaluation is crucial. High-resolution observations, such as
those obtainable from lysimeters at daily or hourly time
steps, help identify the strengths and weaknesses of how
specific processes are represented in such a model. Coarse-
resolution (annual or total) evaluation may hide compensat-
ing errors in simulating different processes. We performed a
literature search (Scopus) to assess previous model evalua-
tion studies that compared simulated deep percolation with
lysimeter measurements. The search yielded 57 articles pub-
lished between 1998 and 2024. Figure 1c represents the loca-
tions of these case studies on the map. Figure 1a and b pro-
vide the frequency of climate types (Köppen classification;
Peel et al., 2007) and evaluation timescales, respectively. Our
survey shows that about 60 % of the studies evaluated mod-
els’ deep percolation at coarser-than-daily resolutions. HY-
DRUS (Simunek et al., 2005) was the most common model
(28 out of 57), followed by UNSAT-H (Fayer, 2000). Only
two LSMs were evaluated: ISBA (Sobaga et al., 2023) and
HTSVS (Mölders et al., 2003). A key finding relates to the
lack of attention to strategies accounting for different sources
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of uncertainty. None of the studies accounted for the uncer-
tainty in forcing data and observations, and only four ac-
counted for parameter uncertainty (Schwemmle and Weiler,
2024; Selim et al., 2023; Graham et al., 2018; Ogorzalek
et al., 2008). This is an important limitation, particularly in
the context of cold regions, because small biases in forcing
data can significantly impact process simulations (Wheater
et al., 2022). Snow and soil-freezing processes were rarely
considered (only one study analyzed their influence, namely
Mölders et al., 2003). The limited consideration of snow pro-
cesses is likely to be due to two factors: the geographical
distribution of case studies and model limitations. The case
studies are concentrated in temperate (58 %) and arid (24 %)
regions, with a smaller representation in continental zones
(15 %), indicating a focus on areas where snow is less preva-
lent. Additionally, model limitations in some instances ne-
cessitated the removal of snowy periods from the analysis
(Vásquez et al., 2015) or simplification of approaches like a
degree-day snowmelt constant (Stumpp et al., 2012).

This study comprehensively evaluates the Soil, Vegeta-
tion, and Snow (SVS, Alavi et al., 2016; Husain et al., 2016)
LSM in a cold environment setting. Environment and Cli-
mate Change Canada (ECCC) developed and operationally
uses SVS for hydrological forecasting (Gaborit et al., 2017).
By addressing the identified shortcomings in previous model
evaluation efforts, we evaluated SVS’s ability to simulate
deep percolation using high-resolution data from a large, ex-
perimentally constructed plot (soil enclosure) in southeast-
ern Quebec, Canada. The plot was equipped with two pan
lysimeters and a network of soil moisture and soil temper-
ature sensors. We used an ensemble simulation strategy, ac-
counting for uncertainties in forcing data and (a subset of) the
model’s soil hydraulic parameters. Our assessment explicitly
accounted for uncertainties due to measurement errors and
soil heterogeneity. The uncertainties were factored into the
calculation of performance metrics. Additionally, we imple-
mented a simple soil-freezing scheme, which is assessed for
the first time in the scientific literature for SVS.

2 Case study

2.1 Experimental plots

Figure 2b indicates the location of the experimental plot
within the St-Nicéphore landfill site (“study site”) in Drum-
mondville, Quebec, Canada. An aerial view of the plot post-
construction is provided in Fig. 2a. The plot was fully cov-
ered with grass 1 month after construction. Two lysimeters
were constructed in 2018 within the same enclosure shown
in Fig. 2a. The top and bottom of the excavation followed the
regulatory requirement of a 2 % slope. The soil configura-
tion and the dimensions of the pan lysimeters, namely the L1
and L2 lysimeters, are illustrated in Fig. 2c. The 4 m× 4 m
lysimeters were lined with a 1.5 mm thick HDPE geomem-

brane mounted on a wooden frame. A 100 mm thick gravel
layer was included at the bottom of the lysimeters, overlaid
by a 100 mm sand layer. The gravel layer served as drainage,
while the sand layer acted as a filter to prevent clogging by
the cover material (both shown in Fig. 2c). The lysimeters
differ only in terms of height: L1 is 2.10 m high, while L2
is 1.50 m. The comparison between L1 and L2 is the subject
of Kahale et al. (2022), where it was demonstrated that the
L2 lysimeter collected nearly the same amount of percola-
tion as L1 (less than 5 % difference). The lysimeters mea-
sured deep percolation hourly using tipping counters (KIPP-
100, METER Group Inc.; 100 mL per tip). Soil water con-
tent and temperature were monitored half-hourly by dielec-
tric sensors (METER Group Inc., 5TM), represented by blue
dots in Fig. 2c, until October 2021. After this date, the data
loggers were used in another project, and soil data collec-
tion stopped. However, percolation measurements continued
until October 2022. Despite designing and constructing two
surface water (runoff) collection systems, neither yielded re-
liable measurements and so were excluded from the model
evaluation. Soil matric potential sensors were also installed
at various depths in the plot but are not shown in Fig. 2c be-
cause they were not used in the analyses. Figure 2c shows the
15 cm topsoil layer atop the cover material (a sandy to silty
soil commonly used as final cover at this landfill site). Table 1
outlines the properties of the topsoil and cover material. We
used sieve and hydrometer analyses to determine sand and
clay content. The soil’s (vertical) saturated hydraulic con-
ductivity (ksat) was obtained using KSAT and Mini Disk
Infiltrometer (Naik et al., 2019) devices (METER Group,
Inc.). The soil water retention (SWR) model’s empirical pa-
rameters, namely the air entry suction and the slope of the
SWR curve (ψae and b), were derived in the laboratory us-
ing the HYPROP (METER Group, Inc.) technique proposed
by Schindler and Müller (2017); Schindler et al. (2015). The
SWR curves for the topsoil and cover material are presented
in Fig. 3.

2.2 Data

The study site receives over 1050 mm of precipitation annu-
ally, with an average snowfall of 227 cm. Historically (1982–
2017), the location experienced 109 d annually, with more
than 3 cm of snow on the ground. While we had two on-site
weather stations, their data were unsuitable due to large gaps
and a significant underestimation of precipitation. Therefore,
the meteorological forcing for SVS was mainly obtained
from the Saint-Germain-de-Grantham (Saint-G in Fig. 2d)
weather station, located 13 km from the site. No elevation
correction was applied since the station is roughly at the
same elevation (85 m for Saint-G. and 110 m for our study
site). Shortwave and longwave radiation fields, unavailable
at the weather station, were sourced from the ERA5 reanal-
ysis (Hersbach et al., 2020). We estimated specific humid-
ity from the dew-point temperature and atmospheric pressure
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Figure 1. (a) Distribution of Köppen climate types across the case studies within the reviewed works, showing the percentage of studies for
each climate type. The inset boxplot displays the average annual precipitation range across all studies. (b) Percentage frequency of temporal
resolutions used for evaluating deep-percolation model outputs in the reviewed literature. (c) Global distribution of case study locations from
the reviewed literature, categorized by Köppen climate classification and color coded by average annual precipitation. Triangles indicate
locations where precipitation data were missing and obtained from an alternative source.

using the MetPy meteorological Python library (May et al.,
2022). The Saint-Germain-de-Grantham station uses a dou-
ble Alter shield precipitation gauge. Precipitation measure-
ments were adjusted for wind bias using the formula sug-
gested by Kochendorfer et al. (2017). Rainfall and snowfall
were distinguished using the equation proposed by Jennings
et al. (2018) based on relative humidity and air temperature
(Eq. 1):

Psnow =
1[

1+ expc1+ (c2Ta)+ (c3RH)
] , (1)

where Ta is air temperature (°C); RH is the relative humid-
ity (%); and c1,c2, and c3 are empirical coefficients equal to
−10.04, 1.41, and 0.09, respectively. Precipitation is recog-
nized as snow if Psnow is greater than 0.5, and it is recognized
as rain otherwise.

3 Methodology and model description

3.1 SVS land surface model

This study used the SVS land surface model, developed and
maintained by ECCC (Alavi et al., 2016; Husain et al., 2016;
Leonardini et al., 2021). SVS requires seven hourly meteoro-
logical inputs: air temperature, shortwave and longwave ra-
diation, wind speed, specific humidity, atmospheric pressure,
and precipitation. For snow-free conditions, initial values for
soil moisture and soil temperature within each model’s soil
layer must be provided (throughout this article, soil mois-
ture refers to the soil volumetric liquid-water content). Infor-
mation about vegetation temperature and intercepted liquid-
water content is also required. SVS divides each grid cell into
four tiling components: (1) bare ground, (2) low or high veg-
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Figure 2. Experimental setup at the St-Nicéphore landfill. (a) Aerial view of the experimental plot at completion. (b) The location of the
experimental plot (red marker) and the Saint-Germain-de-Grantham (Saint-G) weather station (blue marker) used for meteorological data.
(c) Cross-section of the experimental plot showing the soil layers, the pan lysimeter placement (L1 and L2), and the drainage layer. The blue
dots indicate the location of soil moisture and temperature sensors at depths of 75, 225, 1750, and 1850 mm.

etation, (3) snow over bare ground and low vegetation, and
(4) snow under high vegetation. It uses a force–restore ap-
proach (Bhumralkar, 1975; Blackadar, 1976) for energy bud-
get calculations and uses a one-layer representation of snow
and the vegetation canopy. A detailed overview of the SVS
snow accumulation and melt routine can be found in Leonar-
dini et al. (2021). The Richards equation governs vertical
water movement in the soil, solved using a finite-difference
scheme (Verseghy, 1991). SVS uses Clapp and Hornberger’s
equations (Clapp and Hornberger, 1978) to model soil water
retention (SWR) and vertical hydraulic conductivity (kv):

θ = θsat

(
ψ

ψae

)−b−1

, (2)

and

kv = kv,sat

[
θ

θsat

]2b+3

, (3)

where ψ is soil matric potential (m), θsat is soil moisture at
saturation (m3 m−3), and kv,sat is the saturated vertical hy-
draulic conductivity of the soil (m s−1). In Eqs. (2) and (3),

b (unitless) and ψae (m) are empirical parameters related
to the slope of the water retention curve and the air entry
value soil water potential (suction), respectively. SVS, by de-
fault, calculates percolation at the bottom of the soil column
only when the soil moisture exceeds field capacity. Surface
runoff is simulated when the precipitation rate exceeds the
first layer’s kv,sat or when the soil pores are saturated with
water. Notably, the current operational SVS version does not
simulate soil freezing and thawing and its impact on infil-
tration (Alavi et al., 2016). We implemented a simple soil-
freezing scheme based on the heat conduction algorithm of
Hayashi et al. (2007) to address this limitation. Appendix A
describes this scheme in detail.

3.2 Experiment design

The experimental plot was constructed in 2018. Due to the
potential impact of plot stabilization, we excluded the first
year of field data (deep percolation, soil temperature, and
moisture) from the model’s performance evaluation. Mete-
orological data from July 2018 to September 2019 are used
for model spin-up, with simulations considered for evalua-
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Table 1. Physical and hydraulic properties of topsoil and cover material used in the landfill lysimeter experiment. Descriptive statistics of
laboratory-estimated parameters include percentages of sand and clay, saturated hydraulic conductivity (ksat), and parameters of the Clapp
and Hornberger soil water retention model (ψae and b). The USDA soil class is determined by soil texture. N represents the number of
samples. Ens-Min and Ens-Max indicate the parameter ranges used for ensemble construction.

Observation USDA Model

Soil type Parameter N Min Max Median Class Ens-Min Ens-Max

Topsoil Sand (%) 6 37.0 92.0 75.0 Loamy sand (4/6),
Clay (%) 6 0.0 0.0 0.0 silt loam (1/6),

sand (1/6)
Ksat (m s−1) 58 1.0× 10−6 2.1× 10−4 1.4× 10−5 5.1× 10−7 5.0× 10−6

ψae (m) 4 0.24 0.51 0.39 0.05 0.45
b (–) 4 0.4 2.4 1.0 1.0 2.0
θsat (m3 m−3) 0.39 0.44
θfc (m3 m−3) 0.08 0.17
θunf (m3 m−3) 0.06 0.10

Cover m. Sand (%) 5 55.0 78.0 68.0 Sandy loam (4/5),
Clay (%) 5 6.0 12.0 7.0 loamy sand (1/5)
Ksat (m s−1) 64 2.0× 10−6 1.3× 10−4 1.8× 10−5 1.0× 10−6 5.0× 10−6

ψae (m) 7 0.32 0.40 0.35 0.6 0.8
b (–) 7 1.3 2.1 1.9 1.0 3.5
θsat (m3 m−3) 0.35 0.37
θfc (m3 m−3) 0.20 0.28
θunf (m3 m−3) 0.03 0.05

tion running from September 2019 to October 2022. To en-
sure a more accurate representation of processes at the near-
surface and the base, the 190 cm soil column had a varying
vertical discretization. The top and bottom 15 cm segments
were divided into 2.5 cm layers, while the middle section
used 5 cm layers (totaling 44 layers). The lower hydraulic
boundary was set as a seepage face to simulate the capillary
barrier effect at the cover material–drainage layer interface
(Scanlon et al., 2002, 2005). Median sand and clay content
values (Table 1) are assigned to each layer. The experimental
plot was fully covered with short grass, classified as low veg-
etation in SVS. Parameters for low vegetation, such as leaf
area index (LAI), roughness length, heat capacity, albedo,
stomatal resistance, and root depth, are derived from lookup
tables containing values for 21 vegetation classes. An ensem-
ble simulation strategy was used to address uncertainties in
model parameter values and meteorological data. A total of
30 different scenarios were constructed for each, resulting in
a 900-member ensemble. Simulations were done using a de-
veloped Python wrapper (https://github.com/Alireza-Amani/
svspyed, last access: 20 March 2025) and the ECCC’s high-
performance computing (HPC) cluster.

3.3 Constructing the ensemble

3.3.1 Model parameters

We selected sampling intervals for six model parameters
that influence the movement and storage of water in the

soil column: saturated vertical hydraulic conductivity (ksat),
volumetric liquid-water content at saturation (θsat) and at
field capacity (θfc), unfrozen residual water content (θunf; see
Sect. A), ψae, and the b coefficient (Eq. 2). We used a com-
bination of laboratory measurements, field observations, and
inverse modeling to determine the sampling range for these
parameters. Soil moisture observations during the winter of
2019 helped to establish the θunf range. The initial sampling
ranges for ksat, ψae, and b were informed by the laboratory
measurements (Table 1), and that for θsat was informed by
soil moisture measurements. For each perturbation scenario,
we used suction threshold values ranging from 1.0 to 3.4 m
(10 to 33 kPa) to determine θfc. For example, a specific com-
bination of ψae and b, along with a randomly chosen suction
value from this range, would be used in Eq. (2) to calculate
θfc for that scenario. Following the definition of initial sam-
pling intervals for the parameters (ksat, θsat, θfc, ψae, and b),
we further refined the sampling ranges using inverse mod-
eling. This process involved a five-dimensional grid search
(a total of 10 000 different combinations) using soil mois-
ture data from April to September 2019. For each combi-
nation, we calculated errors between hourly simulated and
observed soil moisture from sensors in both soil types. The
combinations with the lowest errors for each soil type helped
refine the final sampling ranges. We chose this period be-
cause it followed the first winter during which freeze–thaw
cycles were likely to have impacted soil hydraulic proper-
ties. The final parameter ranges are indicated in Table 1 (un-
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Figure 3. Soil water retention curves for the topsoil and cover materials used in the experimental plot. The blue triangles represent the
measured data, and the solid lines are the fitted curves obtained using the soil water retention model of Clapp and Hornberger (1978).
Each graph is annotated with the parameters of the Clapp and Hornberger soil water retention model, namely ψae; b; and the coefficient of
determination (R2), indicating the goodness of fit.

der the “Ens-Min” and “Ens-Max” columns). Finally, Latin
hypercube sampling (Loh, 1996) was used to create ensem-
ble members, ensuring a well-distributed sample across the
parameter space.

3.3.2 Meteorological forcing

We constructed the 30 meteorological scenarios by randomly
perturbing the input variables according to the approach sug-
gested by Charrois et al. (2016). This approach ensures phys-
ically consistent temporal variations in the perturbed data.
We used a first-order autoregressive (AR1) model to calcu-
late the perturbations:

Pt = φPt−1+ εt . (4)

In Eq. (4), Pt is the perturbation value at time t , φ is the pa-
rameter for the autoregressive model, and ε is a white-noise
process with zero mean and σ 2 variance. φ is obtained by
fitting the AR1 model to the time series of each variable, and
the variance (σ 2) is computed using the standard deviation of
the residuals between the variables from the Saint-Germain-
de-Grantham station and the corresponding variables from

the on-site measurements (average of two stations) follow-
ing Eq. (5).

σ 2
= σres(1−φ2) (5)

Different perturbations were applied depending on the vari-
able: additive perturbations for air temperature, dew-point
temperature, wind speed, and atmospheric pressure and mul-
tiplicative perturbations for shortwave radiation and relative
humidity (limited to [0.8, 1.2] to avoid extremes), following
Charrois et al. (2016). Longwave radiation values are per-
turbed within ±25 (W m−2) based on Raleigh et al. (2015).
Rainfall is perturbed within ±5 % in accordance with the
World Meteorological Organization’s recommended range of
uncertainty for automatic tipping-counter rain gauges (Lanza
et al., 2005; Colli et al., 2013). Finally, the precipitation
phase was determined after the perturbations were applied
to air temperature and relative humidity.

3.4 Performance assessment

The performance of the SVS ensemble in simulating soil
moisture, soil temperature, snow depth, and deep percola-
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tion was evaluated using the continuous ranked probabil-
ity score (CRPS, Grimit et al., 2006; Matheson and Win-
kler, 1976). Following the formulation proposed by Stein and
Stoop (2022), we evaluated the distance between the simu-
lated and observed cumulative distribution functions (CDFs),
denoted as F andG, respectively, based on the works of Bar-
inghaus and Franz (2004) and Székely and Rizzo (2005):
+∞∫
−∞

[F(x)−G(x)]2 dx = EX,Y (|X−Y |)

−
1
2
[EX,X′(|X−X′|)

+EY,Y ′(|Y −Y ′|)], (6)

where X and X′ (Y and Y ′) represent independent copies of
a random variable with a CDF given by F(G). For a given
time step, we can calculate the CRPS of the SVS ensemble
with the following (Stein and Stoop, 2022):

CRPS(Fx,Gy)=
1
N

1
M

M∑
i=1

N∑
j=1
|xi − yj |

−
1

2M2

M∑
j=1

M∑
k=1
|xj − xk|

−
1

2N2

N∑
j=1

N∑
k=1
|yj − yk|, (7)

where x(j), with j = 1, . . .,N , corresponds to the simulated
values for an ensemble with N members, and y(i), with
i = 1, . . .,M , corresponds to the observed values for an ob-
servation ensemble of size M . The observation ensembles
for soil moisture and soil temperature took into account both
potential sensor errors and variability due to soil heterogene-
ity. Two sensors at each depth within the experimental plot
made the latter possible. The manufacturer-reported sensor
accuracies are ± 0.03 m3 m−3 and ±1 °C for soil moisture
and soil temperature measurements, respectively. While ac-
knowledging that applying manufacturer calibration func-
tions to low-cost sensors like the 5TM may lead to larger de-
viations from the true soil moisture values (Mittelbach et al.,
2012), our limited laboratory calibration exercise indicates
that a±0.03 m3 m−3 range is reasonable for these probes and
the manufacturer’s calibration equation in our soils. To con-
struct the ensembles for soil moisture and soil temperature
at each depth, we randomly perturbed the nominal values of
each sensor a total of 30 times using a uniform distribution,
resulting in an ensemble of size 60. Similarly, we applied ran-
dom perturbations within the reported accuracy of±1 cm for
snow depth observations, creating a 60-member ensemble.
Regarding the calculation of CRPS concerning deep percola-
tion, where both lysimeters provided deep-percolation mea-
surements, we used both values; if one lysimeter had miss-
ing data, only the available measurement was used. Addi-
tionally, to compare the ensemble mean of simulated and ob-
served variables, we used Pearson’s correlation coefficient

and the mean bias error (MBE). The MBE was calculated by
subtracting the observations from the simulated values. The
evaluation metrics were calculated for cold (from November
to March) and warm months, allowing us to assess seasonal
variations in model performance.

4 Results

4.1 Snow depth

Figure 4 compares the measured and simulated daily snow
depth from SVS and the weather station across three peri-
ods. The shaded area shows the 95 % confidence interval of
the ensembles, with lines representing the ensemble mean.
The vertically shaded areas highlight periods with poten-
tial rain-on-snow events. These periods (hours) are charac-
terized by near- or above-zero (°C) air temperature and non-
zero precipitation. The rain-on-snow events are important as
they can significantly impact snowpack properties (Cohen
et al., 2015; Juras et al., 2017; McCabe et al., 2007). Man-
ual snow measurements taken on 10 different days at two
locations (one near the enclosure, shown as squares, and one
elsewhere on the site) are included in Fig. 4 for comparison.
Each one of those 10 measurements is the average of 10 sam-
ples (snow water equivalent (SWE) and snow depth) along a
path, taken with a Federal snow sampler. The close agree-
ment between the weather station data and the manual mea-
surements near the enclosure (MBE of −1.6 cm) suggests a
reasonable agreement between the two measurements. Fig-
ure 4 also shows that the spread of observations is relatively
low compared to the SVS ensemble. This narrow spread is
because the uncertainty we have considered in the observa-
tions was limited to the sensor’s expected accuracy range. It
did not include spatial variability, which can be significant,
as indicated by the manual snow measurements in the figure.

Figure 4 reveals a significant overlap between the SVS
and snow depth observation ensemble. This agreement is
reflected in a total CRPS of 2.5 cm for the combined pe-
riods. The correlation coefficient (r) between the ensemble
means is high for November 2019 to April 2020 (0.94) and
for November 2020 to April 2021 (0.99), indicating close
agreement between the simulated and observed snowpack
evolutions. However, the period between November 2021
and April 2022 shows a substantial overestimation of snow
depth, starting on 17 February 2022. The snow depth for the
SVS ensemble increases by 9 cm on average between 17 and
18 February, while this increase is only 3 cm based on ob-
servations. This divergence greatly impacted the evaluation
metrics. Before 17 February, r is 0.98, with a slight posi-
tive bias (MBE+1.5 cm). The overestimation coincides with
a potential rain-on-snow event (17 February), with tempera-
ture fluctuating above and below freezing and with substan-
tial precipitation (24.9 mm). This suggests that the overesti-
mation was likely to be due to a misclassification of the pre-
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Figure 4. Daily snow depth (cm) for (a) November 2019 to
April 2020, (b) November 2020 to April 2021, and (c) Novem-
ber 2021 to April 2022. The lines represent the ensemble mean of
SVS and observations at the Saint-Germain-de-Grantham weather
station, and the shaded area shows the 95 % confidence interval.
The points represent manual snow measurements from two loca-
tions at the study site. The vertically shaded areas are indicators for
periods with potential rain-on-snow events.

cipitation phase within the SVS ensemble. Figure 4c high-
lights the fact that this issue adversely affected model perfor-
mance during late winter, a critical period with substantial
snowmelt. The calculated CRPS and correlation coefficient
for March 2022 (8.3 cm and 0.94) are noticeably worse than
those for March 2020 (3.1 cm, 0.98) and March 2021 (3.8 cm,
0.98). Interestingly, the maximum snow depth consistently
reaches a value close to 50 cm for the three winters, but no
specific reason for this was identified in the data. However,
it is important to note that, during the first two winters, the
SVS ensemble mean closely matches the observed values at
the times of peak snow depth.

4.2 Near-surface soil temperature and soil moisture

Figure 5 compares the simulated and observed daily soil
temperatures at 75 mm depth, divided into three periods:
(a) September 2019 to November 2020; (b) November 2020
to November 2021; and (c) November 2021 to Novem-
ber 2022, during which time no observations are available.
The figure displays the ensemble means of the SVS model
(gold-brown lines) and observations from lysimeters L1
(black lines) and L2 (purple lines), along with the 95 % con-
fidence interval of the SVS ensemble (shaded area). The SVS

Figure 5. Daily averaged soil temperature at 75 mm depth (°C).
(a) September 2019 to November 2020. (b) November 2020 to
November 2021. (c) November 2021 to November 2022 (no ob-
servations available for this period). The lines represent the ensem-
ble means of the SVS model (gold brown) and observations from
lysimeters L1 (black) and L2 (purple). The shaded area represents
the 95 % confidence interval of the ensembles. Insets in (a) and
(b) show zoomed-in views of the data for specific periods.

model performs well in simulating near-surface soil temper-
ature across the entire period, with a CRPS of 0.8 (°C) and
a slight cold bias (−1.2 °C). The scatterplot in Fig. 7a fur-
ther supports this, showing good performance during warm
and cold months (from November to March). The low ob-
served variability in soil temperature in Fig. 5 reflects both
the low spatial variability within the enclosure and the sen-
sors’ accuracy. There are two notable gaps in the data: from
March 2020 to May 2020 and from November 2020 and Jan-
uary 2021. These gaps are likely to have a small effect on
the performance evaluation as they are mostly outside of the
freezing period, and the model tends to simulate soil temper-
ature well during this time.

Figure 6 compares the simulated and observed daily soil
moisture at 75 mm depth. The model exhibits acceptable
agreement with observations for most of the period, with
a CRPS of 0.02 m3 m−3. However, we observe a consistent
pattern of underestimation during February 2020, as well as
during January and February 2021. This issue is illustrated in
Fig. 7b, with a bias of −0.06 (m3 m−3) during cold months.
During these periods, the SVS ensemble consistently as-
sumed that the soil moisture was equal to the residual un-
frozen water content due to the simulated soil freezing.
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Figure 6. Daily averaged soil moisture at 75 mm depth (m3 m−3).
(a) September 2019 to November 2020. (b) November 2020 to
November 2021. (c) November 2021 to November 2022 (no ob-
servations available for this period). The lines represent the ensem-
ble means of the SVS model (gold brown) and observations from
lysimeters L1 (black) and L2 (purple). The shaded area represents
the 95 % confidence interval of the ensembles.

4.3 Deep subsurface soil moisture

Figure 8 compares the simulated and observed daily soil
moisture at 1850 mm depth, with Fig. 7d breaking down
model performance by warm and cold months. From
September 2019 to November 2020, the SVS ensemble
closely matches the observations. This is reflected in the
CRPS of 0.01 (m3 m−3). The model slightly underestimated
(MBE:−0.02 m3 m−3) soil moisture during this period, most
notably during the summer of 2020. SVS maintained a good
performance until the summer of 2021, with Fig. 8b showing
a substantial divergence between the simulated and observed
ensembles. This is reflected in the considerably worse CRPS
(0.04 m3 m−3) and MBE (−0.05 m3 m−3) values for Novem-
ber 2020 to November 2021. Figure 7d further emphasizes
this underestimation bias during warm months. During cold
months, however, as shown in Fig. 7d, there is a better per-
formance by SVS, with an MBE equal to −0.019 m3 m−3.
Importantly, the negative correlation coefficients associated
with cold and warm months may suggest a mismatch be-
tween the modeled and actual lower boundary conditions
within the soil profile. It is worth noting that the deep soil
moisture data contain gaps from March 2020 to May 2020
and from November 2020 to January 2021, but these gaps are
likely to have a minor impact on the overall analysis because,

except for the summer months, the model and observations
align closely in terms of absolute values.

4.4 Deep percolation

Figure 9 compares the simulated and observed daily deep-
percolation rates from September 2019 to November 2022,
with Fig. 7c further examining warm- and cold-month per-
formances. The CRPS values may indicate a good agreement
between SVS and observations: 0.6 mm d−1 from Septem-
ber 2019 to November 2020, 0.2 mm d−1 from Novem-
ber 2020 to November 2021, and 0.8 mm d−1 from Novem-
ber 2021 to November 2022. However, Fig. 9 shows that
SVS struggles to match the temporal dynamics of deep
percolation closely; this is most notable in October 2019,
March 2020, and winter 2022. Despite this limitation,
Fig. 9a shows that the SVS ensemble mean follows ob-
servations of major percolation events reasonably well, in-
cluding those driven by snowmelt (e.g., April 2020) and
significant rainfall (e.g., 83.4 mm on 3 and 4 August and
50.3 mm on 29 August 2020). While there is a minor neg-
ative bias until November 2021 (MBE: −0.2 mm d−1), this
underestimation increases significantly after November 2021
(MBE: −1.5 mm d−1). This change is largely attributable
to SVS missing several large deep-percolation events dur-
ing winter 2022, as is also evident in Fig. 7c. Investi-
gating the results reveals that, from 1 January 2022 to
31 March 2022, there were 23 d in which the L1 lysime-
ter collected more than 1 mm of deep percolation (in total,
176.8 mm), whereas the ensemble mean values were smaller
than 1 mm (in total, 2.8 mm). This limitation explains the
notably better performance during warm months (r: 0.62,
MBE: −0.3 mm d−1) compared to during colder months (r:
0.34, MBE: −0.8 mm d−1).

5 Discussions

The results highlight the potential of SVS to simulate key hy-
drological processes influencing deep percolation. Yet, they
also revealed important discrepancies with field data. These
discrepancies raise questions such as the following: (i) why
is there a slight cold bias in near-surface soil temperature?
(ii) What are the underlying reasons for the limitations in the
model’s ability to represent the dynamics of near-surface soil
moisture during winter? (iii) What limits the model’s ability
to simulate subsurface soil moisture? (iv) How do these limi-
tations influence deep percolation? In this section, we further
investigate these questions.

5.1 Cold bias in SVS during snow-free conditions

A potential limitation within SVS is its underestimation of
near-surface soil temperature during snow-free conditions
with below-freezing air temperatures. This cold bias is ev-
ident in December 2019 and 2020 in Fig. 5. This is likely to
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Figure 7. Scatterplots comparing daily simulated and observed ensemble means over the entire simulation period for different soil variables
and seasons. (a) Soil temperature at 75 mm depth. (b) Soil moisture at 75 mm depth. (c) Deep-percolation rates. (d) Soil moisture at 1850 mm
depth. Warm months (orange markers) are defined as April to October, while cold months (blue markers) are defined as November to March.
Linear regression equations and model performance metrics (MBE and r) are shown for each plot, with the number of data points (n)
indicated in parentheses.

be due to the model’s simplified handling of soil temperature
dynamics under such conditions. Currently, the soil-freezing
scheme in the SVS model uses the surface temperature from
a force–restore (FR) approach as its upper boundary condi-
tion. The FR approach in SVS neglects the latent heat release
that occurs during soil freezing and thawing (Husain et al.,
2016), which can significantly impact soil temperature pro-
files. As shown by Boone et al. (2000), incorporating these
latent heat effects into force–restore schemes improves soil
temperature simulations during freezing periods. Therefore,
neglecting this aspect in SVS likely contributes to underes-
timating surface soil temperature in early-winter snow-free
conditions. This, in turn, affects the ground heat flux calcula-
tions used by the soil-freezing scheme, potentially leading to
an overestimation of frost depth. To better understand the po-
tential for frost depth overestimation, future studies can gain
a more comprehensive understanding by analyzing soil tem-
perature at deeper soil depths. Although there are 600 mm
depth soil temperature sensors in the E1 enclosure, their data
were unavailable for December 2019 and 2020, preventing
direct assessment of the frost depth during this period.

5.2 Limitations of SVS in simulating soil moisture and
deep percolation in winter

While potential limitations in SVS’s soil-freezing scheme ex-
ist, these may not fully explain the discrepancy in terms of

near-surface soil moisture during winter 2021 (Fig. 6b). De-
spite accurate soil temperature simulations (CRPS of 0.3 °C),
soil moisture simulation significantly deviated in this period
(CRPS of 0.05 m3 m−3). This highlights potential shortcom-
ings in representing hydrological processes under freezing
conditions. Currently, SVS lacks the representation of water
infiltration due to macropores in frozen soil, a complex pro-
cess that can largely impact soil moisture dynamics (Watan-
abe et al., 2013; Jiang et al., 2021; Stähli et al., 1996; Mo-
hammed et al., 2018). This limitation is likely to be the main
factor explaining the aforementioned discrepancy. It could
also explain the missed deep-percolation events during the
winter of 2022 (Fig. 9). In freezing conditions, snowmelt
or rainfall can infiltrate and bypass frozen near-surface soil
through preferential flow paths (macropores), directly reach-
ing deeper soil layers (Demand et al., 2019; Watanabe and
Kugisaki, 2017). Without accounting for this process, the
model might underestimate deep percolation while overes-
timating surface runoff during freezing periods.

To further illustrate the model’s limitations and their po-
tential impacts, we examined a specific event in Decem-
ber 2019 (from the 9th through the 12th) where SVS did
not simulate deep percolation. Figure 10 presents the rel-
evant data. Figure 10a shows a likely rain-on-snow event
with potentially considerable snowmelt infiltration during a
warmer period. Figure 10b reveals that the near-surface soil
was likely to be frozen during the snowmelt event. It also in-
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Figure 8. Daily averaged soil moisture at 1850 mm depth
(m3 m−3). (a) September 2019 to November 2020. (b) Novem-
ber 2020 to November 2021. (c) November 2021 to November 2022
(no observations available for this period). The lines represent the
ensemble means of the SVS model (gold brown) and observations
from lysimeters L1 (black) and L2 (purple). The shaded area repre-
sents the 95 % confidence interval of the ensembles.

dicates a good agreement between the simulated (ensemble
mean) and observed (on top of the L2 lysimeter) soil temper-
atures (MBE: −0.8 °C). Interestingly, Fig. 10c and d show
that the infiltrated water bypassed the surface soil, directly
reached the lysimeter (L2) base, and generated a signifi-
cant deep-percolation volume (18.2 mm). This hints at water
movement through preferential flow paths. In contrast, the
SVS model (ensemble mean) simulated no significant perco-
lation and instead generated a considerable amount of surface
runoff (29.2 mm). These findings are consistent with the re-
sults of Mohammed et al. (2019), who studied the impacts of
preferential flow on snowmelt partitioning and groundwater
recharge in frozen soils at three grassland sites in the Cana-
dian Prairies. They found that preferential flow paths, likely
created by macropores in the soil, allowed for rapid infiltra-
tion and bypass flow, even when the ground was frozen, sig-
nificantly influencing the partitioning of snowmelt into infil-
tration or runoff and, therefore, the amount of water available
for groundwater recharge. It is also important to acknowl-
edge that the lysimeter itself, by its design, could influence
the occurrence and patterns of preferential flow events, po-
tentially amplifying or altering natural flow paths (Williams
et al., 2019, 2020). Further investigation is needed to under-
stand how these factors contribute to the discrepancies ob-

Figure 9. Daily deep-percolation rates (mm d−1). (a) Septem-
ber 2019 to November 2020. (b) November 2020 to Novem-
ber 2021. (c) November 2021 to November 2022. The lines rep-
resent the ensemble means of the SVS model (gold brown) and ob-
servations from lysimeters L1 (black) and L2 (purple). The shaded
area represents the 95 % confidence interval of the SVS ensemble.
Gray-shaded areas indicate periods where observations from both
lysimeters were unavailable.

served between the simulated and observed soil moisture and
deep percolation, especially under freezing conditions.

5.3 Influence of capillary barrier on simulated
subsurface soil moisture

Figure 7d reveals a negative correlation coefficient between
simulated and observed subsurface soil moisture (1850 mm)
for both cold and warm months. This limitation in accu-
rately simulating the dynamics of the soil moisture at the
bottom of the soil column is potentially related to the choice
of the lower hydraulic boundary condition in the model.
We adopted a seepage face boundary condition as it is of-
ten suggested in studies involving lysimeters to approximate
the capillary barrier effect induced by the inclusion of the
drainage layer at the bottom of the lysimeters (Scanlon et al.,
2002, 2005). The capillary barrier increases water storage
in the finer layer situated just above, potentially keeping
this finer layer close to saturation (Mancarella and Simeone,
2012; Abdolahzadeh et al., 2011). Our results suggest that a
more sophisticated boundary condition is required to more
accurately reproduce the temporal variation of soil moisture
close to a capillary barrier (Gao et al., 2023; Hübner et al.,
2017; Kahale and Cabral, 2024). Figure 8 reveals that the
simulated ensemble has a relatively high overlap with the ob-
servations during the cold months, during which the move-
ment of water in the soil is predominantly downward, re-
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Figure 10. Time series (9 December 2019 to 13 December 2019)
of (a) snow depth (cm) and precipitation (mm h−1), (b) air and soil
temperature at 75 mm below the surface (°C), (c) observed and sim-
ulated soil moisture at 75 and 225 mm below the surface (m3 m−3),
and (d) percolation from the L2 lysimeter (mm h−1) and simulated
surface runoff (mm h−1).

flected in a small CRPS value of 0.007 m3 m−3, which is
likely influenced by the inherent stability of deep soil mois-
ture during this period. However, a notable underestimation
occurs during warm months, particularly during the sum-
mers of 2020 and 2021, with CRPS values equal to 0.036
(m3 m−3), significantly worse than 0.007.

To further analyze the summertime underestimation,
Fig. 11 compares simulated (ensemble mean) and observed
(sensors inside and outside the L1 lysimeter) soil moisture
at different depths from May to September 2020. Figure 11c
reveals that the underestimation becomes increasingly pro-
nounced during the warmer months. Figure 11b shows a sim-
ilar, though less severe, underestimation at 1750 mm. Inter-
estingly, the simulated soil moisture at 1750 mm agreed bet-
ter with the sensor located outside (“ext” in Fig. 11b) the
lysimeter, where no capillary barrier effect was present. The
sensor’s data revealed a drying pattern similar to the model,
hinting at the influence of the lysimeter on the upward move-
ment of water (the drying front) from deeper soil layers (Old-
ecop et al., 2017). Analysis of the L2 lysimeter data reveals
the same pattern of divergence between simulated and ob-
served soil moisture. This finding resonates with the find-

Figure 11. Time series (15 May–1 September 2020) of simulated
(ensemble mean) and observed (the L1 lysimeter) daily soil mois-
ture (m3 m−3) at different depths: (a) 75 mm, (b) 1750 mm, and
(c) 1850 mm. Note that “ext” indicates a soil moisture sensor out-
side the L1 lysimeter.

ings of McCartney and Zornberg (2010), who investigated
the zone of influence of a (geosynthetic) capillary barrier at
the bottom of a laboratory-constructed 1350 mm soil column.
During a 3-month evaporation stage (using heat lamps), their
soil moisture measurements did not show a significant de-
crease beyond 700 mm below the surface. In other words, the
drying front only progressed 700 mm into the soil layer.

Figure 11a reveals a notable divergence between the sim-
ulated and observed near-surface soil moisture (at 75 mm
depth), where the SVS model consistently overestimates soil
moisture throughout the entire period from May to Septem-
ber 2020, and this overestimation becomes particularly pro-
nounced during the summer months (July and August). This
raises questions about potential contributing factors. Did the
no-flux boundary walls of the lysimeter or the capillary bar-
rier alone contribute to this discrepancy? Could the limita-
tions of the one-dimensional single-continuum representa-
tion of the model in capturing the complex dynamics of water
movement and storage in the vadose zone contribute to this
discrepancy? While errors in evapotranspiration estimation
could play a role, the absence of direct measurements limits
our ability to fully quantify their impact. A thorough eval-
uation of the effects on deep-percolation simulations neces-
sitates more integrated data, including deep-percolation and
soil moisture measurements, particularly during summer.

This study’s parameter estimation, based on inverse mod-
eling (Sect. 3.3.1), used data from April to September 2019.
While lysimeters offer controlled conditions for hydrologi-
cal studies, they can change over time, influencing hydro-
logical processes. Séré et al. (2012) highlight how changing
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soil properties within lysimeters can affect water flow and so-
lute transport. The discrepancy between the model and obser-
vations, including the discrepancy shown in Fig. 11a, could
be partly attributed to such temporal changes. Future stud-
ies with longer datasets can monitor lysimeter soil properties
and use multi-year calibration to assess the impact of these
changes on hydrological simulations.

6 Conclusions

Robust process-based evaluation of land surface models is
critical for improving their ability to simulate deep percola-
tion, particularly in cold regions where complex hydrologi-
cal processes interact. Previous model evaluation studies of-
ten neglected the potential influence of uncertainties in forc-
ing data, parameter values, and observations. Evaluations fre-
quently relied on data with a coarse temporal resolution and
rarely included processes such as snow and soil freezing.
This study addresses these critical gaps. We comprehensively
evaluate the Soil, Vegetation, and Snow (SVS) land surface
model using high-resolution data from a large instrumented
experimental plot built at the St-Nicéphore landfill site in
southeastern Quebec, Canada. Our performance assessment
approach accounted for uncertainty in meteorological inputs,
a subset of the model’s hydraulic parameters, and observa-
tions. Furthermore, we evaluated a newly implemented soil-
freezing scheme within the SVS model for the first time.

The results showed that the simulated and observed daily
snow depth correlated well for most of the simulation pe-
riod, with a correlation coefficient (r) greater than 0.94 and a
mean bias error (MBE) smaller than 3.0 cm. This suggests a
good representation of snow accumulation and ablation pro-
cesses within SVS. The soil-freezing scheme simulated near-
surface daily soil temperature very well in cold months (r:
0.89), with a slight cold bias (MBE:−0.8 °C) due to potential
shortcomings in representing the latent heat exchange during
freezing and thawing cycles. SVS showed promise in captur-
ing deep-percolation events driven by spring snowmelt and
heavy summer and fall rainfall events. However, the model
exhibited limitations in simulating deep percolation during
cold months (r: 0.35) and under freezing conditions due to a
lack of representation for infiltration in frozen soil and the in-
fluence of preferential flow pathways. These limitations also
negatively impacted SVS’s ability to simulate near-surface
soil moisture during winter (MBE: −0.058 m3 m−3).

Our findings underscore challenges and important con-
siderations for accurately simulating cold-region deep-
percolation dynamics (Niu and Yang, 2006; Agnihotri et al.,
2023). Future studies can focus on improving the representa-
tion of frozen-soil infiltration and preferential flow pathways
within SVS and, potentially, in other land surface models.
Furthermore, a detailed sensitivity analysis investigating the
impact of individual parameters and meteorological forcing
on model performance would be valuable for identifying the

key factors driving model uncertainty and for guiding future
model development and calibration efforts. However, until
these limitations are addressed, SVS cannot be considered
to be a fully reliable tool for simulating deep percolation
in cold environments. Prioritizing the collection and subse-
quent open-access sharing of long-term, high-resolution in-
tegrated field measurements can facilitate such model im-
provements. Expanding model evaluations to include other
cold regions, longer periods, and diverse land covers is es-
sential for developing robust cold-region hydrological mod-
els. This approach, along with considering other limitations
of the LSMs (Vereecken et al., 2019), can further improve
deep-percolation simulation by land surface models and en-
hance our understanding of cold-region hydrology and its re-
sponse to a changing climate.

Appendix A: Soil-freezing module in SVS

SVS uses a hybrid approach that combines force–restore
schemes to compute the surface energy budget of bare
ground, vegetation, and snow (Husain et al., 2016) with a
multi-layer hydrological module solving the Richards equa-
tions for unsaturated flow in porous media (Alavi et al.,
2016). This hybrid approach initially prevented the simula-
tion of soil freezing and thawing by the model. To overcome
this limitation, a new module has been developed.

The representation of soil freezing in SVS relies on the
soil-freezing and soil-thawing module available in the Versa-
tile Soil Moisture Budget model (VSMB, Mohammed et al.,
2013). This module is based on the simple heat conduc-
tion algorithm of Hayashi et al. (2007) and simulates the
evolution of soil temperature and associated phase changes
without the computationally expensive iterative solution of
coupled non-linear equations. In SVS, soil temperature and
phase changes are solved on the same vertical grid as the hy-
drological processes using upper boundary conditions pro-
vided by the force–restore schemes solving the multiple en-
ergy budgets at the surface (Husain et al., 2016).

A1 Heat conduction algorithm

In the soil temperature algorithm, the heat conduction be-
tween two adjacent soil layers (upper to lower) is given by
the following:

qh =−λs
1zT

1z
, (A1)

where qh is the soil heat flux (W m−2),1zT is the difference
in soil temperature between adjacent layers (lower minus up-
per) (K), 1z is the distance between the centers of the lay-
ers (m), and λs is the bulk thermal conductivity given by the
thickness-weighted harmonic mean conductivity of the two
layers (W K−1 m−1).
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For a given soil layer j , the net heat flux (1zqh,j ) is then
computed as follows:

1zqh,j = qh,j−1− qh,j . (A2)

The soil temperature algorithm assumes then that the change
in net heat flux corresponds to a change in heat stored as
sensible and latent heat in layer j :

1zqh,j = (1tTj cs,j +1twi,jρwLf)dj , (A3)

where 1tTj (K) and 1twi,j (kg kg−1) are the changes in the
soil temperature and liquid-equivalent ice content of layer j ,
respectively, with time; ρw is the density of water (kg m−3);
Lf is the latent heat of fusion (J kg−1); dj is the layer thick-
ness (m); and cs,j is the volumetric heat capacity of the soil
layer (J m−3 K−1).

The VSMB soil-freezing scheme assumes that water
in soil pores freezes at Tref = 273.15 K and ignores the
freezing-point depression (Kurylyk and Watanabe, 2013). It
accounts for the presence of unfrozen water that remains in
the soil at sub-zero temperatures and co-exists with ice. The
default VSMB algorithm assumes that the residual unfrozen
water contentwl,r is constant and equals 0.06 by default. This
option has been used in this work since it corresponds well to
local observations of residual liquid-water content in frozen
conditions. Another option in SVS allows the unfrozen resid-
ual water content to depend on the soil texture based on Niu
and Yang (2006). If a soil layer j is completely thawed or
frozen, with no liquid water above the residual frozen-water
content (i.e., Tj 6= Tref), 1zqh,j is converted to sensible heat
until Tj reaches Tref, and any residual is converted to la-
tent heat (melting or freezing). If the soil is already frozen
(Tj = Tref), 1zqh,j is first used for the phase change of all
available liquid water above wl,r, and any residual is con-
verted to sensible heat. Calculations are performed sequen-
tially from the top to the lowest soil layer.

The thermal heat capacity cs and thermal conductivity λs
of the soil layers are parameterized following Peters-Lidard
et al. (1998) as functions of soil moisture and texture (per-
centage of sand and clay) and account for the effect of soil
freezing as described in Boone et al. (2000). The dry-soil
thermal conductivity and soil thermal conductivity are taken
from He et al. (2021) and Johansen (1975), respectively.

A2 Lower boundary condition

The heat flux at the bottom of the lowest soil layer is speci-
fied using an annual mean deep soil temperature Tbtm and an
appropriate scaling depth zbtm. This is written as follows:

qh,N = λs,N
TN − Tbtm

(zbtm− zN )
, (A4)

where N corresponds to the deepest soil layer. In this study,
Tbtm was set to 7.5 (°C), and zbtm was set to 5 m.

A3 Upper boundary condition

The upper boundary condition accounts for the surface
tiling used in SVS. It includes contributions from (i) snow-
free bare ground, (ii) snow-free low and high vegetation,
(iii) snow over bare ground and low vegetation, and (iv) snow
below high vegetation. The heat flux at the top of the super-
ficial soil layer is written as follows:

qh,0 = fgrndHgrnd+fvegHveg+fsnwHsnw+fsnwvHsnwv, (A5)

where fgrnd and fveg are the fractions of snow-free bare
ground and snow-free low and high vegetation, respectively.
fsnw and fsnwv represent the fraction of low vegetation and
bare ground covered by snow and the fraction of soil under
high vegetation covered by snow, respectively. Hgrnd, Hveg,
Hsnw, and Hsnwv are the heat flux (W m−2) from snow-free
bare ground, snow-free vegetation, snow over bare ground
and low vegetation, and snow below high vegetation.

For bare ground, the heat flux depends on the difference
between the skin-temperature Tgs simulated by the force–
restore approach for bare ground and the temperature of the
upper soil layer (j = 1). This is written as follows:

Hgrnd =
Tgs− T1

Rg
with Rg =

d1

2λs,1
. (A6)

In its current version, the soil-freezing scheme has no feed-
back on the force–restore scheme used for bare ground.
Therefore, the prognostic temperature variables of the force–
restore scheme used for bare ground lack the effect of latent
heat release due to soil freezing and thawing. This can lead
to an underestimation of soil temperature during soil freezing
and an overestimation of soil temperature during soil thaw-
ing.

For snow-free low and high vegetation, SVS relies on
the thermal coupling approach used in the EC-Land scheme
(Boussetta et al., 2021). It uses the concept of skin conduc-
tivity to compute the heat exchanges between the vegetation
tile and the soil. The heat flux between the snow-free low and
high vegetation and the upper soil layer is written as follows:

Hveg = (Tvs− T1) ,3v (A7)

where Tvs is the vegetation skin temperature simulated by
the force–restore approach, and T1 is the temperature of the
upper soil layer. 3v is the skin conductivity (W K−1 m−2)
for the vegetation. A first option in the code used a constant
value of 10 W K−1 m−2 for low and high vegetation, as in
the default version of EC-Land (see Table 1.2 in the supple-
mentary material of Boussetta et al., 2021). A second option,
used in this work, takes into account the effects of stable and
unstable stratification, as in Trigo et al. (2015).

The force–restore schemes used for the snowpack over
bare ground and low vegetation and the snowpack below high
vegetation do not provide information on the temperature at
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the interface between the ground and the snow. Therefore, the
deep snow temperature Tsnw,d from the force–restore scheme
is used to estimate the heat flux between the superficial soil
layer and the snow. It is written as follows:

Hsnw =
Tsnw,d− T1

Rsnw
with Rsnw =

htherm

λsnw
+

d1

2λs,1
, (A8)

where λsnw is the snow thermal conductivity (W m−1 K−1),
and htherm is the thickness used to compute the thermal ex-
changes between the snowpack and the ground (m). htherm
depends on the snow damping depth dsnw, used to charac-
terize the diurnal variation of temperature close to the snow
surface in the force–restore scheme (Leonardini et al., 2021).
htherm is computed as htherm =max(hsnw/2,hsnw− dsnw),
where hsnw is the total snow depth. The heat flux between
the superficial soil layer and the snowpack below high veg-
etation Hsnwv is derived in the same way as Hsnw using the
simulated information for the snowpack below high vegeta-
tion.

Accurate estimation of the fraction of the soil covered by
snow is an important component of the soil-freezing scheme.
Indeed, it affects the estimation of the surface heat flux and
strongly controls soil freezing in the fall and soil thawing
in springtime. Two approaches can be used for snow cover
fraction in the soil-freezing scheme. For the first option,
the fraction is computed as fsnw =max(1., ρsnwhsnw

Wcr
), with

Wcr = 1 kg m−2. The same formulation is used for fsnwv.
With this formulation, the snow cover fraction reaches the
value of 1 as soon as the snow is present on the ground. Such
a formulation is mainly suitable for point-scale applications
of the soil-freezing scheme and was used in this study. A sec-
ond option, recommended for gridded simulations, relies on
the formulation of Niu and Yang (2007):

fsnw = fsnwv = tanh

 hsnw

2.5z0

(
ρsnw
ρref

)m
 , (A9)

where ρref = 100 kg m−3 and m= 1.6 are the default values
from Niu and Yang (2007). In the soil-freezing scheme, z0 is
set to 0.01 m to preserve a rapid increase in the snow cover

fraction with snow depth. The term
(
ρsnw
ρref

)m
in the denomi-

nator aims to roughly represent the hysteresis associated with
the snow cover fraction (Niu and Yang, 2007).

A4 Hydrological impact

The presence of frozen soil (θice > 0) modifies the hydraulic
conductivity at saturation and the soil porosity in the SVS
soil hydrology scheme. The saturated hydraulic conductiv-
ity in the presence of frozen soil is written as ksatc = ficeksat,
where ksat is the hydraulic conductivity at saturation that de-
pends on soil texture. fice is a parameter that aims to reduce
ksat in the presence of frozen water in the soil (e.g., Kurylyk

and Watanabe, 2013). It is computed as in the CLASS land
surface scheme (Ganji et al., 2017):

fice =

[
1−max

(
0,min

(
θsat− 0.001

θsat
,
wi

wsat

))]2

, (A10)

where θsat is the saturated volumetric water content.
The volumetric liquid-water content at saturation is also

reduced, assuming that frozen water becomes part of the soil
matrix (Zhao et al., 1997):

θsatc =max(0.001,θsat− θice). (A11)

Evapotranspiration is also indirectly affected due to the
change in the liquid-water content when freezing and thaw-
ing occur.
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