Articles | Volume 27, issue 5
https://doi.org/10.5194/hess-27-969-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-969-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Controls on flood managed aquifer recharge through a heterogeneous vadose zone: hydrologic modeling at a site characterized with surface geophysics
Department of Earth System Science, Stanford University, Stanford, California, USA
Gordon Osterman
Agricultural Research Service, US Department of Agriculture, Davis, California, USA
Department of Geophysics, Stanford University, Stanford, California, USA
Kate Maher
Department of Earth System Science, Stanford University, Stanford, California, USA
Cited articles
Ajami, H., McCabe, M. F., Evans, J. P., and Stisen, S.: Assessing the impact of model spin-up on surface water-groundwater interactions using an integrated hydrologic model, Water Resour. Res., 50, 2636–2656,
https://doi.org/10.1002/2013WR014258, 2014. a
Alam, S., Gebremichael, M., Li, R., Dozier, J., and Lettenmaier, D. P.: Can
Managed Aquifer Recharge Mitigate the Groundwater Overdraft in California's Central Valley?, Water Resour. Res., 56, e2020WR027244, https://doi.org/10.1029/2020WR027244, 2020. a, b, c, d
Andreu, L., Hopmans, J., and Schwankl, L.: Spatial and temporal distribution of soil water balance for a drip-irrigated almond tree, Agr. Water Manage., 35, 123–146, https://doi.org/10.1016/S0378-3774(97)00018-8, 1997. a
Ashby, S. F. and Falgout, R. D.: A Parallel Multigrid Preconditioned Conjugate Gradient Algorithm for Groundwater Flow Simulations, Nucl. Sci. Eng., 124, 145–159, https://doi.org/10.13182/NSE96-A24230, 1996. a
Auken, E., Christiansen, A. V., Kirkegaard, C., Fiandaca, G., Schamper, C.,
Behroozmand, A. A., Binley, A., Nielsen, E., Effersø, F., Christensen, N. B., Sørensen, K., Foged, N., and Vignoli, G.: An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and
borehole electromagnetic and electric data, Explor. Geophys., 46, 223–235, https://doi.org/10.1071/EG13097, 2015. a
Bachand, P. A. M., Roy, S. B., Choperena, J., Cameron, D., and Horwath, W. R.: Implications of Using On-Farm Flood Flow Capture To Recharge Groundwater and Mitigate Flood Risks Along the Kings River, CA, Environ. Sci. Technol., 48, 13601–13609, https://doi.org/10.1021/es501115c, 2014. a, b, c, d
Bachand, S., Hossner, R., and Bachand, P.: Effects on soil hydrology and salinity, and potential implications on soil oxygen, Final 2017 OFR Comprehensive Report no. 38, Bachand & Associates, 1–39, https://northkingsgsa.org/documents/2017-demo-site-monitoring-and-analyses-effects-on-soil
(last access: 23 February 2023), 2019. a
Bahar, T., Oxarango, L., Castebrunet, H., Rossier, Y., and Mermillod-Blondin,
F.: 3D modelling of solute transport and mixing during managed aquifer
recharge with an infiltration basin, J. Contam. Hydrol., 237, 103758, https://doi.org/10.1016/j.jconhyd.2020.103758, 2021. a, b
Behroozmand, A. A., Auken, E., and Knight, R.: Assessment of Managed Aquifer Recharge Sites Using a New Geophysical Imaging Method, Vadose Zone J., 18, 1–13, https://doi.org/10.2136/vzj2018.10.0184, 2019. a, b
Belitz, K. and Phillips, S. P.: Alternative to Agricultural Drains in
California's San Joaquin Valley: Results of a Regional-Scale Hydrogeologic Approach, Water Resour. Res., 31, 1845–1862, https://doi.org/10.1029/95WR01328, 1995. a, b
Bertoldi, G., Johnston, R., and Evenson, K.: Ground water in the Central
Valley, California – A summary report, US Geological Survey Professional Paper 1401-A, US Geological Survey, Washington, DC, https://doi.org/10.3133/pp1401A 1991. a
Bierkens, M. F. P. and Wada, Y.: Non-renewable groundwater use and groundwater depletion: a review, Environ. Res. Lett., 14, 063002, https://doi.org/10.1088/1748-9326/ab1a5f, 2019. a
Botros, F. E., Harter, T., Onsoy, Y. S., Tuli, A., and Hopmans, J. W.: Spatial Variability of Hydraulic Properties and Sediment Characteristics in
a Deep Alluvial Unsaturated Zone, Vadose Zone J., 8, 276–289,
https://doi.org/10.2136/vzj2008.0087, 2009. a, b, c
Bouwer, H.: Artificial recharge of groundwater: hydrogeology and engineering,
Hydrogeol. J., 10, 121–142, https://doi.org/10.1007/s10040-001-0182-4, 2002. a, b, c
Brevik, E. C., Fenton, T. E., and Jaynes, D. B.: Evaluation of the Accuracy
of a Central Iowa Soil Survey and Implications for Precision Soil Management, Precis. Agricult., 4, 331–342, https://doi.org/10.1023/A:1024960708561, 2003. a
CA DWR: California Water Plan: Update 2018, Tech. ep., California Department of Water Resources, Sacramento, CA,
https://water.ca.gov/programs/california-water-plan/update-2018 (last access: 23 February 2023), 2018a. a
CA DWR: Flood-MAR: Using Flood Water for Managed Aquifer Recharge to Support Sustainable Water Resources, Tech. rep., California Department of Water Resources, Sacramento, CA,
https://water.ca.gov/programs/all-programs/flood-mar (last access: 23 February 2023), 2018b. a
CA DWR: Flood-MAR research and data development plan, Tech. rep., California Department of Water Resources, Sacramento, CA,
https://water.ca.gov/programs/all-programs/flood-mar (last access: 23 February 2023), 2019. a
Christiansen, A. V. and Auken, E.: A global measure for depth of investigation, Geophysics, 77, 171–177, https://doi.org/10.1190/geo2011-0393.1, 2012. a
Dahlke, H. E., Brown, A. G., Orloff, S., Putnam, D., and O'Geen, T.: Managed
winter flooding of alfalfa recharges groundwater with minimal crop damage,
California Agricult., 72, 1–11, https://doi.org/10.3733/ca.2018a0001, 2018. a
Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich, M. G., Denning, A. S., Dirmeyer, P. A., Houser, P. R., Niu, G., Oleson, K. W., Schlosser, C. A., and Yang, Z. L.: The common land model, B. Am. Meteorol. Soc., 84, 1013–1023, https://doi.org/10.1175/BAMS-84-8-1013, 2003. a
Dettinger, M. D., Ralph, F. M., Das, T., Neiman, P. J., and Cayan, D. R.:
Atmospheric Rivers, Floods and the Water Resources of California, Water, 3, 445–478, https://doi.org/10.3390/w3020445, 2011. a
Doll, D. and Shackel, K.: Drought Tip: Drought Management for California Almonds, ANR Publication 8515, University of California, Agriculture and Natural Resources, https://doi.org/10.3733/ucanr.8515, 2015. a, b
Drew, M. C. and Lynch, J. M.: Soil Anaerobiosis, Microorganisms, and Root
Function, Annu. Re. Phytopathol., 18, 37–66, https://doi.org/10.1146/annurev.py.18.090180.000345, 1980. a
Fakhreddine, S., Prommer, H., Scanlon, B. R., Ying, S. C., and Nicot, J.-P.:
Mobilization of Arsenic and Other Naturally Occurring Contaminants during Managed Aquifer Recharge: A Critical Review, Environ. Sci. Technol., 55, 2208–2223, https://doi.org/10.1021/acs.est.0c07492, 2021. a
Faunt, C. C., Belitz, K., and Hanson, R. T.: Development of a three-dimensional model of sedimentary texture in valley-fill deposits of Central Valley, California, USA, Hydrogeol. J., 18, 625–649,
https://doi.org/10.1007/s10040-009-0539-7, 2010. a
Fenwick, D., Scheidt, C., and Caers, J.: Quantifying Asymmetric Parameter
Interactions in Sensitivity Analysis: Application to Reservoir Modeling, Math. Geosci., 46, 493–511, https://doi.org/10.1007/s11004-014-9530-5, 2014. a
Fichtner, T., Barquero, F., Sallwey, J., and Stefan, C.: Assessing Managed
Aquifer Recharge Processes under Three Physical Model Concepts, Water, 11, 107, https://doi.org/10.3390/w11010107, 2019. a
Fogg, G. E., Carle, S. F., and Green, C.: Connected-network paradigm for the
alluvial aquifer system, in: Theory, modeling, and field investigation in
hydrogeology: a special volume in honor of Shlomo P, Neumans 60th birthday, edited by: Zhang, D. and Winter, C. L., no. 348 in Geological Society of America Special Paper, Geological Society of America, Boulder, Colorado, 25–42, https://doi.org/10.1130/0-8137-2348-5.25, 2000. a, b
Ganot, Y. and Dahlke, H. E.: Natural and forced soil aeration during
agricultural managed aquifer recharge, Vadose Zone J., 20, e20128, https://doi.org/10.1002/vzj2.20128, 2021. a, b, c, d
Ganot, Y., Holtzman, R., Weisbrod, N., Bernstein, A., Siebner, H., Katz, Y.,
and Kurtzman, D.: Managed aquifer recharge with reverse-osmosis desalinated
seawater: modeling the spreading in groundwater using stable water isotopes,
Hydrol. Earth Syst. Sci., 22, 6323–6333, https://doi.org/10.5194/hess-22-6323-2018, 2018. a, b
Goebel, M. and Knight, R.: Recharge site assessment through the integration of surface geophysics and cone penetrometer testing, Vadose Zone J., 20,
e20131, https://doi.org/10.1002/vzj2.20131, 2021. a, b, c, d
Gottschalk, I. P., Hermans, T., Knight, R., Caers, J., Cameron, D. A., Regnery, J., and McCray, J. E.: Integrating non-colocated well and geophysical data to capture subsurface heterogeneity at an aquifer recharge and recovery site, J. Hydrol., 555, 407–419, https://doi.org/10.1016/j.jhydrol.2017.10.028, 2017. a
Gribb, M. M., Šimůnek, J., and Leonard, M. F.: Development of Cone
Penetrometer Method to Determine Soil Hydraulic Properties, J. Geotech. Geoenviron. Eng., 124, 820–829, https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(820), 1998. a
Haines, S. S., Pidlisecky, A., and Knight, R.: Hydrogeologic structure
underlying a recharge pond delineated with shear‐wave seismic reflection
and cone penetrometer data, Near Surf. Geophys., 7, 329–340,
https://doi.org/10.3997/1873-0604.2009036, 2009. a
Harrington, G. A., Gardner, W. P., and Munday, T. J.: Tracking Groundwater
Discharge to a Large River using Tracers and Geophysics, Groundwater, 52, 837–852, https://doi.org/10.1111/gwat.12124, 2014. a
He, X., Bryant, B. P., Moran, T., Mach, K. J., Wei, Z., and Freyberg, D. L.:
Climate-informed hydrologic modeling and policy typology to guide managed
aquifer recharge, Sci. Adv., 7, eabe6025, https://doi.org/10.1126/sciadv.abe6025, 2021. a
Heilweil, V. M., Benoit, J., and Healy, R. W.: Variably saturated groundwater
modelling for optimizing managed aquifer recharge using trench infiltration:
Variably saturated modelling for optimizing trench infiltration, Hydrol. Process., 29, 3010–3019, https://doi.org/10.1002/hyp.10413, 2015. a
Hermans, T., Nguyen, F., Klepikova, M., Dassargues, A., and Caers, J.:
Uncertainty Quantification of Medium-Term Heat Storage From Short-Term Geophysical Experiments Using Bayesian Evidential Learning, Water Resour. Res., 54, 2931–2948, https://doi.org/10.1002/2017WR022135, 2018. a
Hoffmann, R., Dassargues, A., Goderniaux, P., and Hermans, T.: Heterogeneity
and Prior Uncertainty Investigation Using a Joint Heat and Solute Tracer Experiment in Alluvial Sediments, Front. Earth Sci., 7, 108, https://doi.org/10.3389/feart.2019.00108, 2019. a
Idelovitch, E. and Michail, M.: Soil-Aquifer Treatment: A New Approach to an Old Method of Wastewater Reuse, J. Water Pollut. Control Federat., 56, 936–943, 1984. a
Johnson, A. I., Moston, R. P., and Morris, D. A.: Physical and hydrologic
properties of water-bearing deposits in subsiding areas in central
California, US Geological Survey Professional Paper 497-A, US Geological Survey, Washington, DC, https://doi.org/10.3133/pp497A, 1968. a
Jones, J. E. and Woodward, C. S.: Newton–Krylov-multigrid solvers for
large-scale, highly heterogeneous, variably saturated flow problems, Adv.
Water Resour., 24, 763–774, https://doi.org/10.1016/S0309-1708(00)00075-0, 2001. a
Knight, R. J. and Endres, A. L.: An Introduction to Rock Physics Principles for Near-Surface Geophysics, in: Near-Surface Geophysics, Investigations in Geophysics, Society of Exploration Geophysicists, 31–70, https://doi.org/10.1190/1.9781560801719.ch3, 2005. a, b
Kocis, T. N. and Dahlke, H. E.: Availability of high-magnitude streamflow for
groundwater banking in the Central Valley, California, Environ. Res. Lett., 12, 084009, https://doi.org/10.1088/1748-9326/aa7b1b, 2017. a
Kollet, S. J. and Maxwell, R. M.: Integrated surface–groundwater flow
modeling: A free-surface overland flow boundary condition in a parallel
groundwater flow model, Adv. Water Resour., 29, 945–958,
https://doi.org/10.1016/j.advwatres.2005.08.006, 2006. a, b
Kollet, S. J. and Maxwell, R. M.: Capturing the influence of groundwater
dynamics on land surface processes using an integrated, distributed watershed
model, Water Resour. Res., 44, W02402, https://doi.org/10.1029/2007WR006004, 2008. a
Koumanov, K. S., Hopmans, J. W., and Schwankl, L. W.: Spatial and temporal
distribution of root water uptake of an almond tree under microsprinkler
irrigation, Irrig. Sci., 24, 267–278, https://doi.org/10.1007/s00271-005-0027-3, 2006. a
Kozlowski, T. T.: Responses of woody plants to flooding and salinity, Tree
Physiol., 17, 490, https://doi.org/10.1093/treephys/17.7.490, 1997. a
Levintal, E., Kniffin, M. L., Ganot, Y., Marwaha, N., Murphy, N. P., and
Dahlke, H. E.: Agricultural managed aquifer recharge (Ag-MAR) – a method
for sustainable groundwater management: A review, Crit. Rev. Environ. Sci. Technol., 53, 291–314, https://doi.org/10.1080/10643389.2022.2050160, 2023. a, b
Lunne, T., Powell, J. J. M., and Robertson, P. K.: Cone Penetration Testing
in Geotechnical Practice, CRC Press, London, UK, https://doi.org/10.1007/s11204-010-9072-x, 1997. a, b
Ma, X., Dahlke, H., Duncan, R., Doll, D., Martinez, P., Lampinen, B., and Volder, A.: Winter flooding recharges groundwater in almond orchards with limited effects on root dynamics and yield, California Agriculture,
0008-0845, 1–7, https://doi.org/10.3733/ca.2022a0008, 2022. a
Maliva, R. G., Clayton, E. A., and Missimer, T. M.: Application of advanced
borehole geophysical logging to managed aquifer recharge investigations,
Hydrogeol. J., 17, 1547–1556, https://doi.org/10.1007/s10040-009-0437-z, 2009. a
Maliva, R. G., Herrmann, R., Coulibaly, K., and Guo, W.: Advanced aquifer
characterization for optimization of managed aquifer recharge, Environ. Earth Sci., 73, 7759–7767, https://doi.org/10.1007/s12665-014-3167-z, 2015. a
Maples, S. R., Foglia, L., Fogg, G. E., and Maxwell, R. M.: Sensitivity of
hydrologic and geologic parameters on recharge processes in a highly
heterogeneous, semi-confined aquifer system, Hydrol. Earth Syst. Sci., 24, 2437–2456, https://doi.org/10.5194/hess-24-2437-2020, 2020. a
Marwaha, N., Kourakos, G., Levintal, E., and Dahlke, H. E.: Identifying
Agricultural Managed Aquifer Recharge Locations to Benefit Drinking Water Supply in Rural Communities, Water Resour. Res., 57, e2020WR028811, https://doi.org/10.1029/2020WR028811, 2021. a
Maxwell, R. M. and Miller, N. L.: Development of a Coupled Land Surface and Groundwater Model, J. Hydrometeorol., 6, 233–247, https://doi.org/10.1175/JHM422.1, 2005. a
Møller, I., Søndergaard, V. H., Jørgensen, F., Auken, E., and Christiansen, A. V.: Integrated management and utilization of hydrogeophysical data on a national scale, Near Surf. Geophys., 7, 647–659,
https://doi.org/10.3997/1873-0604.2009031, 2009. a
Murphy, N. P., Waterhouse, H., and Dahlke, H. E.: Influence of agricultural
managed aquifer recharge on nitrate transport: The role of soil texture and
flooding frequency, Vadose Zone J., 20, e20150, https://doi.org/10.1002/vzj2.20150, 2021. a, b, c
Neuman, S. P. and Witherspoon, P. A.: Field determination of the hydraulic
properties of leaky multiple aquifer systems, Water Resour. Res., 8, 1284–1298, https://doi.org/10.1029/WR008i005p01284, 1972. a
Niswonger, R. G., Morway, E. D., Triana, E., and Huntington, J. L.: Managed
aquifer recharge through off-season irrigation in agricultural regions: Managed aquifer recharge in agriculture, Water Resour. Res., 53, 6970–6992, https://doi.org/10.1002/2017WR020458, 2017. a
O'Geen, A., Saal, M., Dahlke, H., Doll, D., Elkins, R., Fulton, A., Fogg, G.,
Harter, T., Hopmans, J. W., Ingels, C., Niederholzer, F., Solis, S. S.,
Verdegaal, P., and Walkinshaw, M.: Soil suitability index identifies potential areas for groundwater banking on agricultural lands, California
Agricult., 69, 75–84, https://doi.org/10.3733/ca.v069n02p75, 2015. a, b, c, d
O'Leary, D. R., Izbicki, J. A., Moran, J. E., Meeth, T., Nakagawa, B., Metzger, L., Bonds, C., and Singleton, M. J.: Movement of Water Infiltrated from a Recharge Basin to Wells, Ground Water, 50, 242–255,
https://doi.org/10.1111/j.1745-6584.2011.00838.x, 2012. a, b
Park, J., Yang, G., Satija, A., Scheidt, C., and Caers, J.: DGSA: A Matlab toolbox for distance-based generalized sensitivity analysis of geoscientific computer experiments, Comput. Geosci., 97, 15–29,
https://doi.org/10.1016/j.cageo.2016.08.021, 2016. a
Parker, T. K., Jansen, J., Behroozmand, A., Halkjaer, M., and Thorn, P.:
Applied Geophysics for Managed Aquifer Recharge, Groundwater, 60, 606–618, https://doi.org/10.1111/gwat.13235, 2022. a
Pepin, K., Knight, R., Goebel‐Szenher, M., and Kang, S.: Managed aquifer
recharge site assessment with electromagnetic imaging: Identification of
recharge flow paths, Vadose Zone J., 21, e20192, https://doi.org/10.1002/vzj2.20192, 2022. a
Perzan, Z., Babey, T., Caers, J., Bargar, J. R., and Maher, K.: Loca and
Global Sensitivity Analysis of a Reactive Transport Model Simulating Floodplain Redox Cycling, Water Resour. Res., 57, e2021WR029723, https://doi.org/10.1029/2021WR029723, 2021. a
Perzan, Z., Osterman, G., and Maher, K.: Data-model files associated with the
manuscript “Controls on flood managed aquifer recharge through a
heterogeneous vadose zone”, Stanford Digital Repository [data set], https://doi.org/10.25740/hj302gv2126, 2023. a
Phillips, S. P. and Belitz, K.: Calibration of a Texture-Based Model of a
Ground-Water Flow System, Western San Joaquin Valley, California, Groundwater, 29, 702–715, https://doi.org/10.1111/j.1745-6584.1991.tb00562.x, 1991. a
Podgorski, J. E., Auken, E., Schamper, C., Vest Christiansen, A., Kalscheuer,
T., and Green, A. G.: Processing and inversion of commercial helicopter
time-domain electromagnetic data for environmental assessments and geologic
and hydrologic mapping, Geophysics, 78, E149–E159, https://doi.org/10.1190/geo2012-0452.1, 2013. a
Qi, C. and Zhan, H.: Soil Property and Subsurface Heterogeneity Control on Groundwater Recharge of Vadose Zone Injection Wells, J. Hydrol. Eng., 27, 04021052, https://doi.org/10.1061/(ASCE)HE.1943-5584.0002158, 2022. a
Rahman, M. A., Rusteberg, B., Gogu, R., Lobo Ferreira, J., and Sauter, M.: A
new spatial multi-criteria decision support tool for site selection for
implementation of managed aquifer recharge, J. Environ. Manage., 99, 61–75, https://doi.org/10.1016/j.jenvman.2012.01.003, 2012. a
Ringleb, J., Sallwey, J., and Stefan, C.: Assessment of Managed Aquifer
Recharge through Modeling – A Review, Water, 8, 579, https://doi.org/10.3390/w8120579, 2016. a
Robertson, P.: Cone penetration test (CPT)-based soil behaviour type (SBT)
classification system – an update, Can. Geotech. J., 53, 1910–1927, https://doi.org/10.1139/cgj-2016-0044, 2016. a
Robertson, P. K.: Interpretation of cone penetration tests – a unified
approach, Can. Geotech. J., 46, 1337–1355, https://doi.org/10.1139/T09-065, 2009. a
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data
Assimilation System, B. Am. Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004. a
Rudnik, G., Rabinovich, A., Siebner, H., Katz, Y., and Kurtzman, D.: Exploring Predictive Uncertainty at a Double-Source Managed Aquifer Recharge Site via Stochastic Modeling, Water Resour. Res., 58, e2021WR031241, https://doi.org/10.1029/2021WR031241, 2022. a
Russo, D. and Bouton, M.: Statistical analysis of spatial variability in
unsaturated flow parameters, Water Resour. Res., 28, 1911–1925,
https://doi.org/10.1029/92WR00669, 1992. a
Russo, D., Kurtzman, D., and Nachshon, U.: Hydraulic Issues Concerning
Injection of Harvested Rainwater to the Subsurface Through Drywells: Insight From Numerical Simulations of Flow in a Realistic Combined Vadose Zone-Groundwater Flow System, Water Resour. Res., 58, e2021WR031881, https://doi.org/10.1029/2021WR031881, 2022. a, b, c
Russo, T. A., Fisher, A. T., and Lockwood, B. S.: Assessment of Managed
Aquifer Recharge Site Suitability Using a GIS and Modeling, Groundwater, 53, 389–400, https://doi.org/10.1111/gwat.12213, 2015. a, b, c
Sallwey, J., Glass, J., and Stefan, C.: Utilizing unsaturated soil zone models for assessing managed aquifer recharge, Sustain. Water Resour. Manage., 4, 383–397, https://doi.org/10.1007/s40899-018-0214-z, 2018. a, b, c
Saltelli, A., ed.: Global sensitivity analysis: the primer, John Wiley,
Chichester, England, Hoboken, NJ, https://doi.org/10.1002/9780470725184, 2008. a
Sattel, D. and Kgotlhang, L.: Groundwater exploration with AEM in the Boteti Area, Botswana, Explo. Geophys., 35, 147–156, https://doi.org/10.1071/EG04147, 2004. a
Scanlon, B. R., Reedy, R. C., Faunt, C. C., Pool, D., and Uhlman, K.: Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona, Environ. Res. Lett., 11, 049501,
https://doi.org/10.1088/1748-9326/11/4/049501, 2016. a
Sendrós, A., Himi, M., Lovera, R., Rivero, L., Garcia-Artigas, R., Urruela, A., and Casas, A.: Geophysical Characterization of Hydraulic Properties around a Managed Aquifer Recharge System over the Llobregat River
Alluvial Aquifer (Barcelona Metropolitan Area), Water, 12, 3455,
https://doi.org/10.3390/w12123455, 2020a. a
Sendrós, A., Himi, M., Lovera, R., Rivero, L., Garcia‐Artigas, R., Urruela, A., and Casas, A.: Electrical resistivity tomography monitoring of two managed aquifer recharge ponds in the alluvial aquifer of the Llobregat
River (Barcelona, Spain), Near Surf. Geophys., 18, 353–368, https://doi.org/10.1002/nsg.12113, 2020b. a
Shen, S.-L., Wang, J.-P., Wu, H.-N., Xu, Y.-S., Ye, G.-L., and Yin, Z.-Y.:
Evaluation of hydraulic conductivity for both marine and deltaic deposits
based on piezocone testing, Ocean Eng., 110, 174–182, https://doi.org/10.1016/j.oceaneng.2015.10.011, 2015. a
Siemon, B., Christiansen, A. V., and Auken, E.: A review of helicopter‐borne
electromagnetic methods for groundwater exploration, Near Surf. Geophys., 7, 629–646, https://doi.org/10.3997/1873-0604.2009043, 2009. a
Smith, S., reedmaxwell, i-ferguson, Engdahl, N., Gasper, F., Avery, P., Chennault, C., Jourdain, S., grapp1, Condon, L., Kulkarni, K., Bansal, V., xy124, Bennett, A., basileh, Thompson, D., Lazzeri Kitware, D., Swilley, J., Beisman, J., alanquits, Coon, E., Bertolacci, I. M. S., Lührs, S., arezaii, aureliayang, and cswoodward: parflow/parflow: ParFlow Version 3.10.0 (v3.10.0), Zenodo [code], https://doi.org/10.5281/zenodo.6413322, 2022. a
United Nations: The United Nations World Water Development Report 2022: Groundwater: Making the invisible visible, UNESCO, Paris, France, ISBN 978-92-3-100507-7, 2022. a
USDA: California Almond Objective Measurement Report, Objective Measurement Report, United States Department of Agriculture, National Agricultural Statistics Service, Sacramento, CA, https://www.almonds.com/sites/default/files/2022-07/2022_ObjectiveReport.pdf (last access: 23 February 2023), 2022. a
van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892–898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980. a, b
Voyiadjis, G. Z. and Song, C. R.: Determination of Hydraulic Conductivity
Using Piezocone Penetration Test, Int. J. Geomech., 3, 217–224, https://doi.org/10.1061/(ASCE)1532-3641(2003)3:2(217), 2003. a
Wackernagel, H.: Multivariate geostatistics, in: 3rd Edn., Springer, Berlin, Heidelberg, ISBN 978-3-540-44142-7, 2003. a
Walsh, D. O., Grunewald, E. D., Turner, P., Hinnell, A., and Ferre, T. P.:
Surface NMR instrumentation and methods for detecting and characterizing
water in the vadose zone, Near Surf. Geophys., 12, 271–284, https://doi.org/10.3997/1873-0604.2013066, 2014. a
Waterhouse, H., Arora, B., Spycher, N. F., Nico, P. S., Ulrich, C., Dahlke,
H. E., and Horwath, W. R.: Influence of Agricultural Managed Aquifer Recharge (AgMAR) and Stratigraphic Heterogeneities on Nitrate Reduction in the Deep Subsurface, Water Resour. Res., 57, e2020WR029148, https://doi.org/10.1029/2020WR029148, 2021. a
Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., and Mocko, D.: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products: Water and energy flux analysis, J. Geophys. Res.-Atmos., 117, D03109, https://doi.org/10.1029/2011JD016048, 2012.
a
Zamora, C.: Estimating Water Fluxes Across the Sediment–Water Interface in the Lower Merced River, California, Scientific Investigations Report 2007-5216, US Geological Survey, Reston, VA, https://pubs.usgs.gov/sir/2007/5216/ (last access: 23 February 2023), 2008.
a
Zhu, J. and Mohanty, B. P.: Spatial Averaging of van Genuchten Hydraulic
Parameters for Steady-State Flow in Heterogeneous Soils: A Numerical Study, Vadose Zone J., 1, 261–272, https://doi.org/10.2136/vzj2002.2610, 2002. a, b
Short summary
In this study, we simulate flood managed aquifer recharge – the process of intentionally inundating land to replenish depleted aquifers – at a site imaged with geophysical equipment. Results show that layers of clay and silt trap recharge water above the water table, where it is inaccessible to both plants and groundwater wells. Sensitivity analyses also identify the main sources of uncertainty when simulating managed aquifer recharge, helping to improve future forecasts of site performance.
In this study, we simulate flood managed aquifer recharge – the process of intentionally...