Articles | Volume 27, issue 5
https://doi.org/10.5194/hess-27-969-2023
https://doi.org/10.5194/hess-27-969-2023
Research article
 | 
06 Mar 2023
Research article |  | 06 Mar 2023

Controls on flood managed aquifer recharge through a heterogeneous vadose zone: hydrologic modeling at a site characterized with surface geophysics

Zach Perzan, Gordon Osterman, and Kate Maher

Cited articles

Ajami, H., McCabe, M. F., Evans, J. P., and Stisen, S.: Assessing the impact of model spin-up on surface water-groundwater interactions using an integrated hydrologic model, Water Resour. Res., 50, 2636–2656, https://doi.org/10.1002/2013WR014258, 2014. a
Alam, S., Gebremichael, M., Li, R., Dozier, J., and Lettenmaier, D. P.: Can Managed Aquifer Recharge Mitigate the Groundwater Overdraft in California's Central Valley?, Water Resour. Res., 56, e2020WR027244, https://doi.org/10.1029/2020WR027244, 2020. a, b, c, d
Andreu, L., Hopmans, J., and Schwankl, L.: Spatial and temporal distribution of soil water balance for a drip-irrigated almond tree, Agr. Water Manage., 35, 123–146, https://doi.org/10.1016/S0378-3774(97)00018-8, 1997. a
Ashby, S. F. and Falgout, R. D.: A Parallel Multigrid Preconditioned Conjugate Gradient Algorithm for Groundwater Flow Simulations, Nucl. Sci. Eng., 124, 145–159, https://doi.org/10.13182/NSE96-A24230, 1996. a
Auken, E., Christiansen, A. V., Kirkegaard, C., Fiandaca, G., Schamper, C., Behroozmand, A. A., Binley, A., Nielsen, E., Effersø, F., Christensen, N. B., Sørensen, K., Foged, N., and Vignoli, G.: An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data, Explor. Geophys., 46, 223–235, https://doi.org/10.1071/EG13097, 2015. a
Download
Short summary
In this study, we simulate flood managed aquifer recharge – the process of intentionally inundating land to replenish depleted aquifers – at a site imaged with geophysical equipment. Results show that layers of clay and silt trap recharge water above the water table, where it is inaccessible to both plants and groundwater wells. Sensitivity analyses also identify the main sources of uncertainty when simulating managed aquifer recharge, helping to improve future forecasts of site performance.
Share