Articles | Volume 27, issue 2
https://doi.org/10.5194/hess-27-613-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-613-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Groundwater flow paths drive longitudinal patterns of stream dissolved organic carbon (DOC) concentrations in boreal landscapes
Anna Lupon
Integrative Freshwater Ecology Group, Centre for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
Stefan Willem Ploum
CORRESPONDING AUTHOR
Department of Forest Ecology and Management, Swedish University of
Agricultural Sciences, Umeå, Sweden
Jason Andrew Leach
Natural Resources Canada, Canadian Forest Service, Sault Ste. Marie, ON, Canada
Environment and Life Sciences Graduate Program, Trent University,
Peterborough, ON, Canada
Lenka Kuglerová
Department of Forest Ecology and Management, Swedish University of
Agricultural Sciences, Umeå, Sweden
Hjalmar Laudon
Department of Forest Ecology and Management, Swedish University of
Agricultural Sciences, Umeå, Sweden
Related authors
José L. J. Ledesma, Anna Lupon, Eugènia Martí, and Susana Bernal
Hydrol. Earth Syst. Sci., 26, 4209–4232, https://doi.org/10.5194/hess-26-4209-2022, https://doi.org/10.5194/hess-26-4209-2022, 2022
Short summary
Short summary
We studied a small stream located in a Mediterranean forest. Our goal was to understand how stream flow and the presence of riparian forests, which grow in flat banks near the stream, influence the availability of food for aquatic microorganisms. High flows were associated with higher amounts of food because rainfall episodes transfer it from the surrounding sources, particularly riparian forests, to the stream. Understanding how ecosystems work is essential to better manage natural resources.
Tejshree Tiwari and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 29, 4055–4071, https://doi.org/10.5194/hess-29-4055-2025, https://doi.org/10.5194/hess-29-4055-2025, 2025
Short summary
Short summary
In the boreal Krycklan Catchment, 40 years of warming has notably altered hydrological patterns, with increases in winter runoff and decreases in summer flows. Winter climate indices effectively predicted minimum winter flows, while summer runoff variability was influenced by temperature extremes across seasons. Isotope data revealed a growing contribution of precipitation to winter runoff, indicating potential challenges for catchment water storage under continued warming.
John Marshall, Jose Gutierrez-Lopez, Daniel Metcalfe, Nataliia Kozii, and Hjalmar Laudon
EGUsphere, https://doi.org/10.5194/egusphere-2025-3328, https://doi.org/10.5194/egusphere-2025-3328, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The "two water-worlds hypothesis" has attracted significant public attention because it is an accessible way to describe the partitioning of water sources within catchments. This manuscript adds a new degree of complexity to that idea by recognizing that co-occurring tree species, which root at different depths, also use different water sources. So it leads to at least three water worlds.
Cong Jiang, Doerthe Tetzlaff, Songjun Wu, Christian Birkel, Hjalmar Laudon, and Chris Soulsby
EGUsphere, https://doi.org/10.5194/egusphere-2025-2533, https://doi.org/10.5194/egusphere-2025-2533, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We used a modelling approach supported by stable water isotopes to explore how forest management – such as conifer, broadleaf, and mixed tree–crop systems – affects water distribution and drought resilience in a drought-sensitive region of Germany. By representing forest type, density, and rooting depth, the model helps quantify and show how land use choices affect water availability and supports better land and water management decisions.
Shirin Karimi, Virginia Mosquera, Eliza Maher Hasselquist, Järvi Järveoja, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 29, 2599–2614, https://doi.org/10.5194/hess-29-2599-2025, https://doi.org/10.5194/hess-29-2599-2025, 2025
Short summary
Short summary
There is an increasing interest in rewetting drained peatlands to regain their important ecosystem functions. However, as peatland rewetting is a relatively new strategy, the scientific foundation for this approach is not solid. Therefore, we investigated the impact of rewetting on flood mitigation using high-resolution hydrological field observations. Our results showed that peatland rewetting significantly reduced peak flow and runoff coefficient and mitigated flashy hydrograph responses.
Johannes Larson, William Lidberg, Anneli M. Ågren, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 26, 4837–4851, https://doi.org/10.5194/hess-26-4837-2022, https://doi.org/10.5194/hess-26-4837-2022, 2022
Short summary
Short summary
Terrain indices constitute a good candidate for modelling the spatial variation of soil moisture conditions in many landscapes. In this study, we evaluate nine terrain indices on varying DEM resolution and user-defined thresholds with validation using an extensive field soil moisture class inventory. We demonstrate the importance of field validation for selecting the appropriate DEM resolution and user-defined thresholds and that failing to do so can result in ambiguous and incorrect results.
José L. J. Ledesma, Anna Lupon, Eugènia Martí, and Susana Bernal
Hydrol. Earth Syst. Sci., 26, 4209–4232, https://doi.org/10.5194/hess-26-4209-2022, https://doi.org/10.5194/hess-26-4209-2022, 2022
Short summary
Short summary
We studied a small stream located in a Mediterranean forest. Our goal was to understand how stream flow and the presence of riparian forests, which grow in flat banks near the stream, influence the availability of food for aquatic microorganisms. High flows were associated with higher amounts of food because rainfall episodes transfer it from the surrounding sources, particularly riparian forests, to the stream. Understanding how ecosystems work is essential to better manage natural resources.
Conrad Jackisch, Sibylle K. Hassler, Tobias L. Hohenbrink, Theresa Blume, Hjalmar Laudon, Hilary McMillan, Patricia Saco, and Loes van Schaik
Hydrol. Earth Syst. Sci., 25, 5277–5285, https://doi.org/10.5194/hess-25-5277-2021, https://doi.org/10.5194/hess-25-5277-2021, 2021
Elin Jutebring Sterte, Fredrik Lidman, Emma Lindborg, Ylva Sjöberg, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 25, 2133–2158, https://doi.org/10.5194/hess-25-2133-2021, https://doi.org/10.5194/hess-25-2133-2021, 2021
Short summary
Short summary
A numerical model was used to estimate annual and seasonal mean travel times across 14 long-term nested monitored catchments in the boreal region. The estimated travel times and young water fractions were consistent with observed variations of base cation concentration and stable water isotopes, δ18O. Soil type was the most important factor regulating the variation in mean travel times among sub-catchments, while the areal coverage of mires increased the young water fraction.
Cited articles
Ågren, A. M., Lidberg, W., Strömgren, M., Ogilvie, J., and Arp, P. A.: Evaluating digital terrain indices for soil wetness mapping – a Swedish case study, Hydrol. Earth Syst. Sci., 18, 3623–3634, https://doi.org/10.5194/hess-18-3623-2014, 2014.
Alexander, R. B., Boyer, E. W., Smith, R. A., Schwarz, G. E., and Moore, R. B.: The role of headwater streams in downstream water quality, J. Am. Water Resour. Assoc., 43, 41–59, 2007.
Ambroise, B.: Variable “active” versus “contributing” areas or periods: a necessary distinction, Hydrol. Process., 18, 1149–1155, https://doi.org/10.1002/hyp.5536, 2004.
Berggren, M., Laudon, H., Haei, M., Ström, L., and Jansson, M.: Efficient
aquatic bacterial metabolism of dissolved low-molecular-weight compounds from terrestrial sources, ISME J., 4, 408–416, https://doi.org/10.1038/ismej.2009.120, 2009.
Bernal, S., Lupon, A., Catalán, N., Castelar, S., and Martí, E.: Decoupling of dissolved organic matter patterns between stream and riparian groundwater in a headwater forested catchment, Hydrol. Earth Syst. Sci., 22, 1897–1910, https://doi.org/10.5194/hess-22-1897-2018, 2018.
Bernal, S., Lupon, A., Wollheim, W. M., Sabater, F., Poblador, S., and Martí, E.: Supply, demand, and in-stream retention of dissolved organic carbon and nitrate during storms in Mediterranean forested headwater streams, Front. Environ. Sci., 60, https://doi.org/10.3389/fenvs.2019.00060, 2019.
Briggs, M. A. and Hare, D. K.: Explicit consideration of preferential groundwater discharges as surface water ecosystem control points, Hydrol. Process., 32, 2435–2440, 2018.
Burrows, R. M., Laudon, H., McKie, B. G., and Sponseller, R. A.: Seasonal resource limitation of heterotrophic biofilms in boreal streams, Limnol. Oceanogr., 62, 164–176, 2017.
Casas-Ruiz, J. P., Catalán, N., Gómez-Gener, L., von Schiller, D.,
Obrador, B., Kothawala, D. N., López, P., Sabater, S., and Marcé, R.:
A tale of pipes and reactors: Controls on the in-stream dynamics of dissolved organic matter in rivers, Limnol. Oceanogr., 62, S85–S94, 2017.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R. B., Piao, S., and Thornton, P.: Carbon and Other Biogeochemical Cycles Supplementary Material, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., IPCC, https://www.climatechange2013.org/ (last access: 30 January 2023), 2013.
Covino, T., Riveros-Iregui, D. A., and Schneider, C. L.: Geomorphology Imparts Spatial Organization on Hydrological and Biogeochemical Fluxes, in:
Reference Module in Earth Systems and Environmental Sciences, Elsevier,
https://doi.org/10.1016/B978-0-12-818234-5.00068-7, 2021.
Demars, B. O.: Hydrological pulses and burning of dissolved organic carbon by stream respiration, Limnol. Oceanogr., 64, 406–421, 2019.
Demars, B. O., Friberg, N., and Thornton, B.: Pulse of dissolved organic matter alters reciprocal carbon subsidies between autotrophs and bacteria in stream food webs, Ecol. Monogr., 90, e01399, https://doi.org/10.1002/ecm.1399, 2020.
Droppo, I. G., Jeffries, D., Jaskot, C., and Backus, S.: The prevalence of
freshwater flocculation in cold regions: A case study from the Mackenzie River Delta, Northwest Territories, Canada, Arctic, 51, 155–164, 1998.
Dupas, R., Causse, J., Jaffrezic, A., Aquilina, L., and Durand, P.: Flowpath controls on high-spatial-resolution water-chemistry profiles in headwater streams, Hydrol. Process., 35, e14247, https://doi.org/10.1002/hyp.14247, 2021.
Duvert, C., Butman, D. E., Marx, A., Ribolzi, O., and Hutley, L. B.: CO2 evasion along streams driven by groundwater inputs and geomorphic controls, Nat. Geosci., 11, 813–818, 2018.
Frost, P. C., Larson, J. H., Johnston, C. A., Young, K. C., Maurice, P. A., Lamberti, G. A., and Bridgham, S. D.: Landscape predictors of stream dissolved organic matter concentration and physicochemistry in a Lake Superior river watershed, Aquat. Sci., 68, 40–51, 2006.
Gómez-Gener, L., Lupon, A., Laudon, H., and Sponseller, R. A.: Drought
alters the biogeochemistry of boreal stream networks, Nat. Commun., 11, 1–11, 2020.
Grabs, T., Bishop, K., Laudon, H., Lyon, S. W., and Seibert, J.: Riparian zone hydrology and soil water total organic carbon (TOC): implications for spatial variability and upscaling of lateral riparian TOC exports, Biogeosciences, 9, 3901–3916, https://doi.org/10.5194/bg-9-3901-2012, 2012.
Hale, R. L. and Godsey, S. E.: Dynamic stream network intermittence explains
emergent dissolved organic carbon chemostasis in headwaters, Hydrol. Process., 33, 1926–1936, https://doi.org/10.1002/hyp.13455, 2019.
Heidbüchel, I., Yang, J., Musolff, A., Troch, P., Ferré, T., and Fleckenstein, J. H.: On the shape of forward transit time distributions in
low-order catchments, Hydrol. Earth Syst. Sci., 24, 2895–2920, https://doi.org/10.5194/hess-24-2895-2020, 2020.
Jencso, K. G., McGlynn, B. L., Gooseff, M. N., Wondzell, S. M., Bencala, K. E., and Marshall, L. A.: Hydrologic connectivity between landscapes and streams: Transferring reach-and plot-scale understanding to the catchment
scale, Water Resour. Res., 45, W04428, https://doi.org/10.1029/2008WR007225, 2009.
Jencso, K. G., McGlynn, B. L., Gooseff, M. N., Bencala, K. E., and Wondzell,
S. M.: Hillslope hydrologic connectivity controls riparian groundwater
turnover: Implications of catchment structure for riparian buffering and
stream water sources, Water Resour. Res., 46, W10524, https://doi.org/10.1029/2009WR008818, 2010.
Kaiser, K. and Kalbitz, K.: Cycling downwards – dissolved organic matter in soils, Soil Biol. Biochem., 52, 29–32, https://doi.org/10.1016/j.soilbio.2012.04.002, 2012.
Karlsen, R. H., Seibert, J., Grabs, T., Laudon, H., Blomkvist, P., and Bishop, K.: The assumption of uniform specific discharge: unsafe at any time?, Hydrol. Process., 30, 3978–3988, 2016.
Kiewiet, L., von Freyberg, J., and van Meerveld, H.: Spatiotemporal variability in hydrochemistry of shallow groundwater in a small pre-alpine catchment: the importance of landscape elements, Hydrol. Process., 33, 2502–2522, https://doi.org/10.1002/hyp.13517, 2019.
Klaus, J. and Jackson, C. R.: Interflow Is Not Binary: A Continuous Shallow
Perched Layer Does Not Imply Continuous Connectivity, Water Resour. Res., 54, 5921–5932, 2018.
Kothawala, D. N., Ji, X., Laudon, H., Ågren, A. M., Futter, M. N., Köhler, S. J., and Tranvik, L. J.: The relative influence of land cover,
hydrology, and in-stream processing on the composition of dissolved organic
matter in boreal streams, J. Geophys. Res.-Biogeo., 120, 1491–1505, https://doi.org/10.1002/2015jg002946, 2015.
Kritzberg, E. S., Hasselquist, E. M., Škerlep, M., Löfgren, S., Olsson, O., Stadmark, J., Valinia, S., Hansson, L.-A., and Laudon, H.: Browning of freshwaters: Consequences to ecosystem services, underlying drivers, and potential mitigation measures, Ambio, 49, 375–390, 2020.
Kuglerová, L., Jansson, R., Ågren, A., Laudon, H., and Malm-Renöfält, B.: Groundwater discharge creates hotspots of riparian plant species richness in a boreal forest stream network, Ecology, 95, 715–725, 2014.
Laudon, H. and Ottosson Löfvenius, M.: Adding snow to the picture–providing complementary winter precipitation data to the Krycklan
catchment study database, Hydrol. Process., 30, 2413–2416, 2016.
Laudon, H. and Sponseller, R. A.: How landscape organization and scale shape catchment hydrology and biogeochemistry: Insights from a long‐term catchment study, Wiley Interdisciplin. Rev.: Water, 5, e1265, https://doi.org/10.1002/wat2.1265, 2018.
Laudon, H., Seibert, J., Köhler, S., and Bishop, K.: Hydrological flow
paths during snowmelt: Congruence between hydrometric measurements and oxygen 18 in meltwater, soil water, and runoff, Water Resour. Res., 40, W03102, https://doi.org/10.1029/2003WR002455, 2004.
Laudon, H., Berggren, M., Ågren, A., Buffam, I., Bishop, K., Grabs, T., Jansson, M., and Köhler, S. (2011). Patterns and dynamics of dissolved organic carbon (DOC) in boreal streams: the role of processes, connectivity, and scaling, Ecosystems, 14, 880–893, 2011.
Laudon, H., Taberman, I., Ågren, A., Futter, M., Ottosson-Löfvenius,
M., and Bishop, K.: The Krycklan Catchment Study – a flagship infrastructure
for hydrology, biogeochemistry, and climate research in the boreal
landscape, Water Resour. Res., 49, 7154–7158, 2013.
Laudon, H., Hasselquist, E. M., Peichl, M., Lindgren, K., Sponseller, R., Lidman, F., Kuglerová, L., Hasselquist, N. J., Bishop, K., Nilsson, M.
B., and Ågren, A. M.: Northern landscapes in transition: Evidence, approach and ways forward using the Krycklan Catchment Study, Hydrol.
Process., 35, e14170, https://doi.org/10.1002/hyp.14170, 2021.
Leach, J., Lidberg, W., Kuglerová, L., Peralta-Tapia, A., Ågren, A.,
and Laudon, H.: Evaluating topography-based predictions of shallow lateral
groundwater discharge zones for a boreal lake-stream system, Water Resour.
Res., 53, 5420–5437, 2017.
Leach, J. A. and Laudon, H.: Headwater lakes and their influence on downstream discharge, Limnol. Oceanogr. Lett., 4, 105–112, 2019.
Ledesma, J. L., Grabs, T., Bishop, K. H., Schiff, S. L., and Köhler, S. J.: Potential for long-term transfer of dissolved organic carbon from riparian zones to streams in boreal catchments, Global Change Biol., 21, 2963–2979, 2015.
Ledesma, J. L., Futter, M. N., Blackburn, M., Lidman, F., Grabs, T., Sponseller, R. A., Laudon, H., Bishop, K. H., and Köhler, S. J.: Towards
an improved conceptualization of riparian zones in boreal forest headwaters,
Ecosystems, 21, 297–315, 2018.
Li, L., Sullivan, P. L., Benettin, P., Cirpka, O. A., Bishop, K., Brantley,
S. L., Knapp, J. L. A., Meerveld, I., Rinaldo, A., Seibert, J., Wen, H., and
Kirchner, J. W.: Toward catchment hydro-biogeochemical theories, WIREs Water, 8, e1495, https://doi.org/10.1002/wat2.1495, 2020.
Lottig, N. R., Buffam, I., and Stanley, E. H.: Comparisons of wetland and drainage lake influences on stream dissolved carbon concentrations and yields in a north temperate lake-rich region, Aquat. Sci., 75, 619–630, 2013.
Lupon, A., Denfeld, B. A., Laudon, H., Leach, J., Karlsson, J., and Sponseller, R. A.: Groundwater inflows control patterns and sources of
greenhouse gas emissions from streams, Limnol. Oceanogr., 1, 1545–1557,
https://doi.org/10.1002/lno.11134, 2019.
Lupon, A., Denfeld, B. A., Laudon, H., Leach, J., and Sponseller, R. A.: Discrete groundwater inflows influence patterns of nitrogen uptake in a boreal headwater stream, Freshwater Sci., 39, 228–240, 2020..
Lyon, S. W., Laudon, H., Seibert, J., Mörth, M., Tetzlaff, D., and Bishop, K. H.: Controls on snowmelt water mean transit times in northern boreal catchments, Hydrol. Process., 24, 1672–1684, 2010.
McGlynn, B. L. and McDonnell, J. J.: Quantifying the relative contributions
of riparian and hillslope zones to catchment runoff, Water Resour. Res., 39, 1310, https://doi.org/10.1029/2003WR002091, 2003.
Mineau, M. M., Wollheim, W. M., Buffam, I., Findlay, S. E. G., Hall, R. O.,
Hotchkiss, E. R., Koenig, L. E., McDowell, W. H., and Parr, T. B.: Dissolved
organic carbon uptake in streams: A review and assessment of reach-scale
measurements, J. Geophys. Res.-Biogeo., 121, 2019–2029, https://doi.org/10.1002/2015jg003204, 2016.
Ploum, S.: Groundwater connections between the boreal landscape and its
headwater streams: the role of discrete riparian inflow points (DRIPs),
Department of Forest Ecology and Management, Swedish University of
Agricultural Sciences, http://urn.kb.se/resolve?urn=urn:nbn:se:slu:epsilon-p-111341, last access: 2 June 2021.
Ploum, S. W., Leach, J. A., Kuglerová, L., and Laudon, H.: Thermal
detection of discrete riparian inflow points (DRIPs) during contrasting
hydrological events, Hydrol. Process., 32, 3049–3050, 2018.
Ploum, S. W., Laudon, H., Peralta-Tapia, A., and Kuglerová, L.: Are dissolved organic carbon concentrations in riparian groundwater linked to hydrological pathways in the boreal forest?, Hydrol. Earth Syst. Sci., 24, 1709–1720, https://doi.org/10.5194/hess-24-1709-2020, 2020.
Ploum, S. W., Leach, J. A., Laudon, H., and Kuglerová, L.: Groundwater, Soil, and Vegetation Interactions at Discrete Riparian Inflow Points (DRIPs)
and Implications for Boreal Streams, Front. Water, 3, 669007,
https://doi.org/10.3389/frwa.2021.669007, 2021.
Ploum, S. W., Lupon, A., Leach, J. A., Kuglerová, L., and Laudon, H.: Stream and groundwater dissolved organic carbon (DOC) concentrations along a boreal headwater, Zenodo [data set], https://doi.org/10.5281/zenodo.7584503, 2023.
Raymond, P. A., Saiers, J. E., and Sobczak, W. V.: Hydrological and biogeochemical controls on watershed dissolved organic matter transport: Pulse-shunt concept, Ecology, 97, 5–16, 2016.
Rocher-Ros, G., Sponseller, R. A., Lidberg, W., Mörth, C.-M., and Giesler, R.: Landscape process domains drive patterns of CO2 evasion from river networks, Limnol. Oceanogr. Lett., 4, 87–95,
https://doi.org/10.1002/lol2.10108, 2019.
Seibert, J., Grabs, T., Köhler, S., Laudon, H., Winterdahl, M., and Bishop, K.: Linking soil- and stream-water chemistry based on a Riparian Flow-Concentration Integration Model, Hydrol. Earth Syst. Sci., 13, 2287–2297, https://doi.org/10.5194/hess-13-2287-2009, 2009.
Seybold, E. and McGlynn, B.: Hydrologic and biogeochemical drivers of dissolved organic carbon and nitrate uptake in a headwater stream network,
Biogeochemistry, 138, 23–48, https://doi.org/10.1007/s10533-018-0426-1, 2018.
Tiwari, T., Laudon, H., Beven, K., and Ågren, A. M.: Downstream changes
in DOC: Inferring contributions in the face of model uncertainties, Water
Resour. Res., 50, 514–525, https://doi.org/10.1002/2013wr014275, 2014.
Tiwari, T., Buffam, I., Sponseller, R. A., and Laudon, H.: Inferring scale-dependent processes influencing stream water chemistry from headwater to sea, Limnol. Oceanogr., 61, S58–S70, https://doi.org/10.1002/lno.10738, 2017.
Vidon, P. G.: Not all riparian zones are wetlands: Understanding the limitation of the “wetland bias” problem, Hydrol. Process., 31, 2125–2127, 2017.
Wallin, M. B., Grabs, T., Buffam, I., Laudon, H., Ågren, A., Öquist,
M. G., and Bishop, K.: Evasion of CO 2 from streams–The dominant component
of the carbon export through the aquatic conduit in a boreal landscape, Global Change Biol., 19, 785–797, 2013.
Werner, B. J., Musolff, A., Lechtenfeld, O. J., de Rooij, G. H., Oosterwoud, M. R., and Fleckenstein, J. H.: High-frequency measurements explain quantity and quality of dissolved organic carbon mobilization in a headwater catchment, Biogeosciences, 16, 4497–4516, https://doi.org/10.5194/bg-16-4497-2019, 2019.
Zambrano-Bigiarini, M.: Package `hydroGOF', Goodness-of-fit Functions for
Comparison of Simulated and Observed, CRAN,
https://github.com/hzambran/hydroGOF (last access: 31 October 2022), 2020.
Short summary
Discrete riparian inflow points (DRIPs) transport dissolved organic carbon (DOC) from large areas to discrete sections of streams, yet the mechanisms by which DRIPs affect stream DOC concentration, cycling, and export are still unknown. Here, we tested four models that account for different hydrologic and biological representations to show that DRIPs generally reduce DOC exports by either diluting stream DOC (snowmelt period) or promoting aquatic metabolism (summer).
Discrete riparian inflow points (DRIPs) transport dissolved organic carbon (DOC) from large...