Articles | Volume 27, issue 24
https://doi.org/10.5194/hess-27-4609-2023
https://doi.org/10.5194/hess-27-4609-2023
Research article
 | 
22 Dec 2023
Research article |  | 22 Dec 2023

Assessment of plot-scale sediment transport on young moraines in the Swiss Alps using a fluorescent sand tracer

Fabian Maier, Florian Lustenberger, and Ilja van Meerveld

Related authors

Use of fluorescent sand to assess plot-scale hydrological connectivity and sediment transport on young moraines in the Swiss Alps
Fabian Maier, Florian Lustenberger, and Ilja van Meerveld
EGUsphere, https://doi.org/10.5194/egusphere-2022-165,https://doi.org/10.5194/egusphere-2022-165, 2022
Preprint archived
Short summary

Related subject area

Subject: Hillslope hydrology | Techniques and Approaches: Instruments and observation techniques
Mixed-cultivation grasslands enhance runoff generation and reduce soil loss in the restoration of degraded alpine hillsides
Yulei Ma, Yifan Liu, Jesús Rodrigo-Comino, Manuel López-Vicente, and Gao-Lin Wu
Hydrol. Earth Syst. Sci., 28, 3947–3961, https://doi.org/10.5194/hess-28-3947-2024,https://doi.org/10.5194/hess-28-3947-2024, 2024
Short summary
Subsurface flow paths in a chronosequence of calcareous soils: impact of soil age and rainfall intensities on preferential flow occurrence
Anne Hartmann, Markus Weiler, Konrad Greinwald, and Theresa Blume
Hydrol. Earth Syst. Sci., 26, 4953–4974, https://doi.org/10.5194/hess-26-4953-2022,https://doi.org/10.5194/hess-26-4953-2022, 2022
Short summary
Evaporation, infiltration and storage of soil water in different vegetation zones in the Qilian Mountains: a stable isotope perspective
Guofeng Zhu, Leilei Yong, Xi Zhao, Yuwei Liu, Zhuanxia Zhang, Yuanxiao Xu, Zhigang Sun, Liyuan Sang, and Lei Wang
Hydrol. Earth Syst. Sci., 26, 3771–3784, https://doi.org/10.5194/hess-26-3771-2022,https://doi.org/10.5194/hess-26-3771-2022, 2022
Short summary
Groundwater fluctuations during a debris flow event in western Norway – triggered by rain and snowmelt
Stein Bondevik and Asgeir Sorteberg
Hydrol. Earth Syst. Sci., 25, 4147–4158, https://doi.org/10.5194/hess-25-4147-2021,https://doi.org/10.5194/hess-25-4147-2021, 2021
Short summary
Satellite rainfall products outperform ground observations for landslide prediction in India
Maria Teresa Brunetti, Massimo Melillo, Stefano Luigi Gariano, Luca Ciabatta, Luca Brocca, Giriraj Amarnath, and Silvia Peruccacci
Hydrol. Earth Syst. Sci., 25, 3267–3279, https://doi.org/10.5194/hess-25-3267-2021,https://doi.org/10.5194/hess-25-3267-2021, 2021
Short summary

Cited articles

Anache, J. A. A., Flanagan, D. C., Srivastava, A., and Wendland, E. C.: Land use and climate change impacts on runoff and soil erosion at the hillslope scale in the Brazilian Cerrado, Sci. Total Environ., 622–623, 140–151, https://doi.org/10.1016/j.scitotenv.2017.11.257, 2018. 
Angulo-Martínez, M., Beguería, S., Navas, A., and Machín, J.: Splash erosion under natural rainfall on three soil types in NE Spain, Geomorphology, 175–176, 38–44, https://doi.org/10.1016/j.geomorph.2012.06.016, 2012. 
Appels, W. M., Bogaart, P. W., and van der Zee, S. E. A. T. M.: Influence of spatial variations of microtopography and infiltration on surface runoff and field scale hydrological connectivity, Adv. Water Resour., 34, 303–313, https://doi.org/10.1016/j.advwatres.2010.12.003, 2011. 
Appels, W. M., Bogaart, P. W., and van der Zee, S. E. A. T. M.: Surface runoff in flat terrain: How field topography and runoff generating processes control hydrological connectivity, J. Hydrol., 534, 493–504, https://doi.org/10.1016/j.jhydrol.2016.01.021, 2016. 
Asadi, H., Shahedi, K., Jarihani, B., and Sidle, R.: Rainfall-Runoff Modelling Using Hydrological Connectivity Index and Artificial Neural Network Approach, Water, 11, 212, https://doi.org/10.3390/w11020212, 2019. 
Download
Short summary
We used a fluorescent sand tracer with afterglow in combination with sprinkling experiments to visualize and determine the movement of sediments on natural hillslopes. We compared the observed transport patterns with the characteristics of the hillslopes. Results show that the fluorescent sand can be used to monitor sediment redistribution on the soil surface and that infiltration on older hillslopes decreased sediment transport due to more developed vegetation cover and root systems.