Articles | Volume 27, issue 24
https://doi.org/10.5194/hess-27-4529-2023
https://doi.org/10.5194/hess-27-4529-2023
Research article
 | 
20 Dec 2023
Research article |  | 20 Dec 2023

Comparing quantile regression forest and mixture density long short-term memory models for probabilistic post-processing of satellite precipitation-driven streamflow simulations

Yuhang Zhang, Aizhong Ye, Bita Analui, Phu Nguyen, Soroosh Sorooshian, Kuolin Hsu, and Yuxuan Wang

Related authors

Design and trial implementation of a continental-scale, kilometre-resolution hourly precipitation analysis for Australia using satellite, radar and gauges
Yuhang Zhang, Quan J. Wang, Andrew J. Frost, Jayaram Pudashine, Blair Trewin, Carlos Velasco-Forero, Chun-Hsu Su, and Vincent Villani
EGUsphere, https://doi.org/10.5194/egusphere-2026-666,https://doi.org/10.5194/egusphere-2026-666, 2026
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary

Cited articles

Althoff, D., Rodrigues, L. N., and Bazame, H. C.: Uncertainty quantification for hydrological models based on neural networks: the dropout ensemble, Stoch. Env. Res. Risk A., 35, 1051-1067, https://doi.org/10.1007/s00477-021-01980-8, 2021. 
Bellier, J., Zin, I., and Bontron, G.: Generating coherent ensemble forecasts after hydrological postprocessing: Adaptations of ECC-based methods, Water Resour. Res., 54, 5741–5762, https://doi.org/10.1029/2018WR022601, 2018. 
Beven, K.: Changing ideas in hydrology – the case of physically-based models, J. Hydrol., 105, 157–172, https://doi.org/10.1016/0022-1694(90)90161-P, 1989. 
Bogner, K. and Pappenberger, F.: Multiscale error analysis, correction, and predictive uncertainty estimation in a flood forecasting system, Water Resour. Res., 47, e2010WR009137, https://doi.org/10.1029/2010WR009137, 2011. 
Bormann, K. J., Evans, J. P., and McCabe, M. F.: Constraining snowmelt in a temperature-index model using simulated snow densities, J. Hydrol., 517, 652–667, https://doi.org/10.1016/j.jhydrol.2014.05.073, 2014. 
Download
Short summary
Our study shows that while the quantile regression forest (QRF) and countable mixtures of asymmetric Laplacians long short-term memory (CMAL-LSTM) models demonstrate similar proficiency in multipoint probabilistic predictions, QRF excels in smaller watersheds and CMAL-LSTM in larger ones. CMAL-LSTM performs better in single-point deterministic predictions, whereas QRF model is more efficient overall.
Share