Comparing quantile regression forest and mixture density long short-term memory models for probabilistic post-processing of satellite precipitation-driven streamflow simulations
Data sets
GPM IMERG Final Precipitation L3 1 day 0.1 degree x 0.1 degree V06 https://doi.org/10.5067/GPM/IMERGDF/DAY/06
Global Satellite Mapping of Precipitation (GSMaP) products https://sharaku.eorc.jaxa.jp/GSMaP/index.htm
Global Agroecological Zones Assessment for Agriculture (GAEZ 2008) http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
Landuse dataset in China (1980-2015) http://data.tpdc.ac.cn/en/data/a75843b4-6591-4a69-a5e4-6f94099ddc2d
Dataset and results for ``Comparing machine learning and deep learning models for probabilistic post-processing of satellite precipitation-driven streamflow simulation'' https://doi.org/10.5281/zenodo.7187505
Model code and software
jnelson18/pyquantrf: DOI release (v0.0.3doi) https://doi.org/10.5281/zenodo.5815105