Articles | Volume 27, issue 14
https://doi.org/10.5194/hess-27-2747-2023
https://doi.org/10.5194/hess-27-2747-2023
Research article
 | 
24 Jul 2023
Research article |  | 24 Jul 2023

Interactions between thresholds and spatial discretizations of snow: insights from estimates of wolverine denning habitat in the Colorado Rocky Mountains

Justin M. Pflug, Yiwen Fang, Steven A. Margulis, and Ben Livneh

Related authors

Extending the utility of space-borne snow water equivalent observations over vegetated areas with data assimilation
Justin M. Pflug, Melissa L. Wrzesien, Sujay V. Kumar, Eunsang Cho, Kristi R. Arsenault, Paul R. Houser, and Carrie M. Vuyovich
Hydrol. Earth Syst. Sci., 28, 631–648, https://doi.org/10.5194/hess-28-631-2024,https://doi.org/10.5194/hess-28-631-2024, 2024
Short summary

Related subject area

Subject: Snow and Ice | Techniques and Approaches: Uncertainty analysis
The importance of model horizontal resolution for improved estimation of Snow Water Equivalent in a mountainous region of Western Canada
Samaneh Sabetghadam, Christopher Fletcher, and Andre Erler
EGUsphere, https://doi.org/10.5194/egusphere-2024-42,https://doi.org/10.5194/egusphere-2024-42, 2024
Short summary
Future evolution and uncertainty of river flow regime change in a deglaciating river basin
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Stefan Krause, Christopher R. Jackson, Jez Everest, Guðfinna Aðalgeirsdóttir, and Andrew R. Black
Hydrol. Earth Syst. Sci., 23, 1833–1865, https://doi.org/10.5194/hess-23-1833-2019,https://doi.org/10.5194/hess-23-1833-2019, 2019
Short summary
Role of forcing uncertainty and background model error characterization in snow data assimilation
Sujay V. Kumar, Jiarui Dong, Christa D. Peters-Lidard, David Mocko, and Breogán Gómez
Hydrol. Earth Syst. Sci., 21, 2637–2647, https://doi.org/10.5194/hess-21-2637-2017,https://doi.org/10.5194/hess-21-2637-2017, 2017
Short summary

Cited articles

Araújo, M. B. and Peterson, A. T.: Uses and misuses of bioclimatic envelope modeling, Ecology, 93, 1527–1539, https://doi.org/10.1890/11-1930.1, 2012. 
Auer, A. H.: The Rain versus Snow Threshold Temperatures, Weatherwise, 27, 67, https://doi.org/10.1080/00431672.1974.9931684, 1974. 
Barsugli, J. J., Ray, A. J., Livneh, B., Dewes, C. F., Heldmyer, A., Rangwala, I., Guinotte, J. M., and Torbit, S.: Projections of Mountain Snowpack Loss for Wolverine Denning Elevations in the Rocky Mountains, Earths Future, 8, e2020EF001537, https://doi.org/10.1029/2020EF001537, 2020. 
Bernhardt, M. and Schulz, K.: SnowSlide: A simple routine for calculating gravitational snow transport, Geophys. Res. Lett., 37, L11502, https://doi.org/10.1029/2010GL043086, 2010. 
Download
Short summary
Wolverine denning habitat inferred using a snow threshold differed for three different spatial representations of snow. These differences were based on the annual volume of snow and the elevation of the snow line. While denning habitat was most influenced by winter meteorological conditions, our results show that studies applying thresholds to environmental datasets should report uncertainties stemming from different spatial resolutions and uncertainties introduced by the thresholds themselves.