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Abstract. Thresholds can be used to interpret environmen-
tal data in a way that is easily communicated and useful for
decision-making purposes. However, thresholds are often de-
veloped for specific data products and time periods, chang-
ing findings when the same threshold is applied to datasets
or periods with different characteristics. Here, we test the
impact of different spatial discretizations of snow on an-
nual estimates of wolverine denning opportunities in the Col-
orado Rocky Mountains, defined using a snow water equiv-
alent (SWE) threshold (0.20 m) and threshold date (15 May)
from previous habitat assessments. Annual potential wolver-
ine denning area (PWDA) was thresholded from a 36-year
(1985–2020) snow reanalysis model with three different spa-
tial discretizations: (1) 480 m grid cells (D480), (2) 90 m grid
cells (D90), and (3) 480 m grid cells with implicit represen-
tations of subgrid snow spatial heterogeneity (S480). Rela-
tive to the D480 and S480 discretizations, D90 resolved shal-
lower snow deposits on slopes between 3050 and 3350 m ele-
vation, decreasing PWDA by 10 %, on average. In years with
warmer and/or drier winters, S480 discretizations with sub-
grid representations of snow heterogeneity increased PWDA,
even within grid cells where mean 15 May SWE was less
than the SWE threshold. These simulations increased PWDA
by upwards of 30 % in low-snow years, as compared to the
D480 and D90 simulations without subgrid snow hetero-
geneity. Despite PWDA sensitivity to different snow spa-
tial discretizations, PWDA was controlled more by annual

variations in winter precipitation and temperature. However,
small changes to the SWE threshold (± 0.07 m) and thresh-
old date (±2 weeks) also affected PWDA by as much as
82 %. Across these threshold ranges, PWDA was approxi-
mately 18 % more sensitive to the SWE threshold than the
threshold date. However, the sensitivity to the threshold date
was larger in years with late spring snowfall, when PWDA
depended on whether modeled SWE was thresholded be-
fore, during, or after spring snow accumulation. Our results
demonstrate that snow thresholds are useful but may not al-
ways provide a complete picture of the annual variability in
snow-adapted wildlife denning opportunities. Studies thresh-
olding spatiotemporal datasets could be improved by includ-
ing (1) information about the fidelity of thresholds across
multiple spatial discretizations and (2) uncertainties related
to ranges of realistic thresholds.

1 Introduction

Generalizing environmental data using thresholds can
present information in a way that is more easily understood,
communicated, and applied for decision-making purposes.
Conceptually, thresholds are static constraints intended to
partition the areas, timing, and/or prevalence of data greater
or less than some scientifically or managerially relevant limit.
In the field of snow science, thresholds are used to clas-
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sify snow cover and snow absence from remotely sensed ob-
servations (Dozier, 1989; Hall and Riggs, 2007; Sankey et
al., 2015), partition snow accumulation and snowmelt sea-
sons (Cayan, 1996; Hamlet et al., 2005; Mote et al., 2005;
Serreze et al., 1999), and parameterize modeled processes
like snow-layer formation and merging (e.g., Clark et al.,
2015; Liston and Elder, 2006; Wigmosta et al., 2002), rain
and snow precipitation partitions (Auer, 1974; Harder and
Pomeroy, 2013), and snow-holding capacity on steep slopes
(Bernhardt and Schulz, 2010). Thresholds are also used to
identify drought conditions in snow-dominated watersheds
(Dierauer et al., 2019; Harpold et al., 2017; Heldmyer et
al., 2023) and the associated “decision trigger” and “tipping
point” thresholds that determine water use and allocation in
regulated basins (Herman and Giuliani, 2018; Kwadijk et al.,
2010; Shih and ReVelle, 1995). However, despite widespread
use, thresholds are often developed for specific applications
and over short time intervals, decreasing the likelihood that
a threshold developed for one purpose could be applied in an
identical manner to different periods of time or to environ-
mental products with different characteristics (Härer et al.,
2018; Jennings et al., 2018; Maher et al., 2012; Pflug et al.,
2019).

Here, we focus on snow thresholds that have been used
increasingly over the past decade to identify regions with
conditions suitable for the survival of snow-adapted wildlife.
Many studies use thresholds that focus on snow characteris-
tics like snow depth, snow cover, snow density, snow water
equivalent (SWE), and snowmelt season snow persistence,
which can be important for denning, migration, and food
availability for species like wolverines (Gulo gulo), polar
bears (Ursus maritimus), and Dall sheep (Ovis dalli dalli)
(Barsugli et al., 2020; Durner et al., 2013; Liston et al., 2016;
Mahoney et al., 2018; McKelvey et al., 2011; Sivy et al.,
2018). However, relatively few studies simulate snow at spa-
tial resolutions that correspond to the features that drive snow
habitat (e.g., Glass et al., 2021; Liston et al., 2016; Mahoney
et al., 2018). For instance, wolverines rely on snow drifts
for maternal and natal denning. These drifts often form alee
of obstructions near the forest edge and in talus fields (e.g.,
Fig. 1, star). Yet, few models simulate snow at den-scale spa-
tial resolutions (< 10 m) and represent the physical processes
that control the formation of dens, like wind-redistribution,
preferential deposition, avalanching, and microtopographic
shading. This is particularly the case for species status as-
sessments which often attempt to quantify wildlife habitat
at large regional extents where high-resolution snow simu-
lations with complex physical processes would be computa-
tionally prohibitive. Thresholds are therefore used to facili-
tate the relationship between a coarser-resolution representa-
tion of snow and the finer-scale feasibility of wildlife habi-
tat. The validity of this approach is debated (e.g., Araújo and
Peterson, 2012; Barsugli et al., 2020; Boelman et al., 2019;
Bokhorst et al., 2016; Copeland et al., 2010; Magoun et al.,
2017). For example, coarser-scale representations of snow

may resolve the larger-scale meteorological influences on
habitat availability, but coarser-scale representations of snow
likely overlook the smaller-scale refugia that could continue
to support habitat, even with future changes to climate.

This study builds on work from Barsugli et al. (2020),
who used physically based simulations to identify regions
that could support wolverine denning using a SWE thresh-
old (0.20 m) on a static date (15 May) corresponding to the
tail end of the maternal denning period (Copeland et al.,
2010; McKelvey et al., 2011; USFWS, 2018). This 0.20 m
SWE threshold was chosen based on 15 May SWE that cor-
responded to known wolverine denning sites from a 250 m
snow simulation (Barsugli et al., 2020; Ray et al., 2017; US-
FWS, 2018). Barsugli et al. (2020) found that, relative to
previous studies that used ∼ 10 km products (Laliberte and
Ripple, 2004; McKelvey et al., 2011), snow simulations at
250 m resolution were able to better resolve SWE persis-
tence, and increased habitat, on shaded north-facing slopes.
The 250 m simulations also increased the overall prevalence
of snow that could support wolverine dens, both in current
and future climates, over the Colorado and Montana Rocky
Mountain domains.

Here, we extend the findings from Barsugli et al. (2020),
testing the difference in wolverine denning support defined
using thresholds (0.20 m SWE on 15 May) and a historic
snow reanalysis with different spatial discretizations (Fig. 1).
These discretizations include: (1) discrete 480 m grid cells
(D480), (2) discrete 90 m grid cells (D90), and (3) 480 m
grid cells with implicit representations of subgrid SWE spa-
tial heterogeneity (S480). These discretizations straddle the
250 m resolution used by Barsugli et al. (2020) and include
both discrete (D480 and D90) and implicit (S480) representa-
tions of snow distribution. These reanalyses, which combine
snow modeling and remotely sensed observations of snow
cover (more in Sect. 2.2), also resolve snow volume and dis-
tribution in mountain terrain significantly better than more
common modeling approaches (Pflug et al., 2022; Yang et
al., 2021). We focus on the same Colorado Rocky Mountain
domain used by Barsugli et al. (2020) over a longer period
of 36 years, spanning 1985 to 2020. We address the follow-
ing research questions: (1) how does the spatial discretiza-
tion of snow influence estimates of potential wolverine den-
ning area (PWDA), and (2) is the sensitivity of PWDA to
different snow spatial discretizations greater or smaller than
the sensitivity to annual changes in winter climatic condi-
tions? We also identify the spatial locations and causes of
the greatest differences of PWDA and evaluate sensitivities
to small uncertainties in both SWE thresholds (±0.07 m) and
threshold dates (±2 weeks). More generally, this study high-
lights shortcomings, opportunities, and tradeoffs to thresh-
olding spatial snow products and serves as a roadmap for fu-
ture wildlife habitat assessments.
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Figure 1. SWE spatial heterogeneity inferred from airborne lidar at 1 m resolution, compared to 480 and 90 m grid cells, and a point (star)
with a snow drift suitably deep for wolverine denning (a). SWE is simulated in this study using three different spatial discretizations: (b)
480 m discrete grid cells (D480), (c) 480 m grid cells with subgrid SWE heterogeneity (S480), and (d) 90 m discrete grid cells (D90). The
fraction of the area that could support wolverine denning is estimated for each discretization using a 0.20 m SWE threshold on 15 May. The
fraction of the area exceeding the SWE threshold is binary (fully greater than or less than the threshold) for discrete grid cells (b, d), while
the area exceeding the SWE threshold for the S480 discretization (c) is defined by the fraction of the grid cell SWE distribution exceeding
the threshold (white hatching)

2 Domain and data

2.1 Domain

We focused this work over the Rocky Mountain National
Park in Colorado state (Fig. 2). This domain is home to sev-
eral snow-adapted wildlife species and has been included in
wolverine habitat assessments (Barsugli et al., 2020; McK-
elvey et al., 2011; USFWS, 2018). Barsugli et al. (2020) es-
timated most of the terrain supportive of wolverine habitat
in this region to be between 2700 and 3600 m of elevation.
Although this area does not currently support a reproduc-
tive population of wolverines, this region is of potential in-
terest for wolverine reintroduction. More information about
wolverine habitat can be found in the US Fish and Wildlife
Service species status assessment (USFWS, 2018).

The Rocky Mountain National Park domain contained sev-
eral snow observations (Fig 2). These observations include
28 snow telemetry (SNOTEL) stations, deployed and man-
aged by the National Resources and Conservation Service.
These stations use snow pillows to measure the weight of
snowpack and resulting SWE. A distributed lidar observa-
tion of snow depth in the southernmost portion of the do-
main was also collected by the National Center for Airborne
Laser Mapping in May 2010. These observations were used
to assess the accuracy of the SWE reanalysis discussed in
Sect. 2.2.

2.2 SWE reanalyses

SWE was calculated over the Rocky Mountain domain
(Fig. 2) from a popular satellite-era (water years 1985–
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2020) probabilistic snow reanalysis (Margulis et al., 2019,
2016, 2015) performed at 3 arcsec (∼ 90 m) and 16 arcsec
(∼ 480 m). This reanalysis was generated at each individ-
ual grid cell using an ensemble of simulations forced by the
Modern-Era Retrospective analysis for Research and Appli-
cations, Version 2 (MERRA-2; Gelaro et al., 2017), and sim-
ulated using the simplified Simple Biosphere Model, Ver-
sion 3 (Xue et al., 1991), coupled with the Liston (2004)
snow depletion curve. The forcing dataset was downscaled
to the simulation grid (Girotto et al., 2014; Margulis et al.,
2015) before running the land surface model. Model ensem-
ble members were provided different (1) precipitation multi-
pliers (influencing total snow mass), (2) snow albedo decay
functions (influencing the rate of snow ablation), and (3) pa-
rameterizations of subgrid snow spatial variability (influenc-
ing subgrid snow cover during snowmelt), among other pa-
rameters. The reanalysis then reweighted the ensemble mem-
bers to most heavily favor those that matched the snowmelt
season evolution of fractional snow-covered area from 30 m
Landsat observations. We expect uncertainties and errors in
the snow reanalysis owing to both errors in meteorologi-
cal forcing data (e.g., Daloz et al., 2020; Liu and Margulis,
2019) and errors with the snow model (e.g., Feng et al.,
2008; Xiao et al., 2021). However, the ensemble approach
used by this reanalysis adjusted modeled snow accumula-
tion and depletion to track remote sensing observations of
snow cover depletion, which has shown the capability to bias
correct SWE and implicitly account for difficult-to-simulate
processes like precipitation lapse rates, wind loading and/or
scour, avalanching, and forest–snow processes (e.g., Pflug et
al., 2022; Yang et al., 2021).

Relative to SNOTEL observations, which are not used by
the snow reanalysis, the reanalysis exhibited a SWE coeffi-
cient of correlation of 0.82 between 1985 and 2020 in the
Rocky Mountain domain (Supplement Fig. S1). On average,
the reanalysis was biased low relative to the snow pillow ob-
servations by approximately 23 %. However, this could be at-
tributed to the location of SNOTEL observations in forested
clearings (Fig. 2a) which typically have SWE deeper than the
terrain covered by the 480 and 90 m pixels (e.g., Livneh et
al., 2014; Pflug et al., 2022).While the snow reanalysis used
in this study is ultimately a model product and subject to a
number of modeling uncertainties, the SWE simulated by the
90 and 480 m discretizations agreed closely with each other
and with ground observations. Therefore, spatial differences
in 15 May SWE and the resulting distribution of snow that
exceeded the SWE threshold (e.g., Fig. 1) was attributable to
differences in the interactions between the static SWE thresh-
old and different spatial discretizations of snow.

For the 480 m grid cells with subgrid snow variability
(Fig. 1c, S480), the heterogeneity of SWE was estimated us-
ing a method developed by Liston (2004). This method as-
sumes that the subgrid heterogeneity of SWE accumulation
is lognormally distributed and is dictated by a time-constant

coefficient of variation (CoV),

CoV=
σ

µ
, (1)

where µ is the grid cell mean SWE and σ is the standard de-
viation of the SWE within that grid cell. The CoV of subgrid
SWE accumulation (Fig. 2b and c) was determined for each
480 m grid cell using the most common pattern of SWE ac-
cumulation from the overlapping 90 m reanalysis grid cells
(Fig. 1d) between 1985 and 2020 (detailed further in Supple-
ment Sect. S1). In Sect. 3.1, we discuss how CoV was used
to estimate the temporal evolution of subgrid SWE hetero-
geneity.

3 Methods

The methods evaluate the impacts of snow spatial discretiza-
tions and winter climatic conditions on assessments of to-
tal area suitable for denning wolverines. We investigated
three different spatial discretizations: two discretizations us-
ing more common discrete representations of snow, and one
with an implicit representation of subgrid snow heterogene-
ity (see Sect. 3.1). For each, potential wolverine denning
area (PWDA) was calculated using a static SWE threshold
(0.20 m) on a static spring date (15 May) (Sect. 3.2). Finally,
we partitioned years with winter precipitation magnitude and
precipitation-phase climate categories (wet, dry, cold, and
warm) (see Sect. 3.3). These categories were used to exam-
ine whether winter climatic conditions or model representa-
tions of snow spatial distribution most influenced estimates
of PWDA.

3.1 Subgrid SWE evolution

The temporal evolution of subgrid SWE heterogeneity was
estimated for 480 m grid cells (Fig. 1, S480) using methods
developed by Liston (2004) (Fig. 3). Provided the reanalysis
grid cell mean SWE (µ) from a D480 grid cell (Fig. 1b) and a
CoV of subgrid SWE accumulation (Fig. 2b), the probability
distribution of subgrid SWE for that grid cell (f (SWE)) was
calculated using a lognormal distribution,

f (SWE)=
(

1

SWEζ
√

2π

)
exp

[
−

1
2

[
ln(SWE)− λ

ζ

]2
]
, (2)

λ= ln(µ)−
1
2
ζ 2, (3)

ζ 2
= ln

(
1+CoV2

)
. (4)

Figure 3b demonstrates the subgrid distribution of SWE
in two winter periods (t1a and t2a ) assuming the mean SWE
evolution from Fig. 3a, a CoV of 0.50, and Eqs. (2)–(4).

In the snowmelt season, the Liston (2004) methodology
assumes spatially uniform snowmelt, causing snow disap-
pearance first in locations with thinner SWE and last in loca-
tions with deeper SWE. This can be conceptualized as taking

Hydrol. Earth Syst. Sci., 27, 2747–2762, 2023 https://doi.org/10.5194/hess-27-2747-2023



J. M. Pflug et al.: Interactions between thresholds 2751

Figure 2. Rocky Mountain National Park study domain. The location of SNOTEL observations and lidar snow depth observations are
superimposed in the terrain map (a). The 480 m coefficient of variation of subgrid SWE accumulation is shown both spatially (b) and across
100 m elevation bands (c).

the subgrid distribution of snow at peak SWE (Fig. 3b, ta2 )
and adjusting it downwards by a constant amount to reflect
spatially uniform melt (SWEm) (Fig. 3c). In doing so, snow
only exists for portions of the grid cell where f (SWE) at
peak SWE was greater than SWEm. Therefore, the fractional
snow-covered area (fSCA) of the grid cell could be calcu-
lated from the fraction of the distribution (f (SWE)) with
SWE greater than SWEm,

fSCA=
∫
∞

SWEm

f (SWE)dSWE. (5)

Since SWEm can exceed the amount of SWE that exists
in some locations at peak SWE timing, and since SWE can-
not be less than 0 m (snow absent), the change in grid cell
mean SWE (µ) throughout snowmelt will not necessarily
equal SWEm. Rather, µ throughout the snowmelt season can
be calculated from the expected value of the melt-shifted dis-
tribution (Fig. 3c),

µ=

∫
∞

SWEm

[SWE−SWEm]f (SWE)dSWE. (6)

In this study, we were provided µ from the reanalysis at each
480 m grid cell and daily time step. Using the CoV calculated
from the overlapping D90 data (Fig. 2b), and maximum an-
nual µ at each grid cell, we calculated the SWE distribution
(Eq. 2) for each grid cell at peak SWE timing. Then, using a
Newton–Raphson solver, we solved the SWEm for each grid
cell that caused µ from Eq. (6) to match D480 µ at each grid
cell on 15 May.

The Liston (2004) subgrid SWE parameterization dis-
cussed above operates under several assumptions. Like many
other studies (e.g., Donald et al., 1995; Helbig et al., 2021;
Jonas et al., 2009), Eq. (2) assumes that the distribution of
snow accumulation at scales finer than the grid cell resolution
can be represented by a lognormal distribution. We tested this
assumption by evaluating the distribution of 1 m lidar snow
depth observations (Fig. 2a) that fell within 480 m grid cells.
The Kolmogorov–Smirnov (KS) statistic, or maximum dif-
ference between cumulative distribution functions, was used
to test how well different theoretical distributions (e.g., nor-
mal, lognormal, gamma, Rayleigh, and chi) used by a variety
of snow studies (e.g., He et al., 2019; Helbig et al., 2015;
Mendoza et al., 2020; Pflug and Lundquist, 2020; Skaugen
and Melvold, 2019) matched the lidar-observed snow depth
distributions. The KS statistic for the lognormal distribution
(Eq. 2) was 0.12± 0.05 and was significantly worse (greater
than 0.22) when comparing the observed lidar distributions
versus other common distributions, like normal and gamma
distributions. While not perfect, these results showed that
subgrid snow heterogeneity was approximated best by log-
normal distributions. The Liston (2004) subgrid methodol-
ogy also assumed that the CoV of subgrid SWE accumu-
lation was constant, resulting in a linear increase in SWE
variability (standard deviation) with mean SWE throughout
the snow accumulation season (Fig. 3b). While we lacked
validation data to test this, this assumption is the basis for
other modeling approaches, which scale snow input using
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information from historic snow accumulation patterns (Lis-
ton, 2004; Luce et al., 1998; Pflug et al., 2021; Vögeli et al.,
2016). Finally, although subgrid snowmelt is not spatially
uniform, melt-season snow heterogeneity is often modeled
well by assuming uniform snowmelt. This is due to the out-
sized influence of snow accumulation spatial heterogeneity
on snowmelt onset timing and snowmelt rates (Egli et al.,
2012; Luce et al., 1998; Lundquist and Dettinger, 2005; Pflug
and Lundquist, 2020). Here, we acknowledge that this ap-
proach operates on multiple assumptions (discussed above),
all of which could vary in accuracy on grid cell level. How-
ever, this approach may also provide the opportunity to im-
plicitly represent the heterogeneity of snow in complex ter-
rain and the fraction of the area that could be more support-
ive for denning habitat (e.g., Fig. 1). We discuss this more
in Sect. 3.2. Readers should refer to Liston (2004) for more
information about the subgrid snow methodology described
in this section.

3.2 Thresholding wolverine habitable area

The area that could support denning wolverines was calcu-
lated for each of the discretizations in each year using a SWE
threshold of 0.20 m on 15 May, in accordance with previ-
ous studies (e.g., Barsugli et al., 2020; Copeland et al., 2010;
McKelvey et al., 2011). For the D480 and D90 discretiza-
tions, each cell’s denning fraction (DF) was classified as fully
suitable for denning (DF= 1.0) or unsuitable (DF= 0.0) if
the 15 May grid cell SWE was greater than or less than
0.20 m, respectively. For the S480 discretization, DF was cal-
culated for each grid cell using

DF=
∫
∞

SWEm+β
f (SWE)dSWE, (7)

which represented the portion of the cell’s SWE distribu-
tion greater than the SWE threshold (β = 0.20 m). PWDA
was calculated for each discretization as the sum of DF (in
space), multiplied by grid cell area.

Relative to DF calculated from a discrete 480 m grid cell
(D480), DF calculated over the same area from the finer-scale
discretizations (S480 and D90) could have one of four pos-
sible relationships. First, the mean SWE of the D480 grid
cell and the finer-scale distribution of SWE (S480 and D90)
could both be entirely greater than the 0.20 SWE threshold.
This results in a fully suitable denning fraction (DF= 1.0) for
all discretizations (Fig. 4a). DF would also agree in regions
where all discretizations have SWE below 0.20 m (Fig. 4d),
resulting in no denning opportunities (DF= 0.0). The scenar-
ios shown in Fig. 4b and c are where DF is sensitive to the
discretization. Figure 4b shows a scenario where the coarse-
scale mean SWE is sufficiently deep enough to be classified
as fully suitable for denning (SWE> 0.20 m), even though
some portion of that grid cell contains SWE that is shallower
than the SWE threshold. Therefore, using a finer-scale dis-
cretization would result in a net loss in DF, the magnitude of

which is shown by the red hatching in Fig. 4b. The opposite
could be true for instances where coarse-scale mean SWE
falls below the 0.20 m SWE threshold, thereby underestimat-
ing denning opportunities relative to finer-scale representa-
tions that resolve some deeper snow deposits (Fig. 4c, blue
hatching). Here, the three reanalysis discretizations (D480,
D90, and S480) were provided identical meteorological forc-
ing and, when coarsened to 480m resolution, had SWE that
agreed to within 1 %, on average on 15 May. Therefore, the
degrees to which the scenarios shown in Fig. 4b and c occur
were the drivers of differences to wolverine denning oppor-
tunities.

3.3 Categorizing winter climate categories

To determine PWDA sensitivity to different climatic condi-
tions, we identified years from the reanalysis with different
winter precipitation magnitude and phase (rain versus snow).
Here, winter is defined by periods between 1 October and
the date of domain peak SWE volume. Following work from
Heldmyer et al. (2023), we used domain average cumulative
winter precipitation and the fraction of the winter precipita-
tion that fell as snow (both from the reanalysis) as indices for
winter precipitation magnitude and the temperature at which
precipitation fell. Using a percentile, we separated years that
fell at least that far from the 1985–2020 median precipita-
tion magnitude and fraction of snow precipitation. In doing
so, we partitioned years with wet, dry, cold, and warm win-
ter climate categories. We did this separation using a range
of percentiles until the statistical difference (measured using
the Mann–Whitney u test) in D480 PWDA was maximized
between the years with different climatic conditions (warm,
cold, wet, dry, and typical). To avoid spurious results, this
percentile was also adjusted to ensure that each climate cate-
gory included at least 6 years. This approach maximized the
difference in interannual PWDA as a function of different
winter climatic conditions. This was then used as the base-
line to compare how much more or less sensitive PWDA was
to the different SWE spatial discretizations.

4 Results

Over low-elevation forested grid cells (< 2800 m), SWE
accumulation variability was large relative to the smaller
amounts of snow, resulting in large CoV (typically between
0.50 and 0.80) (Fig. 2b and c). On mid-elevation slopes
(2800–3300 m), CoV tended to be smaller (approximately
0.30, on average). However, CoV increased again at higher
elevations (> 3300 m) and particularly on the leeward side
of peaks. This was expected given the more extreme terrain
and increased spatial variability of snow from wind drifting,
preferential deposition, cornice formation, and avalanching.

The difference in PWDA was maximized between
(1) warm and cold years and (2) wet and dry years that had
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Figure 3. An example of the Liston (2004) subgrid SWE parameterization assuming CoV= 0.5 and SWE evolution for a 480 m grid cell in
a random year (a). Subgrid SWE distributions are shown for two times (t , subscripts 1 and 2) in the accumulation (superscript a) and melt
(superscript m) seasons (b and c, respectively). The timing of each date corresponds to the matching vertical bar in (a).

Figure 4. Conceptual portrayal of the similarities (a, d) and differ-
ences (b, c) in DF for a 480 m discrete grid cell (solid vertical line)
and a finer-scale representation (distribution) of SWE over the same
area. The dashed vertical lines represent the 0.20 m SWE threshold.
Shaded areas show the portion of the distribution with SWE greater
than the threshold. Hatched areas demonstrate differences in DF be-
tween the coarser-scale and finer-scale discretizations of SWE.

winter precipitation magnitude (Fig. 5a, x axis) and precip-
itation phase (Fig. 5a, y axis) that fell above the 77th and
below the 23rd percentiles (±27th percentile from the me-
dian). These climate conditions had impacts on the evolution
of SWE and snow-covered area (Fig. 5b and c). On average,
as compared to years with normal winter precipitation mag-
nitude and phase (Fig. 5a, white region), cold years and wet
years had peak SWE volume that was 23 % and 28 % greater,
respectively. This was opposed to warm years and dry years,

with peak SWE volume that was 21 % and 31 % smaller, on
average, than typical water years. The timing of peak SWE
was driven most by the magnitude of winter precipitation. In
fact, average peak SWE timing was 28 d later for wet years
than dry years. Snow disappearance timing (snow-covered
area< 200 km2) was also 21 d later for wet years than dry
years. Statistically, the timing of snow disappearance, cru-
cial for wolverine denning habitat, was explained well by
the peak SWE volume (r = 0.82) and the date of peak SWE
(r = 0.63), both of which were influenced more by winter
precipitation magnitude than temperature.

In all years except dry 2002, PWDA was smaller for the
D90 discretization than the D480 discretization (Fig. 6). This
resulted in a 10 % reduction to the 36-year median PWDA
(Fig. 6b). The PWDA differences between the D480 and
S480 discretizations varied more on an annual basis. For
years with D480 PWDA less than 1000 km2, S480 discretiza-
tions increased PWDA by up to 30 %; 11 % on average.
However, in years with PWDA greater than 1000 km2, S480
PWDA was approximately 3 % smaller, on average, than
D480 PWDA. In short, the S480 discretization tended to have
smaller annual swings in PWDA than the D480 discretiza-
tion. The causes of these PWDA disagreements are discussed
in Sect. 5.1. Despite the annual differences in D480 and S480
PWDA, the 36-year median PWDA for these discretizations
agreed to within 1 % (Fig. 6b).

Even though PWDA was sensitive to different spatial
discretizations (Fig. 6b), PWDA across the 36-year period
was not statistically different between any of the three dis-
cretizations (p>0.48). Conversely, the difference in 15 May
PWDA was significantly larger between the years with dif-
ferent winter climate categories (Fig. 6c and d).Differences
in PWDA between years with warm and cold conditions
were statistically significant (p = 1× 10−5). Given that the
15 May snow-covered areas were similar between warm and
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Figure 5. Annual climatic conditions grouped into categories based on winter precipitation magnitude (a, horizontal axis) and precipitation
phase (a, vertical axis) outside the 23rd and 77th percentiles (a, dashed lines). The evolution of SWE volume and snow cover are compared
for warm versus cold (b) and wet versus dry years (c). Dashed vertical lines in (c) and (d) indicate 15 May.

Figure 6. 15 May PWDA compared annually for three different
spatial discretizations (a). Lower panels show the kernel distribu-
tions for the data in (a), separated based on the spatial discretiza-
tion (b), temperature categories (c), and precipitation categories (d).
The medians of each distribution are shown by the dashed vertical
lines (b–d). The data in (c) and (d) include data from all three spa-
tial discretizations. The data from WY1992 (a, faded bars) exhibited
artifacts and were excluded from the kernel distributions (b–d).

cold years (Fig. 5b), this difference between warm and cold
years in Fig. 6c shows that changes to PWDA were driven
by changes to SWE magnitude and the area with SWE ex-
ceeding the SWE threshold. Dry and wet years exhibited
larger differences to both 15 May SWE and snow cover
(Fig. 5c), resulting in PWDA (Fig. 6d) that was even more

different between the years with these climate conditions
(p = 1× 10−8). The impact of these warm, dry, cold, and
wet climate conditions resulted in the bimodal distributions
in PWDA shown for the different discretizations across the
full time period (Fig. 6a). While PWDA was not statistically
different between cold and wet years (p = 0.34), the distri-
bution of PWDA in dry years was significantly smaller than
the distribution of PWDA in warm years (p = 0.001), show-
ing that PWDA was more sensitive to conditions that reduced
snow habitat, like warm and dry conditions.

The results from Fig. 6 suggested that changes in PWDA
across annual periods of differing climatic conditions or
across future periods with expected changes in climate (e.g.,
Barsugli et al., 2020) should be informative from a species
status assessment perspective, regardless of the snow spatial
discretizations that we tested here. However, as noted above,
the S480 discretization increased PWDA by 11 % on average
in low-snow years, with increases as large as 30 % for indi-
vidual years. These low-snow years often corresponded with
drier and/or warmer winter conditions, the latter of which are
expected in the future. For example, the average air temper-
ature during December, January, and February precipitation
events during warm years in the reanalysis record was ap-
proximately 0.8◦ higher than winter precipitation events in
typical years. These conditions are consistent with what is
projected for this region by 2055 (Eyring et al., 2016; Scott
et al., 2016). This suggests that the disparity between habitat
inferred from discrete grid cells and grid cells with subgrid
snow heterogeneity could be of greater importance for future
snow habitat assessments. Additionally, using PWDA as the
sole metric for evaluating differences in annual opportunities
for wolverine denning may oversimplify the degree to which
static thresholds and different spatial discretizations inter-
act. For instance, PWDA inferred on a static date (15 May)
compares very different regimes of the snow season, as wet
years had peak SWE timing, and snowmelt season onset, that
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was 21 d later than typical snow seasons (Fig. 5). Since shal-
lower snow melts more readily than deeper snow (provided
the same energy), comparing SWE on a static date in years
with very different conditions neglects the different rates of
habitat depletion for a few days on either side of the date
threshold. These issues are investigated more in Sect. 5.

5 Discussion

In this section, we diagnose the causes for disagreements
in the frequency and locations at which the 15 May SWE
exceeded the 0.20 m SWE threshold between the three spa-
tial discretizations of snow (Sect. 5.1). We also investigate
how the use of a static SWE threshold and threshold date
may obscure the picture of interannual changes to wolverine
denning habitat availability (Sect. 5.2). Using these findings,
we discuss how information provided from multiple spatial
discretizations could provide information about the fidelity
and uncertainty of thresholds, as well as the interactions and
tradeoffs between spatial discretizations and thresholds, both
in context for assessing snow-adapted wildlife habitat and
more broadly for other environmental studies (Sect. 5.3).

5.1 Spatial differences in DF

The spatial difference in DF between the three discretiza-
tions had annually similar patterns, with the largest differ-
ences at locations where the domain had SWE that was near
the 0.20 m SWE threshold. This is shown in Fig. 7d and
Fig. 7e where the spatial DF disagreements that spiked on
15 May 2008 were focused between approximately 2800 and
3200 m of elevation. Relative to the D480 discretization, the
S480 discretization tended to increase DF in grid cells at
lower elevations where mean SWE was less than the SWE
threshold, but some portion of the grid cell had SWE deep
enough to exceed the threshold (e.g., Fig. 4c). The opposite
effect occurred at higher elevations where mean SWE ex-
ceeded the SWE threshold, but the lower tails of the S480
SWE distributions were below the threshold (e.g., Fig. 4b).
As a result, the S480 discretization had a more gradual in-
crease in thresholded denning availability with elevation and
a downward shift in the elevations that could support den-
ning wolverines (Fig. 7f). In fact, relative to the D480 dis-
cretization, the S480 discretization had 23 % less interannual
variability in the elevation at which equal PWDA existed at
higher and lower elevations (Fig. S2a). This was a result of
the subgrid representations of SWE heterogeneity which al-
lowed for gradual and fractional (0.0≤DF≤ 1.0) increases
in DF with increases in SWE. This was opposed to the D480
discretization, which could only resolve binary DF (0 or 1 for
SWE less than and greater than 0.20 m), resulting in larger
elevational shifts in the annual locations that could support
wolverine denning.

Relative to the D480 discretization, the D90 discretization
also tended to increase DF at lower elevations. However, all
years had reduced D90 DF in elevations higher than approx-
imately 3120 m. This was the cause of the 10 % reduction
in D90 PWDA, relative to the other discretizations (Fig. 6b).
These decreases were typically located on unvegetated, ex-
posed, and steep slopes, where it was likely that winter snow
retention was decreased, snow sublimation was increased,
and sloughing to lower elevations was more common (Bern-
hardt and Schulz, 2010; Grünewald et al., 2014; Machguth et
al., 2006). This demonstrates the utility of the observation-
based reanalysis used in this study, which may have resolved
thinner snow deposits on slopes with decreased snow reten-
tion and/or enhanced snow removal by processes like slough-
ing, both of which are among the most difficult processes
to represent with models. The D480 discretization averaged
snow from surrounding areas, smoothing out thinner snow
deposits resolved by the D90 discretization. Although at-
tempting to resolve subgrid snow heterogeneity, the evolu-
tion of SWE assumed by the S480 simulation, which as-
sumed lognormal snow accumulation and spatially uniform
subgrid snowmelt (Fig. 3), may have been less appropriate
for the areas containing sparsely distributed 90 m regions
with thinner snow. While the D90 discretization decreased
total PWDA, D90 snow cover was also patchier (Fig. 7c),
which could also influence the movement and connectiv-
ity for wolverines (USFWS, 2018) and other snow-adapted
species.

Winter precipitation magnitude and temperature influ-
enced the volume of snow and the elevation of the snow
line that existed on 15 May in each year. Since the dif-
ferences in DF between the discretizations were largest at
grid cells near the 0.20 m SWE threshold, often located just
above the snow line, the spatial pattern of DF differences
(e.g., Fig. 7) exhibited an interannually repeatable relation-
ship with the dry, warm, cold, and wet winter climate cate-
gories (Fig. 5). To show this, we calculated the differences
in DF between all three discretizations (D480 versus S480,
D480 versus D90, and S480 versus D90) in all 36 years.
Then, for each 480 m grid cell, we identified the climate cat-
egory that resulted in the greatest mean absolute differences
in DF across the three discretizations. The climate categories
that had the greatest influence on DF uncertainties covered
similar portions of the domain, with 33.7 %, 20.9 %, 25.2 %,
and 20.2 % being most attributed to dry, warm, cold, and wet
conditions, respectively (Fig. 8). At low elevations (2650–
3050 m), 15 May snow typically existed only in wet years. In
those years and elevations, mean SWE for the D480 and D90
discretizations often fell below the 0.20 m SWE threshold.
However, the large CoVs of subgrid SWE accumulation in
these elevations (Fig. 2) resulted in S480 subgrid SWE dis-
tributions with upper tails that sometimes exceeded 0.20 m
(e.g., Fig. 4c) (Fig. 8c). This was in line with findings from
Magoun et al. (2017), who noted suitable denning conditions
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Figure 7. Spatial comparisons of DF for the three discretizations on 15 May 2008. Panel (f) compares the cumulative PWDA (y axis)
calculated for grid cells sorted in order of increasing elevation (x axis). Dashed vertical dashed lines show the elevation of median PWDA or
elevation at which PWDA is equal for higher and lower elevations.

at lower elevations, even in instances when the surrounding
terrain was predominantly snow free.

The average differences in DF between the three dis-
cretizations were largest in cold years for elevations span-
ning 3050–3150 m and in warm years for elevations span-
ning 3150–3350 m (Fig. 8). Across this elevation range
(3050–3350 m), both of the 480 m discretizations (D480
and S480) estimated more denning opportunities than the
D90 discretization (Fig. 8c). However, at higher elevations
(> 3350 m), DF calculated from the S480 discretization ap-
proached DF calculated from the D90 thinner snow deposits
(Fig. 8c).

5.2 Threshold sensitivities

To this point, we assumed confidence in the SWE (0.20 m)
and date (15 May) thresholds. However, small changes to
either threshold could influence annual estimates of PWDA
(e.g., Copeland et al., 2010; Magoun et al., 2017). In Fig. 9,
we show PWDA calculated from a range of realistic SWE
thresholds and threshold dates. The range of SWE thresh-
olds (0.20± 0.07 m) were determined using a snow depth of

0.50 m, corresponding to observed wolverine dens (USFWS,
2018) and the 90th percentile range of 15 May snow den-
sities from SNOTEL observations (Fig. 2a) between 1985
and 2020 (260–540 kg m−3). The range of threshold dates
spanned a period of ± 2 weeks, corresponding to the differ-
ence in peak SWE timing between dry and wet years (Fig. 5).
This month-long time span is also consistent with the ob-
served range of wolverine birth dates (Inman et al., 2012).
PWDA sensitivity was calculated using all combinations of
SWE and date thresholds, both of which were discretized at
14 equally spaced increments (Fig. 9, left). Then, the gradi-
ents (direction and magnitude of greatest change in PWDA)
were calculated from each unique combination of SWE and
date thresholds. The gradients were summed using vector ad-
dition (Fig. 9, right column) to determine (1) the total rate of
change in PWDA with changing thresholds (arrow length)
and (2) the degree to which PWDA was sensitive to one
threshold versus the other (arrow angle). This process was
repeated for each discretization and year.

PWDA in warm 1990 was 18 % more sensitive to the SWE
thresholds than the threshold dates (Fig. 9, top row). To put
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Figure 8. Winter climate categories that most influenced DF disagreements between the three discretizations (a). Panel (b) shows the most
prevalent influence from (a), for 100 m elevation bands. Using DF from the D90 discretization as a reference, the 36-year average difference
in DF for the D480 and S480 simulations are shown by distributions for each 100 m elevation band (c). Lines inside the distributions show
the median and interquartile range.

this another way, the change in PWDA across a period of
±3 d from 15 May was approximately equal to the change
in PWDA from adjusting the SWE threshold by ±2.5 cm.
This sensitivity was similar to the average threshold sensi-
tivity from the 36-year reanalysis record (Fig. S2b). How-
ever, multiple years exhibited unique sensitivities. For ex-
ample, spring snowfall between 1 and 6 May 2001 (Fig. 9,
middle row) caused PWDA to both increase and decrease
over the range of date thresholds (assuming a constant SWE
threshold). Therefore, PWDA changed based on whether the
threshold date was before, during, or after the May snow-
fall event, buffering the degree to which thresholded denning
habitat estimates were influenced by the specific winter me-
teorological conditions that occurred in that year. This effect
also occurred in 2015, when 15 May fell between two spring
snowfall events (Fig. 9, bottom row). As a result, PWDA
tended to increase, on average, over the range of thresh-
old dates, resulting in heightened sensitivities to the date on
which denning opportunities were evaluated. These spring
snowfall events had large impacts on 15 May PWDA but
are unlikely to accurately represent the habitat opportunities
and stresses that wolverine were subject to in that year. This

demonstrates the dangers of thresholds applied on static dates
and suggests that metrics over multiple dates (e.g., number of
May days exceeding a SWE threshold) and across sequences
of years could be more accurate representations of snow refu-
gia.

PWDA varied by as much 82 % between the realistic
thresholds shown in Fig. 9. This was similar in magnitude to
the differences in PWDA between years with opposing win-
ter climate anomalies (Fig. 6c and d). Across the years eval-
uated in this study, the sensitivities to the thresholds were
largest for the D480 simulation and smallest for the S480
simulation (Figs. 9 and S2b). As discussed in Sect. 5.1, the
S480 discretization, which represented subgrid snow distri-
bution and fractional changes to DF with changes to the
SWE threshold and threshold date, had less sensitivity to an-
nual changes in meteorological conditions. Similarly, small
changes in the SWE threshold and threshold date changed
the prevalence of snow that exceeded the static threshold for
discrete grid cells by larger amounts than the S480 discretiza-
tion. This suggests that studies with subgrid representations
of snow heterogeneity may decrease the overall sensitivity to
SWE and date thresholds.
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Figure 9. PWDA calculated using different SWE (y axes) and date thresholds (x axes), for the different discretizations (columns), in 3
different years (rows) with very different sensitivities. PWDA calculated from the default thresholds (0.20 m SWE on 15 May) is shown by
the black circle. Combinations of thresholds that could reproduce the default PWDA are approximated by the dashed contour. The rightmost
arrows show the total direction and magnitude of PWDA changes with changes in the thresholds.

5.3 Threshold caveats and future suggestions

The D90 and S480 discretizations provided unique but dif-
ferent advantages for estimating PWDA. We believe that the
upper-elevation decreases in D90 SWE and denning habitat
on steep and unvegetated surfaces were realistic. These re-
sults were contrary to the findings from Barsugli et al. (2020),
who in the same domain, found that finer-scale physically
based simulations resulted in net increases in wolverine den-
ning opportunities. However, this analysis used a joint model
and observation-based approach (Sect. 2) that may have im-
plicitly represented decreased snow retention and/or snow
sloughing better than the physically based models used by
Barsugli et al. (2020). The discretization with subgrid snow
heterogeneity (S480), which is not as commonly used, had
less dramatic swings in PWDA with changes in annual win-
ter climatic conditions (Fig. 6) and thresholds (Fig. 9). We
therefore think that subgrid representations of snow may be
important for habitat assessments, especially given that snow
deposits suitable for denning at scales of 10 m or less some-
times occur in regions with otherwise little snow (Magoun et
al., 2017).

The results of this study suggest that uncertainties pro-
vided from combinations of multiple discretizations, applied
across a range of realistic thresholds, would be more infor-
mative than a single discretization and set of thresholds. For

instance, SWE volume on 15 May 2015 was 10 % less than
the 36-year median 15 May SWE volume. However, due to
spring snowfall (Fig. 9), SWE volume on 30 May 2015 was
31 % greater than the 36-year median on the same date. Mul-
tiple discretizations could also be used to identify the loca-
tions of most (e.g., Fig. 4a and d) and least certain (Fig. 4b
and c) opportunities for denning habitat. This information
could be used as the basis for identifying the locations where
remote sensing or field campaigns could hone annual es-
timates of refugium, given that year’s meteorological con-
ditions. Altogether, differences across discretizations (e.g.,
Fig. 6) and threshold sensitivities (e.g., Fig. 9) could also be
used to provide uncertainty bounds for PWDA calculated in
any given year.

Our results show that caution is warranted when combin-
ing gridded data and static thresholds. While we focus on the
impact that thresholds and different snow spatial discretiza-
tions have on approximations of wolverine denning oppor-
tunities, we expect these results to be applicable to other
environmental applications. For instance, while temperature
thresholds are widely used to partition rain and snow pre-
cipitation in models, temperature discretized at different spa-
tial scales could influence the spatial variability of tempera-
ture and resulting snowfall volume thresholded across one or
many snowfall events (e.g., Jennings et al., 2018; Nolin and
Daly, 2006; Wayand et al., 2017). Snow cover thresholded
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using visible and infrared satellite observations may also re-
quire changes based on the size of the satellite pixels and the
underlying topographic and vegetative characteristics (Härer
et al., 2018; Pestana et al., 2019). Future studies should re-
port the extent to which different spatial discretizations and
ranges of realistic thresholds influence results. This informa-
tion could be used to report (1) the uncertainty of thresh-
olded outputs, (2) the fidelity of different gridded products,
and (3) the degree to which multiple spatial discretizations
could be combined to improve the fidelity and transferability
of results.

6 Conclusions

Potential wolverine denning area (PWDA) was thresholded
using a published SWE threshold (0.20 m) on a threshold
date (15 May) in a Colorado Rocky Mountain domain be-
tween 1985 and 2020. Results showed that PWDA was statis-
tically different (p<0.01) between years with different win-
ter precipitation magnitude (wet versus dry) and precipitation
temperature (cold versus warm) conditions. In fact, climate-
driven differences in annual PWDA were substantially larger
than differences in PWDA between snow discretized using
(1) discrete 480 m grid cells, (2) 480 m grid cells with sub-
grid representations of SWE heterogeneity, and (3) discrete
90 m grid cells. Therefore, studies that assess changes in
habitat health for species like wolverines with past and fu-
ture changes in climate could be informative, regardless of
the spatial discretizations tested.

Despite the sensitivity to winter climatic conditions, an-
nual differences in denning patterns and parameter sensitiv-
ities emerged for the different discretizations. For instance,
90 m grid cells resolved thinner snow deposits in mid-to-
upper elevations (approximately 3050–3350 m) that were not
resolved by either of the 480 m discretizations, decreasing
PWDA by 10 %, on average. Snow discretized with sub-
grid representations of SWE spatial heterogeneity also had
less dramatic swings in annual PWDA. The simulations with
subgrid SWE heterogeneity increased PWDA by 10 %–30 %
in low-snow years, many of which were representative of
future changes in average temperature expected over the
next 50 years. Spatially, the differences in the prevalence
of SWE that exceeded the threshold between the three dif-
ferent snow discretizations were heightened at the grid cells
that had SWE values close to the SWE threshold (0.20 m)
on 15 May, the elevation of which was driven in large part
by the winter climatic conditions. On average, PWDA was
more sensitive to the SWE threshold than the date thresh-
old but had the smallest amount of sensitivity to the 480 m
simulation with subgrid snow heterogeneity, which had more
gradual changes to the fraction of a region exceeding the
SWE threshold with small changes in SWE. This discretiza-
tion also had the least amount of sensitivity to interan-
nual changes in winter climatic conditions. However, some

years had late spring snowfall events, altering the amount of
PWDA by up to 82 % depending on whether the threshold
date was before, during, or after the snowfall event.

Our results show that differences in how snow is spa-
tially discretized can influence information generalized using
thresholds. Therefore, future studies thresholding spatiotem-
poral environmental data should include multiple spatial dis-
cretizations and ranges of realistic thresholds to provide a
more comprehensive picture of uncertainties associated with
chosen thresholds and datasets. Although we used wolver-
ine habitat as an example, we expect these results to be ap-
plicable to any study thresholding environmental data, espe-
cially for studies generalizing information at spatial scales
finer than those of modeled or observed resolutions.
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