Articles | Volume 27, issue 14
https://doi.org/10.5194/hess-27-2725-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-2725-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Can the combining of wetlands with reservoir operation reduce the risk of future floods and droughts?
Yanfeng Wu
Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
Jingxuan Sun
Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
University of Chinese Academy of Sciences, Beijing 100049, China
Boting Hu
Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
University of Chinese Academy of Sciences, Beijing 100049, China
Y. Jun Xu
School of Renewable Natural Resources, Louisiana State University
Agricultural Center, 227 Highland Road, Baton Rouge, LA 70803, USA
Alain N. Rousseau
INRS-ETE/Institut National de la Recherche Scientifique – Eau Terre Environnement, 490 rue de la Couronne, G1K 9A9 Quebec City, Quebec, Canada
Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
Related authors
Boting Hu, Liwen Chen, Yanfeng Wu, Jingxuan Sun, Y. Jun Xu, Qingsong Zhang, and Guangxin Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-71, https://doi.org/10.5194/hess-2024-71, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This study presents a novel framework to accurately quantify wetland depression water storage capacity. The framework and its concept are transferable to other wetland areas in the world where field measurements and/or high-resolution terrain data are unavailable. Moreover, the framework provides accurate distribution and depth-area relations of wetland depressions which can be incorporated into wetland modules of hydrological models to improve the accuracy of flow and storage predictions.
Chengming Luo, Xihua Wang, Y. Jun Xu, Shunqing Jia, Zejun Liu, Boyang Mao, Qinya Lv, Xuming Ji, Yanxin Rong, and Yan Dai
EGUsphere, https://doi.org/10.5194/egusphere-2025-2083, https://doi.org/10.5194/egusphere-2025-2083, 2025
Short summary
Short summary
This study constructed a BP neural network surrogate-artificial hummingbird algorithm inversion framework to accurately and synergistically identify the pollution source information and hydrogeological parameters, which provided a reliable basis for groundwater contamination remediation and management.
Boting Hu, Liwen Chen, Yanfeng Wu, Jingxuan Sun, Y. Jun Xu, Qingsong Zhang, and Guangxin Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-71, https://doi.org/10.5194/hess-2024-71, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This study presents a novel framework to accurately quantify wetland depression water storage capacity. The framework and its concept are transferable to other wetland areas in the world where field measurements and/or high-resolution terrain data are unavailable. Moreover, the framework provides accurate distribution and depth-area relations of wetland depressions which can be incorporated into wetland modules of hydrological models to improve the accuracy of flow and storage predictions.
Cited articles
Åhlén, I., Hambäck, P., Thorslund, J., Frampton, A., Destouni,
G.Jarsjö, J.: Wetlandscape size thresholds for ecosystem service delivery: Evidence from the Norrström drainage basin, Sweden, Sci. Total
Environ., 704, 135452, https://doi.org/10.1016/j.scitotenv.2019.135452, 2020.
Åhlén, I., Thorslund, J., Hambäck, P., Destouni, G., and Jarsjö, J.: Wetland position in the landscape: Impact on water storage
and flood buffering, Ecohydrology, 15, e2458, https://doi.org/10.1002/eco.2458, 2022.
Ahmed, F.: Cumulative Hydrologic Impact of Wetland Loss: Numerical Modeling Study of the Rideau River Watershed, Canada, J. Hydrol. Eng., 19, 593–606, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000817, 2014.
Alves, A., Gersonius, B., Kapelan, Z., Vojinovic, Z., and Sanchez, A.:
Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable
urban flood risk management, J. Environ. Manage., 239, 244–254, https://doi.org/10.1016/j.jenvman.2019.03.036, 2019.
Anderson, C. C. and Renaud, F. G.: A review of public acceptance of
nature-based solutions: The `why', `when', and `how' of success for disaster
risk reduction measures, Ambio, 50, 1552–1573, https://doi.org/10.1007/s13280-021-01502-4, 2021.
Arsenault, R., Brissette, F., and Martel, J.: The hazards of split-sample
validation in hydrological model calibration, J. Hydrol., 566, 346–362, https://doi.org/10.1016/j.jhydrol.2018.09.027, 2018.
Beven, K.: Kinematic subsurface stormflow. Water Resour. Res., 17, 1419–1424, https://doi.org/10.1029/WR017i005p01419, 1981.
Blanchette, M., Rousseau, A. N., Foulon, É., Savary, S., and Poulin, M.: What would have been the impacts of wetlands on low flow support and high flow attenuation under steady state land cover conditions?, J. Environ. Manage., 234, 448–457, https://doi.org/10.1016/j.jenvman.2018.12.095, 2019.
Bosshard, T., Kotlarski, S., Ewen, T., and Schär, C.: Spectral
representation of the annual cycle in the climate change signal, Hydrol.
Earth Syst. Sci., 15, 2777–2788, https://doi.org/10.5194/hess-15-2777-2011, 2011.
Bouda, M., Rousseau, A. N., Konan, B., Gagnon, P., and Gumiere, S. J.: Bayesian Uncertainty Analysis of the Distributed Hydrological Model HYDROTEL, J. Hydrol. Eng., 17, 1021–1032, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000550, 2012.
Bouda, M., Rousseau, A. N., Gumiere, S. J., Gagnon, P., Konan, B., and Moussa, R.: Implementation of an automatic calibration procedure for HYDROTEL based on prior OAT sensitivity and complementary identifiability analysis, Hydrol. Process., 28, 3947–3961, https://doi.org/10.1002/hyp.9882, 2013.
Boulange, J., Hanasaki, N., Yamazaki, D., and Pokhrel, Y.: Role of dams in
reducing global flood exposure under climate change, Nat. Commun., 12, 417, https://doi.org/10.1038/s41467-020-20704-0, 2021.
Brunner, M. I.: Reservoir regulation affects droughts and floods at local and
regional scales, Environ. Res. Lett., 16, 124016, https://doi.org/10.1088/1748-9326/ac36f6, 2021.
Brunner, M. I., Slater, L., Tallaksen, L. M., and Clark, M.: Challenges in
modeling and predicting floods and droughts: A review, WIREs Water, 8, e1520, https://doi.org/10.1002/wat2.1520, 2021.
Cammalleri, C., Vogt, J., and Salamon, P.: Development of an operational
low-flow index for hydrological drought monitoring over Europe, Hydrolog. Sci. J., 62, 346–358, https://doi.org/10.1080/02626667.2016.1240869, 2017.
Casal-Campos, A., Fu, G., Butler, D., and Moore, A.: An Integrated Environmental Assessment of Green and Gray Infrastructure Strategies for
Robust Decision Making, Environ. Sci. Technol., 49, 8307–8314, https://doi.org/10.1021/es506144f, 2015.
Chen, L., Wu, Y., Xu, Y. J., and Guangxin, Z.: Alteration of flood pulses by
damming the Nenjiang River, China – Implication for the need to identify a
hydrograph-based inundation threshold for protecting floodplain wetlands,
Ecol. Indic., 124, 107406, https://doi.org/10.1016/j.ecolind.2021.107406, 2021.
Cheng, C., Brabec, E., Yang, Y., and Ryan, R. Rethinking stormwater management in a changing world: Effects of detention for flooding hazard
mitigation under climate change scenarios in the Charles River Watershed, in:
Proceedings of 2013 CELA Conference, 27–30 March 2013, Austin, Texas, 2013.
Chiang, F., Mazdiyasni, O., and AghaKouchak, A.: Evidence of anthropogenic
impacts on global drought frequency, duration, and intensity, Nat. Commun., 12, 2754, https://doi.org/10.1038/s41467-021-22314-w, 2021.
CMA: China Meteorological Data Service Centre, http://data.cma.cn (last access: 18 July 2023), 2023.
Cook, B. I., Mankin, J. S., Marvel, K., Williams, A. P., Smerdon, J. E., and Anchukaitis, K. J.: Twenty-First Century Drought Projections in the CMIP6 Forcing Scenarios, Earth's Future, 8, e2019EF001461, https://doi.org/10.1029/2019EF001461, 2020.
Dang, T. D., Chowdhury, A. F. M. K., and Galelli, S.: On the representation of water reservoir storage and operations in large-scale hydrological models:
implications on model parameterization and climate change impact assessments, Hydrol. Earth Syst. Sci., 24, 397–416, https://doi.org/10.5194/hess-24-397-2020, 2020.
Diffenbaugh, N. S., Swain, D. L., and Touma, D.: Anthropogenic warming has
increased drought risk in California, P. Natl. Acad. Sci. USA, 112, 3931–3936, https://doi.org/10.1073/pnas.1422385112, 2015.
Ding, W., Zhang, C., Peng, Y., Zeng, R., Zhou, H., and Cai, X.: An analytical framework for flood water conservation considering forecast uncertainty and acceptable risk, Water Resour. Res., 51, 4702–4726, https://doi.org/10.1002/2015WR017127, 2015.
Dobson, B., Wagener, T., and Pianosi, F.: An argument-driven classification
and comparison of reservoir operation optimization methods, Adv. Water Resour., 128, 74–86, 2019.
Eriyagama, N., Smakhtin, V., and Udamulla, L.: How much artificial surface
storage is acceptable in a river basin and where should it be located: A
review, Earth-Sci. Rev., 208, 103294, https://doi.org/10.1016/j.earscirev.2020.103294, 2020.
ESGF: Welcome to the ISIMIP Repository, https://esg.pik-potsdam.de/search/isimip/ (last access: 18 July 2023), 2023.
Evenson, G. R., Golden, H. E., Lane, C. R., and D'Amico, E.: Geographically isolated wetlands and watershed hydrology: A modified model analysis, J. Hydrol., 529, 240–256, https://doi.org/10.1016/j.jhydrol.2015.07.039, 2015.
Evenson, G. R., Golden, H. E., Lane, C.R., and D'Amico, E.: An improved
representation of geographically isolated wetlands in a watershed-scale
hydrologic model, Hydrol. Process., 30, 4168–4184, https://doi.org/10.1002/hyp.10930, 2016.
Evenson, G. R., Jones, C. N., Mclaughlin, D. L., Golden, H. E., Lane, C. R.,
Devries, B., Alexander, L. C., Lang, M. W., Mccarty, G. W., and Sharifi, A.: A watershed-scale model for depressional wetland-rich landscapes, J. Hydrol. X, 1, 100002, https://doi.org/10.1016/j.hydroa.2018.10.002 ,2018.
Fleig, A. K., Tallaksen, L. M., Hisdal, H., and Demuth, S.: A global evaluation of streamflow drought characteristics, Hydrol. Earth Syst. Sci.,
10, 535–552, https://doi.org/10.5194/hess-10-535-2006, 2006.
Fortin, J. P., Turcotte, R., Massicotte, S., Moussa, R., Fitzback, J., and
Villeneuve, J. P.: Distributed watershed model compatible with remote sensing and GIS data. I: Description of model, J. Hydrol. Eng., 6, 91–99, 2001.
Fossey, M. and Rousseau, A. N.: Assessing the long-term hydrological services provided by wetlands under changing climate conditions: A case study approach of a Canadian watershed, J. Hydrol., 541, 1287–1302, https://doi.org/10.1016/j.jhydrol.2016.08.032, 2016a.
Fossey, M. and Rousseau, A. N.: Can isolated and riparian wetlands mitigate the impact of climate change on watershed hydrology? A case study approach, J. Environ. Manage., 184, 327–339, https://doi.org/10.1016/j.jenvman.2016.09.043, 2016b.
Fossey, M., Rousseau, A. N., Bensalma, F., Savary, S., and Royer, A.: Integrating isolated and riparian wetland modules in the PHYSITEL/HYDROTEL modelling platform: model performance and diagnosis, Hydrol. Process., 29,
4683–4702, https://doi.org/10.1002/hyp.10534, 2015.
Fossey, M., Rousseau, A. N., and Savary, S.: Assessment of the impact of spatio-temporal attributes of wetlands on stream flows using a hydrological modelling framework: a theoretical case study of a watershed under temperate climatic conditions, Hydrol. Process., 30, 1768–1781, https://doi.org/10.1002/hyp.10750, 2016.
Foulon, É., Rousseau, A. N., and Gagnon, P.: Development of a methodology to assess future trends in low flows at the watershed scale using solely
climate data, J. Hydrol., 557, 774–790, https://doi.org/10.1016/j.jhydrol.2017.12.064, 2018.
Fowler, K., Peel, M., Western, A., and Zhang, L.: Improved Rainfall-Runoff
Calibration for Drying Climate: Choice of Objective Function, Water Resour.
Res., 54, 3392–3408, https://doi.org/10.1029/2017WR022466, 2018.
Garcia, F., Folton, N., and Oudin, L.: Which objective function to calibrate
rainfall–runoff models for low-flow index simulations?, Hydrolog. Sci. J., 62, 1149–1166, https://doi.org/10.1080/02626667.2017.1308511, 2017.
Golden, H. E., Lane, C. R., Rajib, A., and Wu, Q.: Improving global flood and
drought predictions: integrating non-floodplain wetlands into watershed
hydrologic models, Environ. Res. Lett., 16, 091002, https://doi.org/10.1088/1748-9326/ac1fbc, 2021.
Gómez-Baggethun, E., Tudor, M., Doroftei, M., Covaliov, S., Năstase,
A., Onără, D., Mierlă, M., Marinov, M., Doroşencu, A., Lupu, G., Teodorof, L., Tudor, I., Köhler, B., Museth, J., Aronsen, E., Ivar
Johnsen, S., Ibram, O., Marin, E., Crăciun, A., and Cioacă, E.: Changes in ecosystem services from wetland loss and restoration: An ecosystem
assessment of the Danube Delta (1960–2010), Ecosyst. Serv., 39, 100965,
https://doi.org/10.1016/j.ecoser.2019.100965, 2019.
Gourevitch, J. D., Singh, N. K., Minot, J., Raub, K. B., Rizzo, D. M., Wemple, B. C., and Ricketts, T. H.: Spatial targeting of floodplain restoration to equitably mitigate flood risk, Global Environ. Change, 61, 102050, https://doi.org/10.1016/j.gloenvcha.2020.102050, 2020.
Gulbin, S., Kirilenko, A. P., Kharel, G., and Zhang, X.: Wetland loss impact on long term flood risks in a closed watershed, Environ. Sci. Policy, 94,
112–122, https://doi.org/10.1016/j.envsci.2018.12.032, 2019.
Güneralp, B., Güneralp, O., and Liu, Y.: Changing global patterns of
urban exposure to flood and drought hazards, Global Environ. Change, 31, 217–225, https://doi.org/10.1016/j.gloenvcha.2015.01.002, 2015.
Guo, H., Hu, Q., Zhang, Q., and Feng, S.: Effects of the Three Gorges Dam on
Yangtze River flow and river interaction with Poyang Lake, China: 2003–2008,
J. Hydrol., 416, 19–27, https://doi.org/10.1016/j.jhydrol.2011.11.027, 2012.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Hagemann, S. and Jacob, D.: Gradient in the climate change signal of European discharge predicted by a multi-model ensemble, Climatic Change, 81, 309–327, https://doi.org/10.1007/s10584-006-9225-0, 2007.
Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J.: Future
flood losses in major coastal cities, Nat. Clim. Change, 3, 802–806,
https://doi.org/10.1038/nclimate1979, 2013.
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., and Kanae, S.: Global flood risk under climate change, Nat. Clim. Change, 3, 816–821, https://doi.org/10.1038/nclimate1911, 2013.
Hisdal, H. and Tallaksen, L. M.: Estimation of regional meteorological and
hydrological drought characteristics: a case study for Denmark, J. Hydrol., 281, 230–247, https://doi.org/10.1016/S0022-1694(03)00233-6, 2003.
Hutchinson, M. F. and Xu, T.: Anusplin version 4.2 user guide, Centre for Resource and Environmental Studies, The Australian National University, Canberra, 7–9, 2004.
Javaheri, A. and Babbar-Sebens, M.: On comparison of peak flow reductions,
flood inundation maps, and velocity maps in evaluating effects of restored
wetlands on channel flooding, Ecol. Eng., 73, 132–145, https://doi.org/10.1016/j.ecoleng.2014.09.021, 2014.
Jongman, B.: Effective adaptation to rising flood risk, Nat. Commun., 9, 1986, https://doi.org/10.1038/s41467-018-04396-1, 2018.
Kharrufa, N. S.: Simplified equation for evapotranspiration in arid regions, Hydrologie Sonderheft, 5, 39–47, 1985.
Kriegler, E., Bauer, N., Popp, A., Humpenöder, F., Leimbach, M., Strefler, J., Baumstark, L., Bodirsky, B. L., Hilaire, J., and Klein, D.:
Fossil-fueled development (SSP5): An energy and resource intensive scenario
for the 21st century, Global Environ. Change, 42, 297–315,
https://doi.org/10.1016/j.gloenvcha.2016.05.015, 2017.
Kumar, P., Debele, S. E., Sahani, J., Rawat, N., Marti-Cardona, B., Alfieri,
S. M., Basu, B., Basu, A. S., Bowyer, P., Charizopoulos, N., Gallotti, G.,
Jaakko, J., Leo, L. S., Loupis, M., Menenti, M., Mickovski, S. B., Mun, S.,
Gonzalez-Ollauri, A., Pfeiffer, J., Pilla, F., Pröll, J., Rutzinger, M.,
Santo, M. A., Sannigrahi, S., Spyrou, C., Tuomenvirta, H., and Zieher, T.:
Nature-based solutions efficiency evaluation against natural hazards: Modelling methods, advantages and limitations, Sci. Total Environ., 784,
147058, https://doi.org/10.1016/j.scitotenv.2021.147058, 2021.
Lee, S., Yeo, I. Y., Lang, M. W., Sadeghi, A. M., Mccarty, G. W., Moglen, G. E., and Evenson, G. R.: Assessing the cumulative impacts of geographically
isolated wetlands on watershed hydrology using the SWAT model coupled with
improved wetland modules, J. Environ. Manage., 223, 37–48,
https://doi.org/10.1016/j.jenvman.2018.06.006, 2018.
Li, F., Zhang, G., and Xu, Y. J.: Spatiotemporal variability of climate and
streamflow in the Songhua River Basin, northeast China, J. Hydrol., 514, 53–64, https://doi.org/10.1016/j.jhydrol.2014.04.010, 2014.
Li, W., Jiang, Y., Duan, Y., Bai, J., Zhou, D., and Ke, Y.: Where and how to
restore wetland by utilizing storm water at the regional scale: A case study
of Fangshan, China, Ecol. Indic., 122, 107246, https://doi.org/10.1016/j.ecolind.2020.107246, 2021.
Liu, Y., Yang, W., and Wang, X.: Development of a SWAT extension module to simulate riparian wetland hydrologic processes at a watershed scale, Hydrol. Process., 22, 2901–2915, https://doi.org/10.1002/hyp.6874, 2008.
Lobligeois, F., Andréassian, V., Perrin, C., Tabary, P., and Loumagne, C.: When does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood events, Hydrol. Earth
Syst. Sci., 18, 575–594, https://doi.org/10.5194/hess-18-575-2014, 2014.
Maes, J., Barbosa, A., Baranzelli, C., Zulian, G., Batista E Silva, F.,
Vandecasteele, I., Hiederer, R., Liquete, C., Paracchini, M. L., Mubareka,
S., Jacobs-Crisioni, C., Castillo, C. P., and Lavalle, C.: More green
infrastructure is required to maintain ecosystem services under current
trends in land-use change in Europe, Landsc. Ecol., 30, 517–534,
https://doi.org/10.1007/s10980-014-0083-2, 2015.
Manfreda, S., Miglino, D., and Albertini, C.: Impact of detention dams on the probability distribution of floods, Hydrol. Earth Syst. Sci., 25, 4231–4242, https://doi.org/10.5194/hess-25-4231-2021, 2021.
Maraun, D.: Bias Correcting Climate Change Simulations – a Critical Review,
Curr. Clim. Change Rep., 2, 211–220, https://doi.org/10.1007/s40641-016-0050-x, 2016.
Martel, J. L., Brissette, F., Troin, M., Arsenault, R., Chen, J., Su, T., and Lucas Picher, P.: CMIP5 and CMIP6 model projection comparison for hydrological impacts over North America, Geophys. Res. Lett., 49, e2022GL098364, https://doi.org/10.1029/2022GL098364, 2022.
Martinez-Martinez, E., Nejadhashemi, A. P., Woznicki, S. A., and Love, B. J.:
Modeling the hydrological significance of wetland restoration scenarios, J.
Environ. Manage., 133, 121–134, https://doi.org/10.1016/j.jenvman.2013.11.046, 2014.
Melsen, L. A., Teuling, A. J., Torfs, P. J. J. F., Zappa, M., Mizukami, N.,
Mendoza, P. A., Clark, M. P., and Uijlenhoet, R.: Subjective modeling decisions can significantly impact the simulation of flood and drought events, J. Hydrol., 568, 1093–1104, https://doi.org/10.1016/j.jhydrol.2018.11.046, 2019.
Meng, B., Liu, J., Bao, K., and Sun, B.: Water fluxes of Nenjiang River Basin with ecological network analysis: Conflict and coordination between agricultural development and wetland restoration, J. Clean. Prod., 213, 933–943, https://doi.org/10.1016/j.jclepro.2018.12.243, 2019.
Moore, K., Pierson, D., Pettersson, K., Schneiderman, E., and Samuelsson, P.:
Effects of warmer world scenarios on hydrologic inputs to Lake Mälaren,
Sweden and implications for nutrient loads, Hydrobiologia, 599, 191–199,
https://doi.org/10.1007/978-1-4020-8379-2_23, 2008.
Moriasi, D. N.: Model Evaluation Guidelines for Systematic Quantification of
Accuracy in Watershed Simulations, T. ASABE, 50, 885–900, https://doi.org/10.13031/2013.23153, 2007.
Moriasi, D. N., Gitau, M. W., Pai, N., and Daggupati, P.: Hydrologic and water quality models: Performance measures and evaluation criteria, T. ASABE, 58, 1763–1785, https://doi.org/10.13031/trans.58.10715, 2015.
Muller, M.: Hydropower dams can help mitigate the global warming impact of
wetlands, Nature, 566, 315–317, https://doi.org/10.1038/d41586-019-00616-w, 2019.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Nelson, D. R., Bledsoe, B. P., Ferreira, S., and Nibbelink, N. P.: Challenges to realizing the potential of nature-based solutions, Curr. Opin. Environ. Sustain., 45, 49–55, https://doi.org/10.1016/j.cosust.2020.09.001, 2020.
NESSDC-NSTI – National Earth System Science Data Center, National Science & Technology Infrastructure of China: http://www.geodata.cn (last access: 18 May 2021), 2020.
Nika, C. E., Gusmaroli, L., Ghafourian, M., Atanasova, N., Buttiglieri, G., and Katsou, E.: Nature-based solutions as enablers of circularity in water
systems: A review on assessment methodologies, tools and indicators, Water
Res., 183, 115988, https://doi.org/10.1016/j.watres.2020.115988, 2020.
Noël, P., Rousseau, A. N., Paniconi, C., and Nadeau, D. F.: Algorithm for
delineating and extracting hillslopes and hillslope width functions from
gridded elevation data, J. Hydrol. Eng., 19, 366–374, 2014.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein,
P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9,
3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Park, J., Botter, G., Jawitz, J. W., and Rao, P. S. C.: Stochastic modeling of hydrologic variability of geographically isolated wetlands: Effects of
hydro-climatic forcing and wetland bathymetry, Adv. Water Resour., 69, 38–48, https://doi.org/10.1016/j.advwatres.2014.03.007, 2014.
Pool, S., Vis, M., Seibert, J., and Sveriges, L.: Evaluating model performance: towards a non-parametric variant of the Kling-Gupta efficiency, Hydrolog. Sci. J., 63, 1941–1953, https://doi.org/10.1080/02626667.2018.1552002, 2018.
Qing, Y., Wang, S., Zhang, B., and Wang, Y.: Ultra-high resolution regional climate projections for assessing changes in hydrological extremes and underlying uncertainties, Clim. Dynam., 55, 2031–2051, https://doi.org/10.1007/s00382-020-05372-6, 2020.
Rains, M. C., Leibowitz, S. G., Cohen, M. J., Creed, I. F., Golden, H. E., Jawitz, J. W., Kalla, P., Lane, C. R., Lang, M. W., and Mclaughlin, D. L.: Geographically isolated wetlands are part of the hydrological landscape, Hydrol. Process., 30, 153–160, https://doi.org/10.1002/hyp.10610, 2016.
Rajib, A., Golden, H. E., Lane, C. R., and Wu, Q.: Surface Depression and Wetland Water Storage Improves Major River Basin Hydrologic Predictions, Water Resour. Res., 56, e2019WR026561, https://doi.org/10.1029/2019WR026561, 2020.
Rathjens, H., Bieger, K., Srinivasan, R., Chaubey, I., and Arnold, J. G.: CMhyd User Manual, http://swat.tamu.edu/software/cmhyd/ (last access: 2 January 2020), 2016.
Rousseau, A. N., Fortin, J., Turcotte, R., Royer, A., Savary, S., Quévy,
F., Noël, P., and Paniconi, C.: PHYSITEL, a specialized GIS for supporting the implementation of distributed hydrological models, Water News, 31, 18–20, 2011.
Saharia, M., Kirstetter, P. E., Vergara, H., Gourley, J. J., Hong, Y., and Giroud, M.: Mapping Flash Flood Severity in the United States, J. Hydrometeorol., 18, 397–411, https://doi.org/10.1175/JHM-D-16-0082.1, 2017.
Schneider, C., Flörke, M., De Stefano, L., and Petersen-Perlman, J. D.:
Hydrological threats to riparian wetlands of international importance – a
global quantitative and qualitative analysis, Hydrol. Earth Syst. Sci., 21,
2799–2815, https://doi.org/10.5194/hess-21-2799-2017, 2017.
Seibert, J., Vis, M. J. P., Lewis, E., and Meerveld, H. J.: Upper and lower
benchmarks in hydrological modelling, Hydrol. Process., 32, 1120–1125, https://doi.org/10.1002/hyp.11476, 2018.
Shafeeque, M. and Luo, Y.: A multi-perspective approach for selecting CMIP6
scenarios to project climate change impacts on glacio-hydrology with a case
study in Upper Indus river basin, J. Hydrol., 599, 126466, https://doi.org/10.1016/j.jhydrol.2021.126466, 2021.
Shook, K., Papalexiou, S., and Pomeroy, J. W.: Quantifying the effects of Prairie depressional storage complexes on drainage basin connectivity, J. Hydrol., 593, 125846, https://doi.org/10.1016/j.jhydrol.2020.125846, 2021.
Smakhtin, V. U.: Low flow hydrology: a review, J. Hydrol., 240, 147–186, https://doi.org/10.1016/S0022-1694(00)00340-1, 2001.
Staudinger, M., Stahl, K., Seibert, J., Clark, M. P., and Tallaksen, L. M.:
Comparison of hydrological model structures based on recession and low flow
simulations, Hydrol. Earth Syst. Sci., 15, 3447–3459,
https://doi.org/10.5194/hess-15-3447-2011, 2011.
Tallaksen, L. M. and van Lanen, H. A. J.: Hydrological drought; processes and
estimation methods for streamflow and groundwater, Dev. Water Sci., 48, 164–273, 2004.
Thorslund, J., Jarsjo, J., Jaramillo, F., Jawitz, J. W., Manzoni, S., Basu,
N. B., Chalov, S. R., Cohen, M. J., Creed, I. F., Goldenberg, R., Hylin, A.,
Kalantari, Z., Koussis, A. D., Lyon, S. W., Mazi, K., Mard, J., Persson, K.,
Pietro, J., Prieto, C., Quin, A., Van Meter, K., and Destouni, G.: Wetlands as large-scale nature-based solutions: Status and challenges for research,
engineering and management, Ecol. Eng., 108, 489–497, https://doi.org/10.1016/j.ecoleng.2017.07.012, 2017.
Tolson, B. A. and Shoemaker, C. A.: Dynamically dimensioned search algorithm
for computationally efficient watershed model calibration, Water Resour. Res., 43, 1–6, https://doi.org/10.1029/2005WR004723, 2007.
Turcotte, R., Fortin, L. G., Fortin, V., Fortin, J. P., and Villeneuve, J. P.: Operational analysis of the spatial distribution and the temporal evolution of the snowpack water equivalent in southern Québec, Canada, Hydrol. Res., 38, 211–234, https://doi.org/10.2166/nh.2007.009, 2007.
UNISDR: The human cost of natural disasters: A global perspective, https://doi.org/10.13140/RG.2.2.21032.78085, 2015.
Van Vuuren, D. P., Riahi, K., Calvin, K., Dellink, R., Emmerling, J., Fujimori, S., and O'Neill, B.: The Shared Socio-economic Pathways: Trajectories for human development and global environmental change, Global Environ. Change, 42, 148–152, https://doi.org/10.1016/j.gloenvcha.2016.10.009, 2017.
Walz, Y., Janzen, S., Narvaez, L., Ortiz-Vargas, A., Woelki, J., Doswald, N., and Sebesvari, Z.: Disaster-related losses of ecosystems and their services. Why and how do losses matter for disaster risk reduction?, Int. J. Disast. Risk Reduct., 63, 102425, https://doi.org/10.1016/j.ijdrr.2021.102425, 2021.
Wang, L., Chen, X., Shao, Q., and Li, Y.: Flood indicators and their
clustering features in Wujiang River, South China, Ecol. Eng., 76, 66–74, https://doi.org/10.1016/j.ecoleng.2014.03.018, 2015.
Wang, S., Zhang, L., She, D., Wang, G., and Zhang, Q.: Future projections of
flooding characteristics in the Lancang-Mekong River Basin under climate
change, J. Hydrol., 602, 126778, https://doi.org/10.1016/j.jhydrol.2021.126778, 2021.
Wang, X.: Using Hydrologic Equivalent Wetland Concept Within SWAT to Estimate Streamflow in Watersheds with Numerous Wetlands, T. ASABE, 51, 55–72, https://doi.org/10.13031/2013.24227, 2008.
Ward, P. J., de Ruiter, M. C., Mård, J., Schröter, K., Van Loon, A.,
Veldkamp, T., von Uexkull, N., Wanders, N., Aghakouchak, A., Arnbjerg-Nielsen, K., Capewell, L., Carmen Llasat, M., Day, R., Dewals, B.,
Di Baldassarre, G., Huning, L. S., Kreibich, H., Mazzoleni, M., Savelli, E.,
Teutschbein, C., van den Berg, H., van der Heijden, A., Vincken, J. M. R.,
Waterloo, M. J., and Wens, M.: The need to integrate flood and drought disaster risk reduction strategies, Water Secur., 11, 100070,
https://doi.org/10.1016/j.wasec.2020.100070, 2020.
Wu, Y., Zhang, G., Qi, P., Rousseau, A. N., Hu, B., Song, Z., and Yu, C.: Integration of wetland modules into the watershed hydrological model: assessment of simulation accuracy, Adv. Water Sci., 30, 326–336, https://doi.org/10.14042/j.cnki.32.1309.2019.03.003, 2019.
Wu, Y., Zhang, G., Rousseau, A. N., and Xu, Y. J.: Quantifying streamflow regulation services of wetlands with an emphasis on quickflow and baseflow responses in the Upper Nenjiang River Basin, Northeast China, J. Hydrol., 583, 124565, https://doi.org/10.1016/j.jhydrol.2020.124565, 2020a.
Wu, Y., Zhang, G., Rousseau, A. N., Xu, Y. J., and Foulon, É.: On how wetlands can provide flood resilience in a large river basin: A case study in Nenjiang river Basin, China, J. Hydrol., 587, 125012, https://doi.org/10.1016/j.jhydrol.2020.125012, 2020b.
Wu, Y., Zhang, G., Xu, Y. J., and Rousseau, A. N.: River Damming Reduces Wetland Function in Regulating Flow, J. Water Resour. Pl. Manage.-ASCE, 147, 05021014, https://doi.org/10.1061/(ASCE)WR.1943-5452.0001434, 2021.
Wu, Y., Sun, J., Hu, B., Zhang, G., and Rousseau, A. N.: Wetland-based solutions against extreme flood and severe drought: Efficiency evaluation of risk mitigation, Clim. Risk Manage., 40, 100505, https://doi.org/10.1016/j.crm.2023.100505, 2023.
Xu, X., Liu, J., Zhang, S., Li, R., Yan, C., and Wu, S.: China multi-period land use remote sensing monitoring dataset, RESDC [data set], https://doi.org/10.12078/2018070201, 2018.
Xu, X., Wang, Y. C., Kalcic, M., Muenich, R. L., Yang, Y. E., and Scavia, D.: Evaluating the impact of climate change on fluvial flood risk in a mixed-use watershed, Environ. Model. Softw., 122, 104031, https://doi.org/10.1016/j.envsoft.2017.07.013, 2019.
Yassin, F., Razavi, S., Elshamy, M., Davison, B., Sapriza-Azuri, G., and
Wheater, H.: Representation and improved parameterization of reservoir
operation in hydrological and land-surface models, Hydrol. Earth Syst. Sci.,
23, 3735–3764, https://doi.org/10.5194/hess-23-3735-2019, 2019.
Zedler, J. B. and Kercher, S.: Wetland Resources: Status, Trends, Ecosystem
Services, and Restorability, Annu. Rev. Environ. Resour., 30, 39–74,
https://doi.org/10.1146/annurev.energy.30.050504.144248, 2005.
Zelenhasić, E. and Salvai, A.: A method of streamflow drought analysis, Water Resour. Res., 23, 156–168, https://doi.org/10.1029/WR023i001p00156, 1987.
Zeng, L., Shao, J., and Chu, X.: Improved hydrologic modeling for
depression-dominated areas, J. Hydrol., 590, 125269,
https://doi.org/10.1016/j.jhydrol.2020.125269, 2020.
Zhang, X. and Song, Y.: Optimization of wetland restoration siting and zoning in flood retention areas of river basins in China: A case study in Mengwa,
Huaihe River Basin, J. Hydrol., 519, 80–93, https://doi.org/10.1016/j.jhydrol.2014.06.043, 2014.
Zhao, G., Gao, H., Naz, B. S., Kao, S., and Voisin, N.: Integrating a reservoir regulation scheme into a spatially distributed hydrological model, Adv. Water Resour., 98, 16–31, https://doi.org/10.1016/j.advwatres.2016.10.014, 2016.
Zhao, Y., Dong, N., Li, Z., Zhang, W., Yang, M., and Wang, H.: Future
precipitation, hydrology and hydropower generation in the Yalong River Basin: Projections and analysis, J. Hydrol., 602, 126738,
https://doi.org/10.1016/j.jhydrol.2021.126738, 2021.
Short summary
Reservoirs and wetlands are important regulators of watershed hydrology, which should be considered when projecting floods and droughts. We first coupled wetlands and reservoir operations into a semi-spatially-explicit hydrological model and then applied it in a case study involving a large river basin in northeast China. We found that, overall, the risk of future floods and droughts will increase further even under the combined influence of reservoirs and wetlands.
Reservoirs and wetlands are important regulators of watershed hydrology, which should be...