Articles | Volume 27, issue 14
https://doi.org/10.5194/hess-27-2725-2023
https://doi.org/10.5194/hess-27-2725-2023
Research article
 | 
24 Jul 2023
Research article |  | 24 Jul 2023

Can the combining of wetlands with reservoir operation reduce the risk of future floods and droughts?

Yanfeng Wu, Jingxuan Sun, Boting Hu, Y. Jun Xu, Alain N. Rousseau, and Guangxin Zhang

Related authors

Concentrations and ratios of Sr, Ba and Ca along an estuarine river to the Gulf of Mexico – implication for sea level rise effects on trace metal distribution
S. He and Y. J. Xu
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-18425-2015,https://doi.org/10.5194/bgd-12-18425-2015, 2015
Manuscript not accepted for further review
Short summary
Stochastic spatial disaggregation of extreme precipitation to validate a regional climate model and to evaluate climate change impacts over a small watershed
P. Gagnon and A. N. Rousseau
Hydrol. Earth Syst. Sci., 18, 1695–1704, https://doi.org/10.5194/hess-18-1695-2014,https://doi.org/10.5194/hess-18-1695-2014, 2014

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Knowledge-informed deep learning for hydrological model calibration: an application to Coal Creek Watershed in Colorado
Peishi Jiang, Pin Shuai, Alexander Sun, Maruti K. Mudunuru, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 27, 2621–2644, https://doi.org/10.5194/hess-27-2621-2023,https://doi.org/10.5194/hess-27-2621-2023, 2023
Short summary
When best is the enemy of good – critical evaluation of performance criteria in hydrological models
Guillaume Cinkus, Naomi Mazzilli, Hervé Jourde, Andreas Wunsch, Tanja Liesch, Nataša Ravbar, Zhao Chen, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 27, 2397–2411, https://doi.org/10.5194/hess-27-2397-2023,https://doi.org/10.5194/hess-27-2397-2023, 2023
Short summary
The suitability of differentiable, physics-informed machine learning hydrologic models for ungauged regions and climate change impact assessment
Dapeng Feng, Hylke Beck, Kathryn Lawson, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 27, 2357–2373, https://doi.org/10.5194/hess-27-2357-2023,https://doi.org/10.5194/hess-27-2357-2023, 2023
Short summary
Producing reliable hydrologic scenarios from raw climate model outputs without resorting to meteorological observations
Simon Ricard, Philippe Lucas-Picher, Antoine Thiboult, and François Anctil
Hydrol. Earth Syst. Sci., 27, 2375–2395, https://doi.org/10.5194/hess-27-2375-2023,https://doi.org/10.5194/hess-27-2375-2023, 2023
Short summary
Using normalised difference infrared index patterns to constrain semi-distributed rainfall–runoff models in tropical nested catchments
Nutchanart Sriwongsitanon, Wasana Jandang, James Williams, Thienchart Suwawong, Ekkarin Maekan, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2149–2171, https://doi.org/10.5194/hess-27-2149-2023,https://doi.org/10.5194/hess-27-2149-2023, 2023
Short summary

Cited articles

Åhlén, I., Hambäck, P., Thorslund, J., Frampton, A., Destouni, G.Jarsjö, J.: Wetlandscape size thresholds for ecosystem service delivery: Evidence from the Norrström drainage basin, Sweden, Sci. Total Environ., 704, 135452, https://doi.org/10.1016/j.scitotenv.2019.135452, 2020. 
Åhlén, I., Thorslund, J., Hambäck, P., Destouni, G., and Jarsjö, J.: Wetland position in the landscape: Impact on water storage and flood buffering, Ecohydrology, 15, e2458, https://doi.org/10.1002/eco.2458, 2022. 
Ahmed, F.: Cumulative Hydrologic Impact of Wetland Loss: Numerical Modeling Study of the Rideau River Watershed, Canada, J. Hydrol. Eng., 19, 593–606, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000817, 2014. 
Alves, A., Gersonius, B., Kapelan, Z., Vojinovic, Z., and Sanchez, A.: Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable urban flood risk management, J. Environ. Manage., 239, 244–254, https://doi.org/10.1016/j.jenvman.2019.03.036, 2019. 
Anderson, C. C. and Renaud, F. G.: A review of public acceptance of nature-based solutions: The `why', `when', and `how' of success for disaster risk reduction measures, Ambio, 50, 1552–1573, https://doi.org/10.1007/s13280-021-01502-4, 2021. 
Download
Short summary
Reservoirs and wetlands are important regulators of watershed hydrology, which should be considered when projecting floods and droughts. We first coupled wetlands and reservoir operations into a semi-spatially-explicit hydrological model and then applied it in a case study involving a large river basin in northeast China. We found that, overall, the risk of future floods and droughts will increase further even under the combined influence of reservoirs and wetlands.