Articles | Volume 27, issue 14
https://doi.org/10.5194/hess-27-2621-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-2621-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Knowledge-informed deep learning for hydrological model calibration: an application to Coal Creek Watershed in Colorado
Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA
Pin Shuai
Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA
Department of Civil and Environmental Engineering, Utah Water Research Laboratory, Utah State University, Logan, Utah, USA
Alexander Sun
Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA
Maruti K. Mudunuru
Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA
Xingyuan Chen
Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA
Related authors
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev., 17, 8955–8968, https://doi.org/10.5194/gmd-17-8955-2024, https://doi.org/10.5194/gmd-17-8955-2024, 2024
Short summary
Short summary
The new Lambda-PFLOTRAN workflow incorporates organic matter chemistry into reaction networks to simulate aerobic respiration and biogeochemistry. Lambda-PFLOTRAN is a Python-based workflow in a Jupyter notebook interface that digests raw organic matter chemistry data via Fourier transform ion cyclotron resonance mass spectrometry, develops a representative reaction network, and completes a biogeochemical simulation with the open-source, parallel-reactive-flow, and transport code PFLOTRAN.
Alexander Y. Sun, Peishi Jiang, Zong-Liang Yang, Yangxinyu Xie, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 5163–5184, https://doi.org/10.5194/hess-26-5163-2022, https://doi.org/10.5194/hess-26-5163-2022, 2022
Short summary
Short summary
High-resolution river modeling is of great interest to local governments and stakeholders for flood-hazard mitigation. This work presents a physics-guided, machine learning (ML) framework for combining the strengths of high-resolution process-based river network models with a graph-based ML model capable of modeling spatiotemporal processes. Results show that the ML model can approximate the dynamics of the process model with high fidelity, and data fusion further improves the forecasting skill.
Maggi M. Laan, Stephanie G. Fulton, Vanessa A. Garayburu-Caruso, Morgan E. Barnes, Mikayla A. Borton, Xingyuan Chen, Yuliya Farris, Brieanne Forbes, Amy E. Goldman, Samantha Grieger, Robert O. Hall Jr., Matthew H. Kaufman, Xinming Lin, Erin L. M. Zionce, Sophia A. McKever, Allison Myers-Pigg, Opal Otenburg, Aaron C. Pelly, Huiying Ren, Lupita Renteria, Timothy D. Scheibe, Kyongho Son, Jerry Tagestad, Joshua M. Torgeson, and James C. Stegen
Biogeosciences, 22, 6137–6152, https://doi.org/10.5194/bg-22-6137-2025, https://doi.org/10.5194/bg-22-6137-2025, 2025
Short summary
Short summary
Respiration is a process that combines carbon and oxygen to generate energy for living organisms. Within a river, respiration in sediments and water makes variable contributions to the respiration of the whole river system. Contrary to conventional wisdom, we found that water column respiration did not increase strongly when moving from small streams to big rivers. Instead, it was locally influenced by temperature, nutrients, and suspended solids.
Mingjie Shi, Nate McDowell, Huilin Huang, Faria Zahura, Lingcheng Li, and Xingyuan Chen
Biogeosciences, 22, 2225–2238, https://doi.org/10.5194/bg-22-2225-2025, https://doi.org/10.5194/bg-22-2225-2025, 2025
Short summary
Short summary
Using Moderate Resolution Imaging Spectroradiometer data products, we quantitatively estimate the resistance and resilience of ecosystem functions to wildfires that occurred in the Columbia River basin in 2015. The carbon state exhibits lower resistance and resilience than the ecosystem fluxes. The random forest feature importance analysis indicates that burn severity plays a minor role in the resilience of grassland and a relatively major role in the resilience of forest and savanna.
James Stegen, Amy J. Burgin, Michelle H. Busch, Joshua B. Fisher, Joshua Ladau, Jenna Abrahamson, Lauren Kinsman-Costello, Li Li, Xingyuan Chen, Thibault Datry, Nate McDowell, Corianne Tatariw, Anna Braswell, Jillian M. Deines, Julia A. Guimond, Peter Regier, Kenton Rod, Edward K. P. Bam, Etienne Fluet-Chouinard, Inke Forbrich, Kristin L. Jaeger, Teri O'Meara, Tim Scheibe, Erin Seybold, Jon N. Sweetman, Jianqiu Zheng, Daniel C. Allen, Elizabeth Herndon, Beth A. Middleton, Scott Painter, Kevin Roche, Julianne Scamardo, Ross Vander Vorste, Kristin Boye, Ellen Wohl, Margaret Zimmer, Kelly Hondula, Maggi Laan, Anna Marshall, and Kaizad F. Patel
Biogeosciences, 22, 995–1034, https://doi.org/10.5194/bg-22-995-2025, https://doi.org/10.5194/bg-22-995-2025, 2025
Short summary
Short summary
The loss and gain of surface water (variable inundation) are common processes across Earth. Global change shifts variable inundation dynamics, highlighting a need for unified understanding that transcends individual variably inundated ecosystems (VIEs). We review the literature, highlight challenges, and emphasize opportunities to generate transferable knowledge by viewing VIEs through a common lens. We aim to inspire the emergence of a cross-VIE community based on a proposed continuum approach.
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev., 17, 8955–8968, https://doi.org/10.5194/gmd-17-8955-2024, https://doi.org/10.5194/gmd-17-8955-2024, 2024
Short summary
Short summary
The new Lambda-PFLOTRAN workflow incorporates organic matter chemistry into reaction networks to simulate aerobic respiration and biogeochemistry. Lambda-PFLOTRAN is a Python-based workflow in a Jupyter notebook interface that digests raw organic matter chemistry data via Fourier transform ion cyclotron resonance mass spectrometry, develops a representative reaction network, and completes a biogeochemical simulation with the open-source, parallel-reactive-flow, and transport code PFLOTRAN.
Stephanie G. Fulton, Morgan Barnes, Mikayla A. Borton, Xingyuan Chen, Yuliya Farris, Brieanne Forbes, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Samantha Grieger, Robert Hall Jr., Matthew H. Kaufman, Xinming Lin, Erin McCann, Sophia A. McKever, Allison Myers-Pigg, Opal C. Otenburg, Aaron C. Pelly, Huiying Ren, Lupita Renteria, Timothy D. Scheibe, Kyongho Son, Jerry Tagestad, Joshua M. Torgeson, and James C. Stegen
EGUsphere, https://doi.org/10.5194/egusphere-2023-3038, https://doi.org/10.5194/egusphere-2023-3038, 2024
Preprint archived
Short summary
Short summary
This research examines oxygen use in rivers, which is central to the carbon cycle and water quality. The study focused on an environmentally diverse river basin in the western United States and found that oxygen use in river water was very slow and influenced by factors like water temperature and concentrations of nutrients and carbon in the water. Results suggest that in the study system, most of the oxygen use occurs via mechanisms directly or indirectly associated with riverbed sediments.
Alexander Y. Sun, Peishi Jiang, Zong-Liang Yang, Yangxinyu Xie, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 5163–5184, https://doi.org/10.5194/hess-26-5163-2022, https://doi.org/10.5194/hess-26-5163-2022, 2022
Short summary
Short summary
High-resolution river modeling is of great interest to local governments and stakeholders for flood-hazard mitigation. This work presents a physics-guided, machine learning (ML) framework for combining the strengths of high-resolution process-based river network models with a graph-based ML model capable of modeling spatiotemporal processes. Results show that the ML model can approximate the dynamics of the process model with high fidelity, and data fusion further improves the forecasting skill.
Pin Shuai, Xingyuan Chen, Utkarsh Mital, Ethan T. Coon, and Dipankar Dwivedi
Hydrol. Earth Syst. Sci., 26, 2245–2276, https://doi.org/10.5194/hess-26-2245-2022, https://doi.org/10.5194/hess-26-2245-2022, 2022
Short summary
Short summary
Using an integrated watershed model, we compared simulated watershed hydrologic variables driven by three publicly available gridded meteorological forcings (GMFs) at various spatial and temporal resolutions. Our results demonstrated that spatially distributed variables are sensitive to the spatial resolution of the GMF. The temporal resolution of the GMF impacts the dynamics of watershed responses. The choice of GMF depends on the quantity of interest and its spatial and temporal scales.
Huiying Ren, Erol Cromwell, Ben Kravitz, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 1727–1743, https://doi.org/10.5194/hess-26-1727-2022, https://doi.org/10.5194/hess-26-1727-2022, 2022
Short summary
Short summary
We used a deep learning method called long short-term memory (LSTM) to fill gaps in data collected by hydrologic monitoring networks. LSTM accounted for correlations in space and time and nonlinear trends in data. Compared to a traditional regression-based time-series method, LSTM performed comparably when filling gaps in data with smooth patterns, while it better captured highly dynamic patterns in data. Capturing such dynamics is critical for understanding dynamic complex system behaviors.
Cited articles
Anderson, B., Borgonovo, E., Galeotti, M., and Roson, R.: Uncertainty in
Climate Change Modeling: Can Global Sensitivity Analysis Be of Help?, Risk
Anal., 34, 271–293, https://doi.org/10.1111/risa.12117, 2014. a
Atlas, L., Homma, T., and Marks, R.: An Artificial Neural Network for
Spatio-Temporal Bipolar Patterns: Application to Phoneme Classification, in:
Neural Information Processing Systems, edited by: Anderson, D., vol. 0,
American Institute of Physics,
https://proceedings.neurips.cc/paper/1987/file/98f13708210194c475687be6106a3b84-Paper.pdf (last access: 20 May 2022), 1987. a
Bennett, A. and Nijssen, B.: Deep Learned Process Parameterizations Provide
Better Representations of Turbulent Heat Fluxes in Hydrologic Models, Water
Resour. Res., 57, e2020WR029328, https://doi.org/10.1029/2020WR029328, 2021. a
Clark, M. P., Bierkens, M. F. P., Samaniego, L., Woods, R. A., Uijlenhoet, R., Bennett, K. E., Pauwels, V. R. N., Cai, X., Wood, A. W., and Peters-Lidard, C. D.: The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism, Hydrol. Earth Syst. Sci., 21, 3427–3440, https://doi.org/10.5194/hess-21-3427-2017, 2017. a
Coon, E., Svyatsky, D., Jan, A., Kikinzon, E., Berndt, M., Atchley, A., Harp,
D., Manzini, G., Shelef, E., Lipnikov, K., Garimella, R., Xu, C., Moulton,
D., Karra, S., Painter, S., Jafarov, E., and Molins, S.: Advanced Terrestrial
Simulator, DOECODE [Computer Software], https://doi.org/10.11578/dc.20190911.1, 2019. a, b, c
Coon, E. T. and Shuai, P.: Watershed Workflow: A toolset for parameterizing
data-intensive, integrated hydrologic models, Environ. Model. Softw., 157, 105502, https://doi.org/10.1016/j.envsoft.2022.105502, 2022. a
Dagon, K., Sanderson, B. M., Fisher, R. A., and Lawrence, D. M.: A machine
learning approach to emulation and biophysical parameter estimation with the
Community Land Model, version 5, Adv. Stat. Climatol. Meteorol. Oceanogr., 6, 223–244, https://doi.org/10.5194/ascmo-6-223-2020, 2020. a
Dai, H., Ye, M., Walker, A. P., and Chen, X.: A new process sensitivity index
to identify important system processes under process model and parametric
uncertainty, Water Resour. Res., 53, 3476–3490, https://doi.org/10.1002/2016WR019715, 2017. a
Daw, A., Thomas, R. Q., Carey, C. C., Read, J. S., Appling, A. P., and
Karpatne, A.: Physics-Guided Architecture (PGA) of Neural Networks for
Quantifying Uncertainty in Lake Temperature Modeling, SIAM, 532–540,
https://doi.org/10.1137/1.9781611976236.60, 2020. a
Duan, Q., Sorooshian, S., and Gupta, V.: Effective and efficient global
optimization for conceptual rainfall-runoff models, Water Resources Research,
28, 1015–1031, https://doi.org/10.1029/91WR02985, 1992. a
Evensen, G.: Data assimilation: the ensemble Kalman filter, Springer Science & Business Media, https://doi.org/10.1007/978-3-642-03711-5, 2009. a, b
Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learning, MIT Press,
ISBN-13 978-0262035613, 2016. a
Guse, B., Reusser, D. E., and Fohrer, N.: How to improve the representation of hydrological processes in SWAT for a lowland catchment – temporal analysis of parameter sensitivity and model performance, Hydrol. Process., 28, 2651–2670, https://doi.org/10.1002/hyp.9777, 2014. a
Hall, J. W., Boyce, S. A., Wang, Y., Dawson, R. J., Tarantola, S., and
Saltelli, A.: Sensitivity Analysis for Hydraulic Models, J. Hydraul. Eng., 135, 959–969, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000098, 2009. a
Harper, E. B., Stella, J. C., and Fremier, A. K.: Global sensitivity analysis
for complex ecological models: a case study of riparian cottonwood population
dynamics, Ecol. Appl., 21, 1225–1240, https://doi.org/10.1890/10-0506.1, 2011. a
Huscroft, J., Gleeson, T., Hartmann, J., and Börker, J.: Compiling and Mapping Global Permeability of the Unconsolidated and Consolidated Earth: GLobal HYdrogeology MaPS 2.0 (GLHYMPS 2.0), Geophys. Res. Lett., 45,
1897–1904, https://doi.org/10.1002/2017GL075860, 2018. a
Jia, X., Willard, J., Karpatne, A., Read, J., Zwart, J., Steinbach, M., and
Kumar, V.: Physics Guided RNNs for Modeling Dynamical Systems: A Case Study
in Simulating Lake Temperature Profiles, SIAM, 558–566,
https://doi.org/10.1137/1.9781611975673.63, 2019. a
Jiang, P., Chen, X., Chen, K., Anderson, J., Collins, N., and Gharamti, M. E.: DART-PFLOTRAN: An ensemble-based data assimilation system for estimating subsurface flow and transport model parameters, Environ. Model.
Softw., 142, 105074, https://doi.org/10.1016/j.envsoft.2021.105074, 2021. a
Jiang, P., Son, K., Mudunuru, M. K., and Chen, X.: Using Mutual Information for Global Sensitivity Analysis on Watershed Modeling, Water Resour. Res., 58, e2022WR032932, https://doi.org/10.1029/2022WR032932, 2022. a, b, c, d
Jiang, P., Shuai, P., Sun, A., Mudunuru, M. K., and Chen, X.: Data and scripts associated with “Knowledge-informed deep learning for hydrological model calibration: an application to Coal Creek Watershed in Colorado”, in: Hydrology and Earth System Sciences, Zenodo [code and data set], https://doi.org/10.5281/zenodo.8128090, 2023. a
Jiang, S. and Durlofsky, L. J.: Data-space inversion using a recurrent
autoencoder for time-series parameterization, Comput. Geosci., 25, 411–432, https://doi.org/10.1007/s10596-020-10014-1, 2021. a
Jorge, N. and Stephen, J. W.: Numerical optimization, Spinger,
https://doi.org/10.1007/978-0-387-40065-5, 2006. a
Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., and
Yang, L.: Physics-informed machine learning, Nat. Rev. Phys., 3, 422–440, https://doi.org/10.1038/s42254-021-00314-5, 2021. a, b
Kavetski, D., Qin, Y., and Kuczera, G.: The Fast and the Robust: Trade-Offs
Between Optimization Robustness and Cost in the Calibration of Environmental
Models, Water Resour. Res., 54, 9432–9455, https://doi.org/10.1029/2017WR022051, 2018. a
Khan, M. S., Liaqat, U. W., Baik, J., and Choi, M.: Stand-alone uncertainty
characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using
an extended triple collocation approach, Agr. Forest Meteorol., 252, 256–268, https://doi.org/10.1016/j.agrformet.2018.01.022, 2018. a, b
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube
basin under an ensemble of climate change scenarios, J. Hydrol., 424–425, 264–277, https://doi.org/10.1016/j.jhydrol.2012.01.011, 2012. a
Kollet, S. J. and Maxwell, R. M.: Integrated surface–groundwater flow
modeling: A free-surface overland flow boundary condition in a parallel
groundwater flow model, Adv. Water Resour., 29, 945–958,
https://doi.org/10.1016/j.advwatres.2005.08.006, 2006. a
Köppen, W. and Geiger, R.: Handbuch der klimatologie, in: vol. 1, Gebrüder Borntraeger, Berlin, ISBN 13 978-0265293966, 1930. a
Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart,
A., and Anandkumar, A.: Neural Operator: Learning Maps Between Function
Spaces, ARXIV [preprint], https://doi.org/10.48550/ARXIV.2108.08481, 2021. a
Kurz, S.: Hybrid modeling: towards the next level of scientific computing in
engineering, in: Scientific Computing in Electrical Engineering, Springer, 251–263, https://doi.org/10.1186/s13362-022-00123-0, 2021. a
Likas, A., Vlassis, N., and Verbeek, J. J.: The global k-means clustering
algorithm, Pattern Recog., 36, 451–461, 2003. a
Loritz, R., Gupta, H., Jackisch, C., Westhoff, M., Kleidon, A., Ehret, U., and Zehe, E.: On the dynamic nature of hydrological similarity, Hydrol. Earth Syst. Sci., 22, 3663–3684, https://doi.org/10.5194/hess-22-3663-2018, 2018. a
McGovern, A., Ebert-Uphoff, I., Gagne, D. J., and Bostrom, A.: Why we need to
focus on developing ethical, responsible, and trustworthy artificial
intelligence approaches for environmental science, Environ. Data Sci., 1, e6, https://doi.org/10.1017/eds.2022.5, 2022. a
Mo, S., Zabaras, N., Shi, X., and Wu, J.: Deep Autoregressive Neural Networks
for High-Dimensional Inverse Problems in Groundwater Contaminant Source
Identification, Water Resour. Res., 55, 3856–3881, https://doi.org/10.1029/2018WR024638, 2019. a
Moghaddam, D. D., Rahmati, O., Panahi, M., Tiefenbacher, J., Darabi, H.,
Haghizadeh, A., Haghighi, A. T., Nalivan, O. A., and Tien Bui, D.: The
effect of sample size on different machine learning models for groundwater
potential mapping in mountain bedrock aquifers, Catena, 187, 104421,
https://doi.org/10.1016/j.catena.2019.104421, 2020. a
Mudunuru, M. K., Son, K., Jiang, P., and Chen, X.: SWAT Watershed Model
Calibration using Deep Learning, ARXIV [preprint], https://doi.org/10.48550/ARXIV.2110.03097, 2021. a, b, c, d
Nash, J. and Sutcliffe, J.: River flow forecasting through conceptual models
part I – A discussion of principles, J. Hydrol., 10, 282–290,
https://doi.org/10.1016/0022-1694(70)90255-6, 1970. a
Perrin, C., Oudin, L., Andreassian, V., Rojas-Serna, C., Michel, C., and
Mathevet, T.: Impact of limited streamflow data on the efficiency and the
parameters of rainfall–runoff models, Hydrolog. Sci. J., 52, 131–151, https://doi.org/10.1623/hysj.52.1.131, 2007. a
Pool, S., Viviroli, D., and Seibert, J.: Value of a Limited Number of Discharge Observations for Improving Regionalization: A Large-Sample Study Across the United States, Water Resour. Res., 55, 363–377,
https://doi.org/10.1029/2018WR023855, 2019. a
Priestley, C. H. B. and Taylor, R. J.: On the assessment of surface heat flux
and evaporation using large-scale parameters, Mon. Weather Rev., 100, 81–92, https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2, 1972. a
Qin, Y., Kavetski, D., and Kuczera, G.: A Robust Gauss-Newton Algorithm for the Optimization of Hydrological Models: Benchmarking Against Industry-Standard Algorithms, Water Resour. Res., 54, 9637–9654,
https://doi.org/10.1029/2017WR022489, 2018. a
Razak, S. M., Jiang, A., and Jafarpour, B.: Latent-space inversion (LSI): a
deep learning framework for inverse mapping of subsurface flow data,
Comput. Geosci., 24, 71–99, https://doi.org/10.1007/s10596-021-10104-8, 2021. a, b
Razavi, S. and Gupta, H. V.: What do we mean by sensitivity analysis? The need for comprehensive characterization of “global” sensitivity in Earth and Environmental systems models, Water Resour. Res., 51, 3070–3092,
https://doi.org/10.1002/2014WR016527, 2015. a
Rumelhart, D. E. and McClelland, J. L.: Learning Internal Representations by Error Propagation, in: Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations, MIT Press, 318–362, ISBN 9780262291408, 1986. a
Sadoughi, M. and Hu, C.: Physics-Based Convolutional Neural Network for Fault
Diagnosis of Rolling Element Bearings, IEEE Sensors J., 19, 4181–4192,
https://doi.org/10.1109/JSEN.2019.2898634, 2019. a
Sarrazin, F., Pianosi, F., and Wagener, T.: Global Sensitivity Analysis of
environmental models: Convergence and validation, Environ. Model. Softw., 79, 135–152, https://doi.org/10.1016/j.envsoft.2016.02.005, 2016. a
Senay, G. B., Bohms, S., Singh, R. K., Gowda, P. H., Velpuri, N. M., Alemu, H., and Verdin, J. P.: Operational Evapotranspiration Mapping Using Remote
Sensing and Weather Datasets: A New Parameterization for the SSEB Approach,
J. Am. Water Resour. Assoc., 49, 577–591, https://doi.org/10.1111/jawr.12057, 2013. a
Shangguan, W., Hengl, T., Mendes de Jesus, J., Yuan, H., and Dai, Y.: Mapping
the global depth to bedrock for land surface modeling, J. Adv. Model. Earth Syst., 9, 65–88, https://doi.org/10.1002/2016MS000686, 2017. a
Shuai, P., Chen, X., Mital, U., Coon, E. T., and Dwivedi, D.: The effects of
spatial and temporal resolution of gridded meteorological forcing on watershed hydrological responses, Hydrol. Earth Syst. Sci., 26, 2245–2276, https://doi.org/10.5194/hess-26-2245-2022, 2022. a, b
Singh, V. P. and Frevert, D. K.: Mathematical models of large watershed
hydrology, Water Resources Publication, ISBN 1-887201-34-3, 2002. a
Sobol, I. M.: On the distribution of points in a cube and the approximate
evaluation of integrals, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi
Fiziki, 7, 784–802, 1967. a
Sobol, I. M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simul., 55, 271–280, https://doi.org/10.1016/S0378-4754(00)00270-6, 2001. a
Sorooshian, S., Gupta, V. K., and Fulton, J. L.: Evaluation of Maximum
Likelihood Parameter estimation techniques for conceptual rainfall-runoff
models: Influence of calibration data variability and length on model
credibility, Water Resour. Res., 19, 251–259, https://doi.org/10.1029/WR019i001p00251, 1983. a
Sun, N.-Z. and Sun, A.: Model calibration and parameter estimation: for
environmental and water resource systems, Springer, https://doi.org/10.1007/978-1-4939-2323-6, 2015. a, b
Thornton, P. E., Shrestha, R., Thornton, M., Kao, S.-C., Wei, Y., and Wilson,
B. E.: Gridded daily weather data for North America with comprehensive
uncertainty quantification, Scient. Data, 8, 1–17, https://doi.org/10.1038/s41597-021-00973-0, 2021. a
Tolson, B. A. and Shoemaker, C. A.: Dynamically dimensioned search algorithm
for computationally efficient watershed model calibration, Water Resour. Res., 43, W01413, https://doi.org/10.1029/2005WR004723, 2007. a, b
Tsai, W.-P., Feng, D., Pan, M., Beck, H., Lawson, K., Yang, Y., Liu, J., and
Shen, C.: From calibration to parameter learning: Harnessing the scaling
effects of big data in geoscientific modeling, Nat. Commun., 12, 1–13, https://doi.org/10.1038/s41467-021-26107-z, 2021. a, b
Viviroli, D. and Seibert, J.: Can a regionalized model parameterisation be
improved with a limited number of runoff measurements?, J. Hydrol., 529, 49–61, https://doi.org/10.1016/j.jhydrol.2015.07.009, 2015. a
Wang, K. and Kumar, P.: Virtual laboratory for understanding impact of
heterogeneity on ecohydrologic processes across scales, Environ. Model. Softw., 149, 105283, https://doi.org/10.1016/j.envsoft.2021.105283, 2022. a
Wang, N., Chang, H., and Zhang, D.: Deep-Learning-Based Inverse Modeling
Approaches: A Subsurface Flow Example, J. Geophys. Res.-Solid, 126, e2020JB020549, https://doi.org/10.1029/2020JB020549, 2021. a
Wang, Y.-Q., Wang, Q., Lu, W.-K., Ge, Q., and Yan, X.-F.: Seismic impedance
inversion based on cycle-consistent generative adversarial network, Petrol.
Sci., 19, 147–161, https://doi.org/10.1016/j.petsci.2021.09.038, 2022. a
White, J. T., Hunt, R. J., Fienen, M. N., and Doherty, J. E.: Approaches to highly parameterized inversion: PEST++ Version 5, a software suite for parameter estimation, uncertainty analysis, management optimization and sensitivity analysis, No. 7-C26, US Geological Survey, 2020, https://doi.org/10.3133/tm7C26, 2020. a
Willard, J., Jia, X., Xu, S., Steinbach, M., and Kumar, V.: Integrating
Scientific Knowledge with Machine Learning for Engineering and Environmental
Systems, ARXIV [perprint], https://doi.org/10.48550/ARXIV.2003.04919, 2020. a
Xu, T., Guo, Z., Xia, Y., Ferreira, V. G., Liu, S., Wang, K., Yao, Y., Zhang,
X., and Zhao, C.: Evaluation of twelve evapotranspiration products from
machine learning, remote sensing and land surface models over conterminous
United States, J. Hydrol., 578, 124105, https://doi.org/10.1016/j.jhydrol.2019.124105, 2019. a, b, c, d
Yang, F. and Ma, J.: Deep-learning inversion: A next-generation seismic
velocity model building method, Geophysics, 84, R583–R599,
https://doi.org/10.1190/geo2018-0249.1, 2019. a, b
Yapo, P. O., Gupta, H. V., and Sorooshian, S.: Automatic calibration of
conceptual rainfall-runoff models: sensitivity to calibration data, J. Hydrol., 181, 23–48, https://doi.org/10.1016/0022-1694(95)02918-4, 1996. a
Ying, X.: An Overview of Overfitting and its Solutions, J. Phys.: Conf. Ser., 1168, 022022, https://doi.org/10.1088/1742-6596/1168/2/022022, 2019. a
Short summary
We developed a novel deep learning approach to estimate the parameters of a computationally expensive hydrological model on only a few hundred realizations. Our approach leverages the knowledge obtained by data-driven analysis to guide the design of the deep learning model used for parameter estimation. We demonstrate this approach by calibrating a state-of-the-art hydrological model against streamflow and evapotranspiration observations at a snow-dominated watershed in Colorado.
We developed a novel deep learning approach to estimate the parameters of a computationally...