Articles | Volume 27, issue 12
https://doi.org/10.5194/hess-27-2357-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-2357-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The suitability of differentiable, physics-informed machine learning hydrologic models for ungauged regions and climate change impact assessment
Dapeng Feng
Civil and Environmental Engineering, The Pennsylvania State
University, University Park, PA, USA
Hylke Beck
Physical Science and Engineering, King Abdullah University of
Science and Technology, Thuwal, Saudi Arabia
Kathryn Lawson
Civil and Environmental Engineering, The Pennsylvania State
University, University Park, PA, USA
Civil and Environmental Engineering, The Pennsylvania State
University, University Park, PA, USA
Related authors
No articles found.
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 29, 2361–2375, https://doi.org/10.5194/hess-29-2361-2025, https://doi.org/10.5194/hess-29-2361-2025, 2025
Short summary
Short summary
Hydrologic models are needed to provide simulations of water availability, floods, and droughts. The accuracy of these simulations is often quantified with so-called performance scores. A common thought is that different models are more or less applicable to different landscapes, depending on how the model works. We show that performance scores are not helpful in distinguishing between different models and thus cannot easily be used to select an appropriate model for a specific place.
Yuan Yang, Ming Pan, Dapeng Feng, Mu Xiao, Taylor Dixon, Robert Hartman, Chaopeng Shen, Yalan Song, Agniv Sengupta, Luca Delle Monache, and F. Martin Ralph
EGUsphere, https://doi.org/10.5194/egusphere-2025-1708, https://doi.org/10.5194/egusphere-2025-1708, 2025
Short summary
Short summary
We explore a machine learning-based data integration method that integrates streamflow (Q) and snow water equivalent (SWE) to improve streamflow estimates at various lag times (1–10 days, 1–6 months) and timescales (daily and monthly) over Western U.S. basins. Benefits rank as: integrating Q at the daily scale > Q at the monthly scale > SWE at the monthly scale > SWE at the daily scale. Results highlight the method’s potential for short- and long-term streamflow forecasting in the Western U.S.
Jiangtao Liu, Chaopeng Shen, Fearghal O'Donncha, Yalan Song, Wei Zhi, Hylke E. Beck, Tadd Bindas, Nicholas Kraabel, and Kathryn Lawson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1706, https://doi.org/10.5194/egusphere-2025-1706, 2025
Short summary
Short summary
Using global and regional datasets, we compared attention-based models and Long Short-Term Memory (LSTM) models to predict hydrologic variables. Our results show LSTM models perform better in simpler tasks, whereas attention-based models perform better in complex scenarios, offering insights for improved water resource management.
Mohammad Sina Jahangir, John Quilty, Chaopeng Shen, Andrea Scott, Scott Steinschneider, and Jan Adamowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-846, https://doi.org/10.5194/egusphere-2025-846, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study presents a novel hybrid approach to streamflow prediction, significantly improving the efficiency and accuracy of fine-tuning deep learning models for hydrological prediction. Tested across numerous catchments in the U.S. and Europe, this method accelerates the fine-tuning process and improves prediction accuracy in locations beyond the training data. This innovative approach sets the stage for future hydrological models leveraging transfer learning.
Peijun Li, Yalan Song, Ming Pan, Kathryn Lawson, and Chaopeng Shen
EGUsphere, https://doi.org/10.5194/egusphere-2025-483, https://doi.org/10.5194/egusphere-2025-483, 2025
Short summary
Short summary
This study explores how combining different model types improves streamflow predictions, especially in data-sparse scenarios. By integrating two highly accurate models with distinct mechanisms and leveraging multiple meteorological datasets, we highlight their unique strengths and set new accuracy benchmarks across spatiotemporal conditions. Our findings enhance the understanding of how diverse models and multi-source data can be effectively used to improve hydrological predictions.
Ather Abbas, Yuan Yang, Ming Pan, Yves Tramblay, Chaopeng Shen, Haoyu Ji, Solomon H. Gebrechorkos, Florian Pappenberger, Jong Cheol Pyo, Dapeng Feng, George Huffman, Phu Nguyen, Christian Massari, Luca Brocca, Tan Jackson, and Hylke E. Beck
EGUsphere, https://doi.org/10.5194/egusphere-2024-4194, https://doi.org/10.5194/egusphere-2024-4194, 2025
Short summary
Short summary
Our study evaluated 23 precipitation datasets using a hydrological model at global scale to assess their suitability and accuracy. We found that MSWEP V2.8 excels due to its ability to integrate data from multiple sources, while others, such as IMERG and JRA-3Q, demonstrated strong regional performances. This research assists in selecting the appropriate dataset for applications in water resource management, hazard assessment, agriculture, and environmental monitoring.
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024, https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
Short summary
Accurate hydrologic modeling is vital to characterizing water cycle responses to climate change. For the first time at this scale, we use differentiable physics-informed machine learning hydrologic models to simulate rainfall–runoff processes for 3753 basins around the world and compare them with purely data-driven and traditional modeling approaches. This sets a benchmark for hydrologic estimates around the world and builds foundations for improving global hydrologic simulations.
Yalan Song, Wouter J. M. Knoben, Martyn P. Clark, Dapeng Feng, Kathryn Lawson, Kamlesh Sawadekar, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 3051–3077, https://doi.org/10.5194/hess-28-3051-2024, https://doi.org/10.5194/hess-28-3051-2024, 2024
Short summary
Short summary
Differentiable models (DMs) integrate neural networks and physical equations for accuracy, interpretability, and knowledge discovery. We developed an adjoint-based DM for ordinary differential equations (ODEs) for hydrological modeling, reducing distorted fluxes and physical parameters from errors in models that use explicit and operation-splitting schemes. With a better numerical scheme and improved structure, the adjoint-based DM matches or surpasses long short-term memory (LSTM) performance.
Margarita Choulga, Francesca Moschini, Cinzia Mazzetti, Stefania Grimaldi, Juliana Disperati, Hylke Beck, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 28, 2991–3036, https://doi.org/10.5194/hess-28-2991-2024, https://doi.org/10.5194/hess-28-2991-2024, 2024
Short summary
Short summary
CEMS_SurfaceFields_2022 dataset is a new set of high-resolution maps for land type (e.g. lake, forest), soil properties and population water needs at approximately 2 and 6 km at the Equator, covering Europe and the globe (excluding Antarctica). We describe what and how new high-resolution information can be used to create the dataset. The paper suggests that the dataset can be used as input for river, weather or other models, as well as for statistical descriptions of the region of interest.
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024, https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary
Short summary
We compared the predicted change in catchment outlet discharge to precipitation and temperature change for conceptual and machine learning hydrological models. We found that machine learning models, despite providing excellent fit and prediction capabilities, can be unreliable regarding the prediction of the effect of temperature change for low-elevation catchments. This indicates the need for caution when applying them for the prediction of the effect of climate change.
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Diego G. Miralles, Hylke E. Beck, Jonatan F. Siegmund, Camila Alvarez-Garreton, Koen Verbist, René Garreaud, Juan Pablo Boisier, and Mauricio Galleguillos
Hydrol. Earth Syst. Sci., 28, 1415–1439, https://doi.org/10.5194/hess-28-1415-2024, https://doi.org/10.5194/hess-28-1415-2024, 2024
Short summary
Short summary
Various drought indices exist, but there is no consensus on which index to use to assess streamflow droughts. This study addresses meteorological, soil moisture, and snow indices along with their temporal scales to assess streamflow drought across hydrologically diverse catchments. Using data from 100 Chilean catchments, findings suggest that there is not a single drought index that can be used for all catchments and that snow-influenced areas require drought indices with larger temporal scales.
Doaa Aboelyazeed, Chonggang Xu, Forrest M. Hoffman, Jiangtao Liu, Alex W. Jones, Chris Rackauckas, Kathryn Lawson, and Chaopeng Shen
Biogeosciences, 20, 2671–2692, https://doi.org/10.5194/bg-20-2671-2023, https://doi.org/10.5194/bg-20-2671-2023, 2023
Short summary
Short summary
Photosynthesis is critical for life and has been affected by the changing climate. Many parameters come into play while modeling, but traditional calibration approaches face many issues. Our framework trains coupled neural networks to provide parameters to a photosynthesis model. Using big data, we independently found parameter values that were correlated with those in the literature while giving higher correlation and reduced biases in photosynthesis rates.
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023, https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Short summary
Hybrid forecasting systems combine data-driven methods with physics-based weather and climate models to improve the accuracy of predictions for meteorological and hydroclimatic events such as rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. We review recent developments in hybrid forecasting and outline key challenges and opportunities in the field.
Jiangtao Liu, David Hughes, Farshid Rahmani, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 16, 1553–1567, https://doi.org/10.5194/gmd-16-1553-2023, https://doi.org/10.5194/gmd-16-1553-2023, 2023
Short summary
Short summary
Under-monitored regions like Africa need high-quality soil moisture predictions to help with food production, but it is not clear if soil moisture processes are similar enough around the world for data-driven models to maintain accuracy. We present a deep-learning-based soil moisture model that learns from both in situ data and satellite data and performs better than satellite products at the global scale. These results help us apply our model globally while better understanding its limitations.
Sara Sadri, James S. Famiglietti, Ming Pan, Hylke E. Beck, Aaron Berg, and Eric F. Wood
Hydrol. Earth Syst. Sci., 26, 5373–5390, https://doi.org/10.5194/hess-26-5373-2022, https://doi.org/10.5194/hess-26-5373-2022, 2022
Short summary
Short summary
A farm-scale hydroclimatic machine learning framework to advise farmers was developed. FarmCan uses remote sensing data and farmers' input to forecast crop water deficits. The 8 d composite variables are better than daily ones for forecasting water deficit. Evapotranspiration (ET) and potential ET are more effective than soil moisture at predicting crop water deficit. FarmCan uses a crop-specific schedule to use surface or root zone soil moisture.
Jiawei Hou, Albert I. J. M. van Dijk, Hylke E. Beck, Luigi J. Renzullo, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 26, 3785–3803, https://doi.org/10.5194/hess-26-3785-2022, https://doi.org/10.5194/hess-26-3785-2022, 2022
Short summary
Short summary
We used satellite imagery to measure monthly reservoir water volumes for 6695 reservoirs worldwide for 1984–2015. We investigated how changing precipitation, streamflow, evaporation, and human activity affected reservoir water storage. Almost half of the reservoirs showed significant increasing or decreasing trends over the past three decades. These changes are caused, first and foremost, by changes in precipitation rather than by changes in net evaporation or dam release patterns.
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Pablo A. Mendoza, Ian McNamara, Hylke E. Beck, Joschka Thurner, Alexandra Nauditt, Lars Ribbe, and Nguyen Xuan Thinh
Hydrol. Earth Syst. Sci., 25, 5805–5837, https://doi.org/10.5194/hess-25-5805-2021, https://doi.org/10.5194/hess-25-5805-2021, 2021
Short summary
Short summary
Most rivers worldwide are ungauged, which hinders the sustainable management of water resources. Regionalisation methods use information from gauged rivers to estimate streamflow over ungauged ones. Through hydrological modelling, we assessed how the selection of precipitation products affects the performance of three regionalisation methods. We found that a precipitation product that provides the best results in hydrological modelling does not necessarily perform the best for regionalisation.
Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck
Geosci. Model Dev., 14, 4865–4890, https://doi.org/10.5194/gmd-14-4865-2021, https://doi.org/10.5194/gmd-14-4865-2021, 2021
Short summary
Short summary
We present a cascade of models to compute high-resolution river flooding. This takes meteorological inputs, e.g., rainfall and temperature from observations or climate models, and takes them through a series of modeling steps. This is relevant to evaluating current day and future flood risk and impacts. The model framework uses global data sets, allowing it to be applied anywhere in the world.
Yuting Yang, Tim R. McVicar, Dawen Yang, Yongqiang Zhang, Shilong Piao, Shushi Peng, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 25, 3411–3427, https://doi.org/10.5194/hess-25-3411-2021, https://doi.org/10.5194/hess-25-3411-2021, 2021
Short summary
Short summary
This study developed an analytical ecohydrological model that considers three aspects of vegetation response to eCO2 (i.e., stomatal response, LAI response, and rooting depth response) to detect the impact of eCO2 on continental runoff over the past 3 decades globally. Our findings suggest a minor role of eCO2 on the global runoff changes, yet highlight the negative runoff–eCO2 response in semiarid and arid regions which may further threaten the limited water resource there.
Noemi Vergopolan, Sitian Xiong, Lyndon Estes, Niko Wanders, Nathaniel W. Chaney, Eric F. Wood, Megan Konar, Kelly Caylor, Hylke E. Beck, Nicolas Gatti, Tom Evans, and Justin Sheffield
Hydrol. Earth Syst. Sci., 25, 1827–1847, https://doi.org/10.5194/hess-25-1827-2021, https://doi.org/10.5194/hess-25-1827-2021, 2021
Short summary
Short summary
Drought monitoring and yield prediction often rely on coarse-scale hydroclimate data or (infrequent) vegetation indexes that do not always indicate the conditions farmers face in the field. Consequently, decision-making based on these indices can often be disconnected from the farmer reality. Our study focuses on smallholder farming systems in data-sparse developing countries, and it shows how field-scale soil moisture can leverage and improve crop yield prediction and drought impact assessment.
Hylke E. Beck, Ming Pan, Diego G. Miralles, Rolf H. Reichle, Wouter A. Dorigo, Sebastian Hahn, Justin Sheffield, Lanka Karthikeyan, Gianpaolo Balsamo, Robert M. Parinussa, Albert I. J. M. van Dijk, Jinyang Du, John S. Kimball, Noemi Vergopolan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021, https://doi.org/10.5194/hess-25-17-2021, 2021
Short summary
Short summary
We evaluated the largest and most diverse set of surface soil moisture products ever evaluated in a single study. We found pronounced differences in performance among individual products and product groups. Our results provide guidance to choose the most suitable product for a particular application.
Cited articles
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: Catchment attributes for large-sample studies, UCAR/NCAR[data set], https://doi.org/10.5065/D6G73C3Q, 2017.
Aghakouchak, A. and Habib, E.: Application of a Conceptual Hydrologic Model
in Teaching Hydrologic Processes,
Int. J. Eng. Educ., 26, 963–973, 2010.
Baker, N., Alexander, F., Bremer, T., Hagberg, A., Kevrekidis, Y., Najm, H.,
Parashar, M., Patra, A., Sethian, J., Wild, S., Willcox, K., and Lee, S.:
Workshop report on basic research needs for scientific machine learning:
Core technologies for artificial intelligence, USDOE Office of Science (SC),
Washington, D.C., USA, https://doi.org/10.2172/1478744, 2019.
Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M.:
Automatic differentiation in machine learning: A survey,
J. Mach. Learn. Res., 18, 1–43, 2018.
Beck, H. E., van Dijk, A. I. J. M., de Roo, A., Miralles, D. G., McVicar, T.
R., Schellekens, J., and Bruijnzeel, L. A.: Global-scale regionalization of
hydrologic model parameters, Water Resour. Res., 52, 3599–3622,
https://doi.org/10.1002/2015WR018247, 2016.
Beck, H. E., Wood, E. F., McVicar, T. R., Zambrano-Bigiarini, M.,
Alvarez-Garreton, C., Baez-Villanueva, O. M., Sheffield, J., and Karger, D.
N.: Bias correction of global high-resolution precipitation climatologies
using streamflow observations from 9372 catchments, J. Climate, 33,
1299–1315, https://doi.org/10.1175/JCLI-D-19-0332.1, 2020a.
Beck, H. E., Pan, M., Lin, P., Seibert, J., Dijk, A. I. J. M. van, and Wood,
E. F.: Global fully distributed parameter regionalization based on observed
streamflow from 4,229 headwater catchments,
J. Geophys. Res.-Atmos., 125, e2019JD031485, https://doi.org/10.1029/2019JD031485,
2020b.
Bergström, S.: Development and application of a conceptual runoff model
for Scandinavian catchments, PhD Thesis, Swedish Meteorological and
Hydrological Institute (SMHI), Norköping, Sweden, http://urn.kb.se/resolve?urn=urn:nbn:se:smhi:diva-5738 (last access: 8 June 2022), 1976.
Bergström, S.: The HBV model – its structure and applications, Swedish
Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden, https://www.smhi.se/en/publications/the-hbv-model-its-structure-and-applications-1.83591 (last access: 8 June 2022),
1992.
Beven, K.: A manifesto for the equifinality thesis, J. Hydrol.,
320, 18–36, https://doi.org/10/ccx2ks, 2006.
Boretti, A. and Rosa, L.: Reassessing the projections of the World Water
Development Report, npj Clean Water, 2, 1–6,
https://doi.org/10.1038/s41545-019-0039-9, 2019.
Christianson, D.: Introducing the AmeriFlux FLUXNET data product, Lawrence Berkeley National Laboratory (LBNL),
https://ameriflux.lbl.gov/introducing-the-ameriflux-fluxnet-data-product/
(last access: 8 June 2022), 2022.
Döll, P., Fiedler, K., and Zhang, J.: Global-scale analysis of river flow alterations due to water withdrawals and reservoirs, Hydrol. Earth Syst. Sci., 13, 2413–2432, https://doi.org/10.5194/hess-13-2413-2009, 2009.
Duethmann, D., Peters, J., Blume, T., Vorogushyn, S., and Güntner, A.:
The value of satellite-derived snow cover images for calibrating a
hydrological model in snow-dominated catchments in Central Asia, Water Resour. Res., 50, 2002–2021, https://doi.org/10.1002/2013WR014382,
2014.
Eicker, A., Schumacher, M., Kusche, J., Döll, P., and Schmied, H. M.:
Calibration/data assimilation approach for integrating GRACE data into the
WaterGAP Global Hydrology Model (WGHM) using an ensemble Kalman filter:
First results, Surv. Geophys., 35, 1285–1309,
https://doi.org/10.1007/s10712-014-9309-8, 2014.
European Space Agency (ESA): About SMOS – Soil Moisture and Ocean Salinity mission,
https://earth.esa.int/eogateway/missions/smos, last access: 8 June 2022.
Fang, K., Shen, C., Kifer, D., and Yang, X.: Prolongation of SMAP to
spatiotemporally seamless coverage of continental U.S. using a deep learning
neural network, Geophys. Res. Lett., 44, 11030–11039,
https://doi.org/10.1002/2017gl075619, 2017.
Fang, K., Pan, M., and Shen, C.: The value of SMAP for long-term soil
moisture estimation with the help of deep learning,
IEEE T. Geosci. Remote, 57, 2221–2233, https://doi.org/10/gghp3v, 2019.
Fang, K., Shen, C., and Feng, D.: mhpi/hydroDL: MHPI-hydroDL (v2.0), Zenodo [code], https://doi.org/10.5281/zenodo.5015120, 2021.
Fang, K., Kifer, D., Lawson, K., Feng, D., and Shen, C.: The data synergy
effects of time-series deep learning models in hydrology, Water Resour. Res., 58, e2021WR029583, https://doi.org/10.1029/2021WR029583, 2022.
Feng, D., Fang, K., and Shen, C.: Enhancing streamflow forecast and
extracting insights using long-short term memory networks with data
integration at continental scales, Water Resour. Res., 56,
e2019WR026793, https://doi.org/10.1029/2019WR026793, 2020.
Feng, D., Lawson, K., and Shen, C.: Mitigating prediction error of deep
learning streamflow models in large data-sparse regions with ensemble
modeling and soft data, Geophys. Res. Lett., 48, e2021GL092999,
https://doi.org/10.1029/2021GL092999, 2021.
Feng, D., Liu, J., Lawson, K., and Shen, C.: Differentiable, learnable,
regionalized process-based models with multiphysical outputs can approach
state-of-the-art hydrologic prediction accuracy, Water Resour. Res.,
58, e2022WR032404, https://doi.org/10.1029/2022WR032404, 2022a.
Feng, D., Shen, C., Liu, J., Lawson, K., and Beck, H.: Differentiable hydrologic models: dPL + evolved HBV, Zenodo [code], https://doi.org/10.5281/zenodo.7091334, 2022b.
Frame, J. M., Kratzert, F., Raney II, A., Rahman, M., Salas, F. R., and
Nearing, G. S.: Post-Processing the National Water Model with Long
Short-Term Memory Networks for Streamflow Predictions and Model Diagnostics,
J. Am. Water Resour. As., 57, 885–905,
https://doi.org/10.1111/1752-1688.12964, 2021.
Frame, J. M., Kratzert, F., Gupta, H. V., Ullrich, P., and Nearing, G. S.: On strictly enforced mass conservation constraints for modelling the Rainfall-Runoff process, Hydrol. Process., 37, e14847, https://doi.org/10.1002/hyp.14847, 2023.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition
of the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Hannah, D. M., Demuth, S., van Lanen, H. A. J., Looser, U., Prudhomme, C.,
Rees, G., Stahl, K., and Tallaksen, L. M.: Large-scale river flow archives:
importance, current status and future needs, Hydrol. Process., 25,
1191–1200, https://doi.org/10.1002/hyp.7794, 2011.
Hattermann, F. F., Krysanova, V., Gosling, S. N., Dankers, R., Daggupati,
P., Donnelly, C., Flörke, M., Huang, S., Motovilov, Y., Buda, S., Yang,
T., Müller, C., Leng, G., Tang, Q., Portmann, F. T., Hagemann, S.,
Gerten, D., Wada, Y., Masaki, Y., Alemayehu, T., Satoh, Y., and Samaniego,
L.: Cross-scale intercomparison of climate change impacts simulated by
regional and global hydrological models in eleven large river basins,
Climatic Change, 141, 561–576, https://doi.org/10.1007/s10584-016-1829-4,
2017.
Hrachowitz, M., Savenije, H. H. G., Blöschl, G., McDonnell, J. J.,
Sivapalan, M., Pomeroy, J. W., Arheimer, B., Blume, T., Clark, M. P., Ehret,
U., Fenicia, F., Freer, J. E., Gelfan, A., Gupta, H. V., Hughes, D. A., Hut,
R. W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P. A., Uhlenbrook, S.,
Wagener, T., Winsemius, H. C., Woods, R. A., Zehe, E., and Cudennec, C.: A
decade of Predictions in Ungauged Basins (PUB) – a review,
Hydrolog. Sci. J., 58, 1198–1255, https://doi.org/10/gfsq5q, 2013.
Innes, M., Edelman, A., Fischer, K., Rackauckas, C., Saba, E., Shah, V. B.,
and Tebbutt, W.: A Differentiable Programming System to Bridge Machine
Learning and Scientific Computing, arXiv [preprint], https://doi.org/10.48550/arXiv.1907.07587, 18 July 2019.
Jiang, S., Zheng, Y., and Solomatine, D.: Improving AI system awareness of
geoscience knowledge: Symbiotic integration of physical approaches and deep
learning, Geophys. Res. Lett., 47, e2020GL088229,
https://doi.org/10.1029/2020GL088229, 2020.
Kim, Y. W., Kim, T., Shin, J., Go, B., Lee, M., Lee, J., Koo, J., Cho, K.
H., and Cha, Y.: Forecasting abrupt depletion of dissolved oxygen in urban
streams using discontinuously measured hourly time-series data, Water Resour. Res., 57, e2020WR029188, https://doi.org/10.1029/2020WR029188,
2021.
Kratzert, F.: CAMELS Extended Maurer Forcing Data, HydroShare [data set],
https://doi.org/10.4211/hs.17c896843cf940339c3c3496d0c1c077, 2019a.
Kratzert, F.: CAMELS benchmark models, HydroShare [data set], https://doi.org/10.4211/hs.474ecc37e7db45baa425cdb4fc1b61e1, 2019b.
Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., and
Nearing, G. S.: Toward improved predictions in ungauged basins: Exploiting
the power of machine learning, Water Resour. Res., 55, 11344–11354,
https://doi.org/10/gg4ck8, 2019a.
Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G.: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets, Hydrol. Earth Syst. Sci., 23, 5089–5110, https://doi.org/10.5194/hess-23-5089-2019, 2019b.
Kratzert, F., Klotz, D., Hochreiter, S., and Nearing, G. S.: A note on leveraging synergy in multiple meteorological data sets with deep learning for rainfall–runoff modeling, Hydrol. Earth Syst. Sci., 25, 2685–2703, https://doi.org/10.5194/hess-25-2685-2021, 2021.
Landerer, F. W., Flechtner, F. M., Save, H., Webb, F. H., Bandikova, T.,
Bertiger, W. I., Bettadpur, S. V., Byun, S. H., Dahle, C., Dobslaw, H.,
Fahnestock, E., Harvey, N., Kang, Z., Kruizinga, G. L. H., Loomis, B. D.,
McCullough, C., Murböck, M., Nagel, P., Paik, M., Pie, N., Poole, S.,
Strekalov, D., Tamisiea, M. E., Wang, F., Watkins, M. M., Wen, H.-Y., Wiese,
D. N., and Yuan, D.-N.: Extending the global mass change data record: GRACE
follow-on instrument and science data performance, Geophys. Res. Lett., 47, e2020GL088306, https://doi.org/10.1029/2020GL088306, 2020.
Le, M.-H., Kim, H., Adam, S., Do, H. X., Beling, P., and Lakshmi, V.: Streamflow Estimation in Ungauged Regions using Machine Learning: Quantifying Uncertainties in Geographic Extrapolation, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2022-320, in review, 2022.
Liu, J., Rahmani, F., Lawson, K., and Shen, C.: A multiscale deep learning
model for soil moisture integrating satellite and in situ data, Geophys. Res. Lett., 49, e2021GL096847, https://doi.org/10.1029/2021GL096847,
2022.
Ma, K., Feng, D., Lawson, K., Tsai, W.-P., Liang, C., Huang, X., Sharma, A.,
and Shen, C.: Transferring hydrologic data across continents – Leveraging
data-rich regions to improve hydrologic prediction in data-sparse regions,
Water Resour. Res., 57, e2020WR028600,
https://doi.org/10.1029/2020wr028600, 2021.
Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., and Nijssen,
B.: A long-term hydrologically based dataset of land surface fluxes and
states for the conterminous United States, J. Climate, 15,
3237–3251, https://doi.org/10/dk5v56, 2002.
Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global
terrestrial evapotranspiration algorithm, Remote Sens. Environ.,
115, 1781–1800, https://doi.org/10.1016/j.rse.2011.02.019, 2011.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10,
282–290, https://doi.org/10/fbg9tm, 1970.
Newman, A. J., Sampson, K., Clark, M. P., Bock, A., Viger, R. J., and Blodgett, D.: A large-sample watershed-scale hydrometeorological dataset for the contiguous USA, UCAR/NCAR [data set], https://doi.org/10.5065/D6MW2F4D, 2014.
Newman, A. J., Mizukami, N., Clark, M. P., Wood, A. W., Nijssen, B.,
Nearing, G., Newman, A. J., Mizukami, N., Clark, M. P., Wood, A. W.,
Nijssen, B., and Nearing, G.: Benchmarking of a Physically Based Hydrologic
Model, J. Hydrometeorol., 18, 2215–2225,
https://doi.org/10/gbwr9s, 2017.
National Snow and Ice Data Center (NSIDC): SMAP Overview – Soil Moisture Active Passive, https://nsidc.org/data/smap, last access: 8 June 2022.
O, S. and Orth, R.: Global soil moisture data derived through machine
learning trained with in-situ measurements, Sci. Data, 8, 170,
https://doi.org/10.1038/s41597-021-00964-1, 2021.
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer, A.: Automatic differentiation in PyTorch, in: 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 9 December 2017, https://openreview.net/forum?id=BJJsrmfCZ (last access: 29 June 2023), 2017.
Qiu, R., Wang, Y., Rhoads, B., Wang, D., Qiu, W., Tao, Y., and Wu, J.: River
water temperature forecasting using a deep learning method, J. Hydrol., 595, 126016, https://doi.org/10.1016/j.jhydrol.2021.126016, 2021.
Rahmani, F., Shen, C., Oliver, S., Lawson, K., and Appling, A.: Deep
learning approaches for improving prediction of daily stream temperature in
data-scarce, unmonitored, and dammed basins, Hydrol. Process., 35,
e14400, https://doi.org/10.1002/hyp.14400, 2021a.
Rahmani, F., Lawson, K., Ouyang, W., Appling, A., Oliver, S., and Shen, C.:
Exploring the exceptional performance of a deep learning stream temperature
model and the value of streamflow data, Environ. Res. Lett., 16, 024025
https://doi.org/10.1088/1748-9326/abd501, 2021b.
Rakovec, O., Mizukami, N., Kumar, R., Newman, A. J., Thober, S., Wood, A.
W., Clark, M. P., and Samaniego, L.: Diagnostic evaluation of large-domain
hydrologic models calibrated across the contiguous United States, J. Geophys. Res.-Atmos., 124, 13991–14007,
https://doi.org/10.1029/2019JD030767, 2019.
Ray, K., Pandey, P., Pandey, C., Dimri, A. P., and Kishore, K.: On the
recent floods in India, Curr. Sci., 117, 204,
https://doi.org/10.18520/cs/v117/i2/204-218, 2019.
Running, S., Mu, Q., and Zhao, M.: MOD16A2 MODIS/Terra Net
Evapotranspiration 8-Day L4 Global 500 m SIN Grid V006, NASA EOSDIS Land Processes DAAC [data set],
https://doi.org/10.5067/MODIS/MOD16A2.006, 2017.
Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter
regionalization of a grid-based hydrologic model at the mesoscale, Water Resour. Res., 46, W05523, https://doi.org/10.1029/2008WR007327, 2010.
Seibert, J. and Vis, M. J. P.: Teaching hydrological modeling with a user-friendly catchment-runoff-model software package, Hydrol. Earth Syst. Sci., 16, 3315–3325, https://doi.org/10.5194/hess-16-3315-2012, 2012.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau,
J. Am. Stat. Assoc., 63, 1379–1389,
https://doi.org/10.2307/2285891, 1968.
Shen, C.: A transdisciplinary review of deep learning research and its
relevance for water resources scientists, Water Resour. Res., 54,
8558–8593, https://doi.org/10.1029/2018wr022643, 2018.
Shen, C. and Lawson, K.: Applications of Deep Learning in Hydrology, in:
Deep Learning for the Earth Sciences, John Wiley & Sons, Ltd, 283–297,
https://doi.org/10.1002/9781119646181.ch19, 2021.
Shen, C., Laloy, E., Elshorbagy, A., Albert, A., Bales, J., Chang, F.-J., Ganguly, S., Hsu, K.-L., Kifer, D., Fang, Z., Fang, K., Li, D., Li, X., and Tsai, W.-P.: HESS Opinions: Incubating deep-learning-powered hydrologic science advances as a community, Hydrol. Earth Syst. Sci., 22, 5639–5656, https://doi.org/10.5194/hess-22-5639-2018, 2018.
Sivapalan, M.: Prediction in ungauged basins: a grand challenge for
theoretical hydrology, Hydrol. Process., 17, 3163–3170,
https://doi.org/10/cdc664, 2003.
Suen, J.-P. and Eheart, J. W.: Reservoir management to balance ecosystem and
human needs: Incorporating the paradigm of the ecological flow regime, Water Resour. Res., 42, https://doi.org/10.1029/2005WR004314, 2006.
Thornton, M. M., Shrestha, R., Wei, Y., Thornton, P. E., Kao, S.-C., and
Wilson, B. E.: Daymet: Daily Surface Weather Data on a 1-km Grid for North
America, Version 4, ORNL DAAC, https://doi.org/10.3334/ORNLDAAC/1840, 2020.
Tsai, W.-P., Feng, D., Pan, M., Beck, H., Lawson, K., Yang, Y., Liu, J., and
Shen, C.: From calibration to parameter learning: Harnessing the scaling
effects of big data in geoscientific modeling, Nat. Commun., 12, 5988,
https://doi.org/10.1038/s41467-021-26107-z, 2021.
Velpuri, N. M., Senay, G. B., Singh, R. K., Bohms, S., and Verdin, J. P.: A
comprehensive evaluation of two MODIS evapotranspiration products over the
conterminous United States: Using point and gridded FLUXNET and water
balance ET, Remote Sens. Environ., 139, 35–49,
https://doi.org/10.1016/j.rse.2013.07.013, 2013.
Wanders, N., Bierkens, M. F. P., de Jong, S. M., de Roo, A., and
Karssenberg, D.: The benefits of using remotely sensed soil moisture in
parameter identification of large-scale hydrological models, Water Resour. Res., 50, 6874–6891, https://doi.org/10/f6j4b2, 2014.
Yilmaz, K. K., Gupta, H. V., and Wagener, T.: A process-based diagnostic
approach to model evaluation: Application to the NWS distributed hydrologic
model, Water Resour. Res., 44, W09417, https://doi.org/10.1029/2007WR006716, 2008.
Zaherpour, J., Gosling, S. N., Mount, N., Schmied, H. M., Veldkamp, T. I.
E., Dankers, R., Eisner, S., Gerten, D., Gudmundsson, L., Haddeland, I.,
Hanasaki, N., Kim, H., Leng, G., Liu, J., Masaki, Y., Oki, T., Pokhrel, Y.,
Satoh, Y., Schewe, J., and Wada, Y.: Worldwide evaluation of mean and
extreme runoff from six global-scale hydrological models that account for
human impacts, Environ. Res. Lett., 13, 065015,
https://doi.org/10.1088/1748-9326/aac547, 2018.
Zhi, W., Feng, D., Tsai, W.-P., Sterle, G., Harpold, A., Shen, C., and Li,
L.: From hydrometeorology to river water quality: Can a deep learning model
predict dissolved oxygen at the continental scale?, Environ. Sci. Technol.,
55, 2357–2368, https://doi.org/10.1021/acs.est.0c06783, 2021.
Short summary
Powerful hybrid models (called δ or delta models) embrace the fundamental learning capability of AI and can also explain the physical processes. Here we test their performance when applied to regions not in the training data. δ models rivaled the accuracy of state-of-the-art AI models under the data-dense scenario and even surpassed them for the data-sparse one. They generalize well due to the physical structure included. δ models could be ideal candidates for global hydrologic assessment.
Powerful hybrid models (called δ or delta models) embrace the fundamental learning capability...