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Abstract. As a genre of physics-informed machine learning,
differentiable process-based hydrologic models (abbreviated
as δ or delta models) with regionalized deep-network-based
parameterization pipelines were recently shown to provide
daily streamflow prediction performance closely approach-
ing that of state-of-the-art long short-term memory (LSTM)
deep networks. Meanwhile, δ models provide a full suite of
diagnostic physical variables and guaranteed mass conserva-
tion. Here, we ran experiments to test (1) their ability to ex-
trapolate to regions far from streamflow gauges and (2) their
ability to make credible predictions of long-term (decadal-
scale) change trends. We evaluated the models based on daily
hydrograph metrics (Nash–Sutcliffe model efficiency coef-
ficient, etc.) and predicted decadal streamflow trends. For
prediction in ungauged basins (PUB; randomly sampled un-
gauged basins representing spatial interpolation), δ models
either approached or surpassed the performance of LSTM
in daily hydrograph metrics, depending on the meteorolog-
ical forcing data used. They presented a comparable trend
performance to LSTM for annual mean flow and high flow
but worse trends for low flow. For prediction in ungauged re-
gions (PUR; regional holdout test representing spatial extrap-
olation in a highly data-sparse scenario), δ models surpassed
LSTM in daily hydrograph metrics, and their advantages in
mean and high flow trends became prominent. In addition,
an untrained variable, evapotranspiration, retained good sea-
sonality even for extrapolated cases. The δ models’ deep-
network-based parameterization pipeline produced param-
eter fields that maintain remarkably stable spatial patterns
even in highly data-scarce scenarios, which explains their ro-

bustness. Combined with their interpretability and ability to
assimilate multi-source observations, the δ models are strong
candidates for regional and global-scale hydrologic simula-
tions and climate change impact assessment.

1 Introduction

Hydrologic models are essential tools to quantify the spa-
tiotemporal changes in water resources and hazards in both
data-dense and data-sparse regions (Hrachowitz et al., 2013).
The parameters of hydrologic models are typically calibrated
or regionalized for large-scale applications (Beck et al.,
2016) which require streamflow data. For global-scale appli-
cations, however, models are often uncalibrated (Hattermann
et al., 2017; Zaherpour et al., 2018), leading to large predic-
tive uncertainty. Many regions across the world, e.g., parts
of South America, Africa, and Asia, suffer from a paucity
of publicly available streamflow data (Hannah et al., 2011),
which precludes calibration. Yet the water resources in many
of these regions face severe pressure due to, among oth-
ers, population expansion, environmental degradation, cli-
mate change (Boretti and Rosa, 2019), and extreme-weather-
related disasters, e.g., floods (Ray et al., 2019), heat waves,
and droughts. Therefore, it is important to better quantify the
impacts of these pressures in these regions (Sivapalan, 2003)
and estimate changes in the future water cycle.

There has been a surge of interest in deep learning (DL)
models such as long short-term memory (LSTM) networks
in hydrology due to their high predictive performance, yet
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DL is not without limitations. LSTMs have made tremen-
dous progress in the accuracy of predicting a wide variety of
variables, including soil moisture (Fang et al., 2017; Liu et
al., 2022; O and Orth, 2021), streamflow (Feng et al., 2020,
2021; Kratzert et al., 2019a), stream temperature (Qiu et al.,
2021; Rahmani et al., 2021b), and dissolved oxygen (Kim
et al., 2021; Zhi et al., 2021), among others (Shen, 2018;
Shen and Lawson, 2021). DL is able to harness the synergy
between data points and thus thrives in a big data environ-
ment (Fang et al., 2022; Kratzert et al., 2019a; Tsai et al.,
2021). However, DL models are still difficult to interpret and
do not predict variables without first having extensive obser-
vations to enable model training. In addition, it is challeng-
ing to answer specific scientific questions using DL models,
e.g., what is the relationship between variable soil moisture
and runoff?, as the LSTM’s internal relationships may not be
straightforwardly interpretable by humans.

Large-scale predictions for ungauged basins (PUB;
Fig. 1a) or ungauged regions (PUR; Fig. 1b) challenge the
ability of a model and its parameterization schemes to gener-
alize in space. For both kinds of tests, regionalized LSTM
models hold the performance record on daily hydrograph
metrics (Feng et al., 2021; Kratzert et al., 2019a). While no
clear definition has been universally given for PUB, these
PUB tests are typically conducted by randomly holding out
basins for testing. As such, PUB can be considered spatial
“interpolation”, as there will always be training gauges sur-
rounding the test basins (Fig. 1a). While the LSTM’s perfor-
mance declines from temporal to PUB tests, it obtains bet-
ter results than established process-based models calibrated
on the test basins (Feng et al., 2021; Kratzert et al., 2019a).
However, it is uncertain if the process-based models’ poorer
performance is simply due to structural deficiencies and if
they would experience similar declines for PUB. Stepping up
in difficulty, prediction for ungauged regions (PUR) refers to
tests in which a large region’s basins are entirely held out
of the training dataset and used only for testing (Fig. 1b).
As such, the PUR scenario better represents the case of spa-
tial “extrapolation” encountered in real global hydrologic as-
sessment (Feng et al., 2021). For PUR, the LSTM’s perfor-
mance further declines significantly (Feng et al., 2021). No
systematic PUR tests have been done for process-based mod-
els, however, perhaps because there has been a serious under-
appreciation of the difference between PUB and PUR and the
risk of model failures due to large data gaps.

Recently, a new class of models adopting differentiable
programming (a computing paradigm in which the gradient
of each operation is tracked; Baydin et al., 2018) has shown
great promise (Innes et al., 2019; Tsai et al., 2021). Differ-
entiable modeling is a genre of physics-informed machine
learning (or scientific machine learning; Baker et al., 2019).
Regardless of the computational platforms chosen for them,
differentiable models mix physical process descriptions with
neural networks (NNs); these serve as learnable elements for
parts of the model pipeline. The paradigm supports back-

propagation and neural-network-style end-to-end training on
big data, so no ground-truth data are required for the di-
rect outputs of the neural network. The first demonstration
in geosciences was a method we called differentiable param-
eter learning (dPL), which uses NNs to provide parameteri-
zation to process-based models (or their differentiable surro-
gate models; Tsai et al., 2021). Not only did the work propose
a novel large-scale parameterization paradigm, but it also fur-
ther uncovered the benefits of big data; we gain stronger op-
timization results, acquire parameters which are more spa-
tially generalizable and physically coherent (in terms of un-
calibrated variables), and save orders of magnitude in com-
putational power. Only a framework that can assimilate big
data, such as a differentiable one, could fully leverage these
benefits. However, dPL is still limited by the presence of im-
perfect structures in most existing process-based models, and
some performance degradation is further introduced when a
surrogate model is used. As a result, with a LSTM-based sur-
rogate for the Variable Infiltration Capacity (VIC) hydrologic
model, dPL’s performance is still lower than that of LSTM
(Tsai et al., 2021). One plausible avenue to boosting perfor-
mance is to append neural networks as a post-processor to the
physics-based model (Frame et al., 2021; Jiang et al., 2020),
but this is not the path we explore here.

Strikingly, differentiable models that evolved the internal
structures of the process-based models with insights from
data can be elevated to approach the performance level of
state-of-the-art LSTM models without post-processors (Feng
et al., 2022a). We obtained a set of differentiable, learn-
able process-based models, which we call δ models, by up-
dating model structures based on the conceptual hydrologic
model HBV. Driven by insights provided by data, we made
changes to represent heterogeneity, effects of vegetation and
deep water storage, and optionally replaced modules with
neural networks. For the same benchmark on the Catch-
ment Attributes and Meteorology for Large-sample Stud-
ies (CAMELS) dataset (Addor et al., 2017; Newman et
al., 2014), we obtained a median Nash–Sutcliffe efficiency
(NSE) of 0.71 for the North American Land Data Assimi-
lation System (NLDAS) forcing data, which is already very
similar to LSTM (0.72). Furthermore, we can now output di-
agnostic physical fluxes and states such as baseflow, evapo-
transpiration, water storage, and soil moisture. Differentiable
models can thus trade a rather small level of performance to
gain a full suite of physical variables, process clarity, and the
possibility of learning science from data.

There are two perspectives with which we can view δ mod-
els, namely that they can be regarded as deep networks whose
learnable functional space is restricted to the subspace per-
mitted by the process-based backbone or they can be viewed
as process-based models with learnable and adaptable com-
ponents provided by NNs. The flow of information from in-
puts to outputs is regulated. For example, in the setup in Feng
et al. (2022a), the parameterization network can only influ-
ence the groundwater flow process via influencing the pa-
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Figure 1. A comparison of spatial generalization tests. (a) Prediction in ungauged basins (PUB). (b) Prediction in ungauged regions (PUR)
tests. The black dots are the training basins, while the red stars are the test basins for one fold. In this study, we conducted cross-validation
to obtain the spatial out-of-sample predictions for basins in the CAMELS dataset.

rameters (but not the flux calculation itself). It does not al-
low information mixing at all calculation steps (as opposed
to LSTM, in which most steps are dense matrix multiplica-
tions that mix information between different channels). As
another example, because mass balance is observed, a param-
eter leading to larger annual mean evapotranspiration will
necessarily reduce long-term streamflow output. Mass bal-
ance is the primary connective tissue between different hy-
drologic stores and fluxes. These important constraints can
lead to tradeoffs between processes if there are errors with
inputs like precipitation but impose a stronger constraint on
the overall behavior of the model. Nevertheless, the work in
Feng et al. (2022a) was conducted only for temporal tests
(training on some basins and testing on those same basins
but for a different time period) and not for PUB or PUR,
which may show a different picture. For these new types of
models, their generalizability under varied data density sce-
narios is highly uncertain. Before we use those models for
the purpose of learning knowledge, we seek to understand
their ability to generalize.

Our main research question in this paper is whether differ-
entiable process-based models can generalize well in space
and provide reliable large-scale hydrologic estimates in data-
scarce regions. Our hypothesis is that, since the differentiable
models have stronger structural constraints, they should ex-
hibit some advantages in extrapolation compared to both
LSTM and existing process-based models. An implicit hy-
pothesis is that the relationships learned by the parameter-
ization component are general, so they can be transferred
to untrained regions. If these hypotheses are true, it would
make this category of models appropriate for global hydro-
logic modeling. Since δ models have similar performance to
LSTM in temporal tests, they represent a chance to truly test
the value of model structures and the impact of extrapola-
tion. In this paper, we designed both PUB and PUR experi-
ments. Furthermore, apart from typical metrics calculated on
the daily hydrographs, we also evaluated the simulated trends
of mean annual flow and different flow regimes, which are
critical aspects for climate change impact assessments but
had not previously been adequately assessed.

2 Data and methods

2.1 Differentiable models

As an overview, a differentiable model implements a process-
based model as an evolvable backbone on a differentiable
computing platform such as PyTorch, TensorFlow, JAX, or
Julia and uses intermingled neural networks (NNs) to pro-
vide parameterization (meaning a way to infer parameters
for the model using raw information) or process enhance-
ment. In our setup, the parameterization and processes are
learned from all the available data using a whole-domain
loss function, therefore supporting regionalized PUB appli-
cations and even out-of-training-region (PUR) applications.
For the process-based backbone, we employed the Hydrolo-
giska Byråns Vattenbalansavdelning (HBV) model (Aghak-
ouchak and Habib, 2010; Beck et al., 2020b; Bergström,
1976, 1992; Seibert and Vis, 2012), a relatively simple,
bucket-type conceptual hydrologic model. HBV has state
variables like snow storage, soil water, and subsurface stor-
age and can simulate flux variables like evapotranspiration
(ET), recharge, surface runoff, shallow subsurface flow, and
groundwater flow. The parameters of HBV are learned from
basin characteristics by a DL network (gA, an LSTM unit in
Fig. 2) just as in dPL. Here, we made two changes to the
HBV structure. The first modification was to increase the
number of parallel storage components of the HBV model
(16 used here) to represent the heterogeneity within basins.
The state and flux variables were calculated as the average
of different components, and the parameters of all of these
components were learned by the neural network gA. The sec-
ond modification was that, for some tested versions of the
model, we turned some static parameters of HBV into time-
dependent parameters with a different value for each day (we
call this dynamic parameterization or DP). For example, we
set the runoff curve shape coefficient parameter to be time-
dependent (β t), as explained in Appendix A. The dynamic
parameters are also learned by the neural network gA from
basin characteristics and climate forcings (Fig. 2). More de-
tails about differentiable models can be found in our previous
study (Feng et al., 2022a).
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2.2 Comparison models

We compared the performance of δ models with a purely
data-driven LSTM streamflow model for spatially out-of-
sample predictions. The regionalized LSTM model was
based on Feng et al. (2020), taking meteorological forcings
and basin attributes (detailed below) as inputs. The hyperpa-
rameters of both LSTM and δ models were manually tuned
in the previous studies and retained in this study. The loss
function was calculated as root mean square error (RMSE)
for a minibatch of basins with a 1-year look-back period,
but across many iterations, the training process will allow
the model to go through the entire training dataset. For the
δ models, as in Feng et al. (2022a), the RMSE was calcu-
lated on both the unnormalized predictions and transformed
predictions to improve low-flow representation, and a loss
with a two-part weighted combination was used. For the
LSTM streamflow model, the RMSE was calculated on the
normalized predictions, since the transformation to represent
low flow had already been applied in the data preprocess-
ing. Deep learning models need to be trained on minibatches,
which are collections of training instances running through
the model in parallel, to be followed by a parameter update
operation. In our case, a minibatch is composed of 100 train-
ing instances, each of which contains 2 consecutive years’
worth of meteorological forcings randomly selected from the
whole training period for one basin. The first year was used
as a warmup period, so the loss was only calculated on the
second year of simulation. The model ran on this minibatch,
the errors were calculated as a loss value, and then an update
of the weights was applied using gradient descent. We also
used streamflow simulations from the multiscale parameter
regionalization (MPR) scheme (Samaniego et al., 2010) ap-
plied to the mHM hydrologic model (Rakovec et al., 2019)
to represent a traditional regionalized hydrologic model, but
only the temporal test (training and testing in same basins but
different time periods) is available for this model.

2.3 Data

We used the CAMELS dataset (Addor et al., 2017; Newman
et al., 2014), which includes 671 basins across the contiguous
United States (CONUS) to run the experiments. The Mau-
rer et al. (2002; hereafter denoted as Maurer) meteorologi-
cal forcing data were selected from the three forcings avail-
able in CAMELS to be comparable with existing regional-
ized model results. We also ran experiments with Daymet
(Thornton et al., 2020) forcings to show the impacts of dif-
ferent forcing data. To train regionalized models for dPL and
LSTM, we used 35 attributes, as shown in Table A1 in Ap-
pendix A. For the LSTM streamflow model, the attribute data
were directly concatenated with the forcings and provided as
inputs. With the δ models, the neural network gA receives
attributes and historical forcing data as inputs and then out-
puts parameters for the evolved HBV model. The LSTM

model takes five forcing variables including precipitation,
temperature, solar radiation, vapor pressure, and day length,
while the HBV model only takes precipitation (P ), tempera-
ture (T ), and potential evapotranspiration (Ep). We used the
temperature-based Hargreaves (1994) method to calculateEp
and the daily Maurer minimum and maximum temperatures
for CAMELS basins were acquired from Kratzert (2019a).
The training target for all the models was streamflow obser-
vations. We trained all models on all 671 basins in CAMELS
and reported the test performance on a widely used 531-basin
subset, which excludes some basins due to unclear watershed
boundaries (Newman et al., 2017). The results of some pre-
vious regionalized modeling efforts are also used to provide
benchmark context (Kratzert et al., 2019b; Rakovec et al.,
2019). For the comparison of evapotranspiration, we used
a product derived from the Moderate Resolution Imaging
Spectroradiometer (MODIS) satellite (Mu et al., 2011; Run-
ning et al., 2017). This ET product served as a completely
independent, uncalibrated validation for the evapotranspira-
tion simulated by the differentiable HBV models.

2.4 PUB and PUR experiments

As mentioned earlier, we designed two sets of experiments
to benchmark the models, namely predictions in ungauged
basins (PUB) and predictions in large ungauged regions
(PUR; illustrated in Fig. 1). For PUB experiments, we ran-
domly divided all the CAMELS basins into 10 groups,
trained the models on 9 groups, and tested it on the one
group held out. By running this experiment for 10 rounds
and changing out the group held out for testing, we can ob-
tain the out-of-sample PUB result for all basins. For the PUR
experiment, we divided the whole CONUS into seven con-
tinuous regions (as shown in Fig. B1 in Appendix B), trained
the model on six regions, and tested it on the holdout re-
gion. We ran the experiment seven times so that each region
could serve as the test region once. The study period was
from 1 October 1989 to 30 September 1999. These spatial
generalization tests were trained and tested in the same time
period but for different basins.

From the daily hydrograph, we calculated the Nash–
Sutcliffe (NSE; Nash and Sutcliffe, 1970) and Kling–Gupta
(KGE; Gupta et al., 2009) model efficiency coefficients as
performance metrics. NSE characterizes the variance in the
observations explained by the simulation, and KGE accounts
for correlation, variability bias, and mean bias. We also re-
ported the percent bias of the top 2 % peak flow range (FHV)
and the percent bias of the bottom 30 % low flow range (FLV;
Yilmaz et al., 2008), which characterizes peak flows and
baseflow, respectively.

We also evaluated the multi-year trend for streamflow val-
ues at different percentiles (Q98, Q50, and Q10), in addition
to the mean annual flow. Q98, Q50, and Q10 represent the
peak flow, median flow, and low flow values, respectively.
To this end, for each year we calculated one data point cor-
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Figure 2. The flow diagram of δ models with HBV as the backbone (edited from Feng et al., 2022a). The LSTM unit estimates the parameters
for the differentiable HBV model, which has snow, evapotranspiration, surface runoff, shallow subsurface, and deep groundwater reservoirs.
Outflows are released from different compartments, using a linear formula with proportionality parameters (θk’s). gA is the parameterization
network with dynamic input forcing x and static input attributes A. The buckets represent mass storage states (S’s); θ , β, and γ refer to
all HBV parameters. The model referred to simply as δ has static parameters (red font). The model referred to as δ(βt, γ t) sets γ and β as
time-dependent parameters (green font), with a new value each day. We only show the original HBV with one set of storage component as
illustration, while we use 16 parallel storage components in δ models. The state and flux variables were calculated as the average of different
components, and the parameters of all these components were learned by the neural network gA. Importantly, there are no intermediate
target variables to supervise the neural networks – the whole framework is trained on streamflow as the only focus of the loss function in an
end-to-end fashion. For simplicity, we did not use the optional NN replacement in this study, but the high performance was retained. Note
that P is for precipitation, T is for temperature, Ep is for potential evapotranspiration, Q0 is for quick flow, Q1 is for shallow subsurface
flow, Q2 is for baseflow, Ea is for actual evapotranspiration, Sp is for snowpack water storage, Ss is for soil water storage, Suz is for upper
subsurface zone water storage, Slz is for lower subsurface zone water storage, θuzl is for upper subsurface threshold for quick flow, β is for
the shape coefficient of the runoff relationship, and γ is for the newly added dynamic shape coefficient of the evapotranspiration relationship.

responding to a flow percentile. Then, Sen’s slope estimator
(Sen, 1968) for the trend of that flow percentile was calcu-
lated for the 10 years in the test period and compared with
the equivalent slope for the observations. Since streamflow
records contain missing values, we only considered years
with <61 (about 2 months) daily missing values (not nec-
essarily consecutive) for this purpose.

3 Results and discussion

In this section, we first compared LSTM and the differen-
tiable models (and, when available, the traditional regional-
ized model) for PUB and PUR in terms of both the daily hy-
drograph metrics (NSE, KGE, FLV, and FHV) and decadal-
scale trends. We then attempted to examine why δ models
had robust performance and how well they could predict
untrained variables (evapotranspiration). We use the term δ

models to generically refer to the whole class of differen-
tiable models, presented in this work with evolved HBV,
while we use δ, δ(β t) or δ(β t, γ t) to refer to particular mod-
els with static, one-parameter dynamic, and two-parameter

dynamic parameterizations, respectively. The meanings of β
and γ are described in Appendix A.

3.1 The randomized PUB test

For the randomized PUB test, which represents the spatial
interpolation in a data-dense scenario (Fig. 1a), the δ mod-
els approached (under the Maurer forcings) or surpassed (un-
der the Daymet forcings) the performance of the LSTM on
the daily hydrograph metrics. Under the Maurer forcings,
δ(β t, γ t) had a median PUB NSE of 0.64, which is only
slightly lower than LSTM (0.65) and considerably higher
than MPR+mHM (0.53; this model is in sample – all basins
were included in training). When one moves from in-sample
prediction to PUB, the performance of all types of models
drops, as demonstrated by δ(β t, γ t; Fig. 3a). For KGE, δ(β t)
and δ(β t, γ t) models not only had median values of 0.66 and
0.65, respectively, which were essentially the same as LSTM,
but also had a smaller spread (Fig. 3a). The LSTM had lower
errors for FLV and FHV than the δ models (Fig. 3a), which
is possibly because the LSTM is not subject to physical con-
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straints like mass balances and therefore possesses more flex-
ibility in terms of base and peak flow generation than HBV.

Under the Daymet forcings, δ(β t) and δ(β t, γ t) models
reached NSE (KGE) median values of 0.68 (0.68) and 0.69
(0.67), respectively, which is surprisingly higher than the
LSTM at 0.66 (0.66) (Fig. 3b). Both the LSTM and δ models
showed better performance when driven by Daymet forcings,
which is consistent with previous studies using different forc-
ings (Feng et al., 2022a; Kratzert et al., 2021), but δ models
improved even more noticeably, showing a clear outperfor-
mance of the other models. This result suggests that precipi-
tation in the Maurer forcing data may have a larger bias, and
as δ models conserve mass and cannot by default apply cor-
rections to the precipitation amounts, they are more heavily
impacted by such bias. It is worthwhile to note that the per-
formance shown here is for a PUB test with a higher holdout
ratio (lower k fold which means larger gaps for spatial inter-
polation), which degrades the performance compared to the
metrics we reported earlier (Feng et al., 2021). As mentioned
earlier, LSTM may potentially learn to correct biases in pre-
cipitation (Beck et al., 2020a), but the impact of precipitation
bias is under debate (Frame et al., 2023). Overall, the similar
performance and smaller spread of the δ models compared to
the LSTM are highly encouraging.

In terms of the prediction of decadal trends in ungauged
basins, δ models again demonstrated high competitiveness,
showing mixed comparisons to LSTM (Fig. 4). Both LSTM
and δ models accurately captured the trends in annual mean
flow (R2>0.80) and high-flow bands (R2>0.70), but both
struggled with low flow Q10 (trend evaluated in the annual
10th percentile flow; R2<0.40). δ(β t, γ t) had similar trend
performance to LSTM in terms of annual mean flow, median
flow Q50, and peak flow Q98, while LSTM had the advan-
tage for low flow,Q10. Overall, just as with LSTM, δ models
seem appropriate for long-term trend predictions in the data-
dense PUB scenario.

The challenge with a low flow prediction for all models
is probably attributable to multiple factors, including (i) a
lack of reliable information on subsurface hydraulic prop-
erties which hampers all models. (ii) There is an inherent
challenge with baseflow trends, as the magnitude of the Q10
change trends is in the range of −0.5 to 1 m3 s−1 yr−1, while
that for the annual mean flow is −2 to 10 m3 s−1 yr−1. Even
a small error in absolute terms can result in a large decrease
in R2. (iii) The inadequacy of the low flow modules is also
challenging because the linear reservoir formulation in the
present HBV groundwater modules may not capture the real-
world dynamics, while even the LSTM may not have the
memory that is long enough to represent a gentle multi-year
baseflow trend change. (iv) The greater impact of human ac-
tivities such as reservoir operations on low flow also needs
to be considered (Döll et al., 2009; Suen and Eheart, 2006).
(v) Finally, the greater sensitivity of the training loss function
to high flows compared to low flows due to the difference in
their magnitudes presents another challenge. High flows are

direct reflections of recent precipitation events in the basin,
while low flows are under large impacts of the geological
system.

For completeness, we also evaluated the trends for the tem-
poral tests (models trained and tested on the same basins but
in different time periods; Fig. 5). For the temporal test, the
model δ’sQ98 trends (0.88) are as accurate as those of LSTM
for high flows (0.87), but LSTM outperformed δ models for
the median and low flows (Q50 and Q10). This test, which
excluded the impact of spatial generalization, suggests that
the δ models’ surface runoff routine has the ability to trans-
form long-term forcing changes into the correct streamflow
changes, but the current groundwater module may be subop-
timal (or, stated in another way, it loses information). Also,
compared to LSTM, δ models are more subject to tradeoffs
due to maintaining mass balances and thus could be trained
to put more focus on the peaks of the hydrograph while sac-
rificing the low flow end.

Both LSTM and δ models surpassed MPR+mHM in the
temporal test by varying extents for all flow percentiles,
which demonstrated the potential from adaptive, learnable
models. The MPR+mHM high flow (Q98, R2

= 0.69) and
median flow (Q50, R2

= 0.63) trends lagged noticeably be-
hind, while the difference in the low flow (Q10, R2

= 0.24)
was smaller. It was previously shown in Feng et al. (2022a;
and thus omitted here) that median NSEs of MPR+mHM,
δ(β t, γ t), and LSTM were 0.53, 0.711, and 0.719, respec-
tively (the first with Maurer forcings, while the other two
were with NLDAS forcing data). Compared to the learnable
models, MPR+mHM tends to underestimate the wetting
trend for the high flow and overestimate the wetting trend
for the low flow. The fact that MPR+mHM correctly pre-
dicted the annual mean flow trend despite having lower met-
rics for flow percentiles suggests that it had a decent over-
all mass balance but might have directed flows through dif-
ferent pathways than δ models. Note that the temporal test
is the only comparison that we can carry out with exist-
ing regionalized process-based hydrologic models. Common
benchmark problems certainly help the community under-
stand the advantages and disadvantages of each model (Shen
et al., 2018), and we encourage work towards obtaining PUB
or PUR experimental results from existing models, which
would facilitate such comparisons.

3.2 The region-based PUR test

For the regional holdout test (PUR), surprisingly, δ models
noticeably outperformed LSTM in most of the daily hydro-
graph metrics (KGE, NSE, and FHV) and again had smaller
spreads in these metrics (Fig. 6). The LSTM’s performance
dropped substantially from PUB to PUR, while the perfor-
mance for δ models dropped less. Under Maurer forcings,
the median NSE values for LSTM, δ, and δ(β t, γ t) mod-
els were 0.55, 0.56, and 0.59, respectively, and the corre-
sponding KGE values were 0.52, 0.59, and 0.61, respec-
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Figure 3. Performance of simulated daily hydrographs from the models for (a) the randomized PUB experiment using Maurer meteorological
forcing data. (b) Comparison of PUB results using either Maurer or Daymet forcing data. Each box summarizes 531 values (one for each
CAMELS basin) obtained as a result of cross-validation. All models except those denoted as “in sample” (which means all sites are included
in the training set and thus is at an advantage in testing) were evaluated out-of-sample spatially; i.e., they were trained on some basins and
tested on other holdout basins. For MPR+mHM (Rakovec et al., 2019), all test basins were included in the training dataset. NSE is the
Nash–Sutcliffe model efficiency coefficient, KGE is the Kling–Gupta efficiency, FLV is the low flow percent bias, and FHV is the high flow
percent bias. δ, δ(βt), or δ(βt, γ t) refer to the differentiable, learnable HBV models with static, one-parameter dynamic, and two-parameter
dynamic parameterizations, respectively. The horizontal line in each box represents the median, and the bottom and top of the box represent
the first and third quantiles, respectively, while the whiskers extend to 1.5 times the interquartile range from the first and third quantiles,
respectively. The PUB was run in a computationally economic manner to be comparable to other models, while also reducing computational
demand; we used only 10 years of training period, did not use an ensemble, and used a lower k fold. When we previously ran the experiments
using the same settings as Kratzert et al. (2019a), our LSTM was able to match the PUB performance in their work (Feng et al., 2021).

tively. The performance gap between LSTM and δ models
was larger under Daymet forcings. The LSTM had a minor
performance gain when using Daymet forcings, while the δ
models had significant performance improvements. The me-
dian NSE (KGE) values for LSTM, δ, and δ(β t, γ t) models
were 0.55 (0.51), 0.60 (0.61) and 0.62 (0.63), respectively.
We see that for the low flow dynamics, δ(β t) had a slightly
smaller low flow bias (FLV). For high flow, δ models still had
negative biases, but they were smaller than those of LSTM
(Fig. 6a).

With the exception of regions 4 and 5, the δ models have
advantages over LSTM in nearly all other PUR regions, sug-

gesting that the benefits of physical structure for extrapola-
tion are robust in most situations (Fig. B2). Region 5 is the
Southern Great Plains, with frequent flash floods and karst
geology, and both types of models performed equally poorly.
δ(β t, γ t) showed significant performance advantages in re-
gions 3, 6, and 7. It is unclear why larger differences exist
in these regions rather than others. We surmise that these re-
gions feature large diversity in the landscape (as opposed to
regions 2, 4, and 5, which are more homogeneous forest or
prairie on the Great Plains), which, when missing from the
training data, could cause a data-driven model like LSTM to
incur large errors. Meanwhile, all the models achieve their
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Figure 4. Decadal trends (m3 s−1 yr−1) of streamflow for differ-
ent flow percentiles for the randomized PUB cross-validation ex-
periment (using Maurer forcing data), as compared to the observed
trends. Chart columns are organized by flow percentile. Q10, Q50,
and Q98 mean that the trends were evaluated in the annual 10th,
50th, and 98th percentile flows, respectively (or more simply, low,
median, and high flows). Chart rows are organized by model, and re-
sults for LSTM are shown in pink, results for δ are in red, δ(βt) are
in blue, and δ(βt, γ t) are in black. δ, δ(βt), or δ(βt, γ t) refer to the
differentiable, learnable HBV models with static, one-parameter dy-
namic, and two-parameter dynamic parameterizations, respectively.
For each flow percentile, a corresponding value was extracted from
each year’s daily data, and Sen’s slope was estimated and evaluated
between hydrologic years 1989 and 1999.

best PUR results in region 1 (northeast) and region 7 (north-
west), with NSE/KGE medians larger than or close to 0.6
(Fig. B2), which are consistent with our previous PUR study
using LSTM (Feng et al., 2021). We also observe that both
LSTM and evolved HBV models have difficulty with accu-
rately characterizing hydrologic processes in arid basins as
shown by regions 4 and 5 in the middle CONUS.

The decadal flow trends showed a stronger contrast – while
the LSTM’s trend metrics declined noticeably from PUB to
PUR, the δ models’ trend accuracy barely budged (Fig. 7).
For the annual mean flow, the points for δ(β t, γ t) tightly sur-
rounded the ideal 1 : 1 line and correctly captured the basins
with strong wetting trends toward the higher end of the plot.
In contrast, LSTM showed an underestimation bias and a ten-
dency to plateau for the wetting basins. The same pattern
is obvious for the high flow (Q98). We previously also no-

Figure 5. Observed vs. simulated decadal trends (m3 s−1 yr−1) of
streamflow for the temporal test for 447 basins where MPR+mHM
has predictions (all models trained with Maurer forcing data from
1999 to 2008 and tested from 1989 to 1999 of hydrologic years on
the same basins). We could only compare the trends with an exist-
ing process-based model with a parameter regionalization scheme
on the temporal test because we did not have their systematic PUB
results on the same dataset. Chart columns are organized by flow
percentile. Q10, Q50, and Q98 mean that the trends were evalu-
ated in the annual 10th, 50th, and 98th percentile flows, respec-
tively (or more simply, low, median, and high flows). Chart rows
are organized by model, and results for MPR+mHM are shown in
green, LSTM are in pink, results for δ are in red, δ(βt) are in blue,
and δ(βt, γ t) are in black. δ, δ(βt), or δ(βt, γ t) refer to the dif-
ferentiable, learnable HBV models with static, one-parameter dy-
namic, and two-parameter dynamic parameterizations, respectively.
For each flow percentile, a corresponding value was extracted from
each year’s daily data, and Sen’s slope was estimated and evaluated
between hydrologic years 1989 and 1999.

ticed such a flattening tendency for LSTM in multi-year soil
moisture trend prediction (see Fig. 9 in Fang et al., 2019),
although there the model was trained on satellite data, which
could also have played a role. The LSTMR2 for annual mean
discharge dropped from 0.87 for PUB to 0.64 for PUR, but
R2 remained at 0.88 for δ(β t, γ t). The LSTM R2 for high
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Figure 6. Same as Fig. 3 but for the regional holdout (PUR) test. Performance of simulated daily hydrographs from the models for (a)
the regionalized PUR experiment using Maurer meteorological forcing data. (b) Comparison of PUR results using either Maurer or Daymet
forcing data. Each box summarizes the metrics of 531 basins obtained in a regional cross-validation fashion. We see the clear outperformance
of LSTM by the δ models for these daily hydrograph metrics (NSE, KGE, and FHV).

flow (Q98) trends dropped significantly, from 0.76 for PUB
to 0.27 for PUR, whereas this metric remained around 0.77
for the δ models. The results highlight the δ models’ ro-
bust ability to generalize in space, possibly due to the simple
physics built into the model.

What makes δ models more robust than LSTM for PUR,
especially in terms of high flow and mean annual flow? As
indicated earlier, δ models can be considered to be machine
learning models that are restricted to a subspace allowable by
the backbone structure. There are two structural constraints,
namely that (i) the static attributes can only influence the
model via fixed interfaces (model parameters) and (ii) the
whole system can only simulate flow as permitted by the
backbone model of HBV. Hence, we can force the param-
eterization to learn a simpler and more generic mapping re-
lationship, and when it succeeds, the relationship could be
more transferable than that from LSTM, which mixes infor-
mation from all variables in most steps.

The δ model-based parameter maps reveal that the in-
sample, PUB, and PUR experiments all produced similar
overall parameter patterns (see Fig. 8; for PUB in Fig. 8b
and PUR in Fig. 8c, these parameters were generated when
the basins were used as the test basins and excluded from
training). Between in-sample (temporal) and PUB tests, most
of the points had similar colors, except for a few isolated
basins (e.g., some basins in New Mexico). Between PUB and
PUR, there were more regional differences (e.g., in the Dako-
tas, North Carolina, and Florida), but the overall CONUS-
scale patterns were still similar. Recall that (i) these parame-
ters were estimated by the parameter network gA, which was
trained on streamflow, and there are no ground-truth values
for the parameters, and (ii) in the PUR experiments, a large
region was held out. Despite these strong perturbations to the
training data, such parameter stability under PUB and PUR
is impressive. This stability is part of the reason for the mild
performance drop under PUR. Had we used a basin-by-basin
parameter calibration approach, the parameter values would
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Figure 7. Same as Fig. 4 but for the regional holdout (PUR) exper-
iment (using Maurer forcing data). δ models outperformed LSTM
for the decadal trends (m3 s−1 yr−1) of the mean annual flow and
the high flow regime. Chart columns are organized by flow per-
centile. Q10, Q50, and Q98 mean the trends were evaluated in the
annual 10th, 50th, and 98th percentile flows, respectively (or more
simply, low, median, and high flows). Chart rows are organized by
model, and results for LSTM are shown in pink, results for δ are in
red, δ(βt) are in blue, and δ(βt, γ t) are in black. δ, δ(βt) or δ(βt, γ t)
refer to the differentiable, learnable HBV models with static, one-
parameter dynamic, and two-parameter dynamic parameterizations,
respectively. For each flow percentile, a corresponding value was
extracted from each year’s daily data and Sen’s slope was estimated
and evaluated between hydrologic years 1989 and 1999.

have been much more stochastic and interspersed (similar to
Fig. 5b in Tsai et al., 2021).

We note that δ models found advantages in the annual
mean flow and high flow regimes rather than the low flow
regime for the PUR test. As described above, we attribute
the advantage in high flow to learning a more generalizable
mapping between raw attributes and runoff parameters. For
the low flow component, we hypothesize that the δ mod-
els’ groundwater module, which is inherited from HBV and
based on a simple linear reservoir, cannot adequately repre-
sent long-term groundwater storage changes. This part of the
model will likely require additional structural changes, e.g.,
by adopting nonlinearity (Seibert and Vis, 2012) or consid-
ering feedback between layers in the groundwater modules.
Furthermore, due to the guaranteed mass balance, the δ mod-
els face more tension (or tradeoffs) between the low and high

Figure 8. Parameter maps for the β parameter of the HBV model
for (a) the in-sample temporal test, (b) PUB, and (c) PUR. For PUB
and PUR, all the parameters were produced from cross-validation
experiments when the sites were used as test sites and were not in-
cluded in the training data. With other conditions being the same,
higher β yields less runoff, but other parameters such as the maxi-
mum soil water storage also influence runoff. For simplicity, these
parameters were the outputs of the parameterization network (gA)
in the δ models without dynamical parameterization. We show the
maps of the mean parameter value of multiple components here.
Again, there is no ground truth parameter to supervise gA.

flow regimes during training. The peak flow part tends to re-
ceive more attention due to its larger values. Because pure
LSTM models do not guarantee the conservation of mass,
they are subject to fewer tradeoffs and are more likely to cap-
ture both high and low flows. We believe future work can fur-
ther improve the groundwater representation by considering
better topographic distributions.
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Figure 9. Comparison of the agreement of simulated ET and the
MODIS satellite product for different models under the temporal
test (in sample), PUB, and PUR scenarios using two different met-
rics, namely (a) correlation and (b) root mean square error (RMSE).
All models were trained only with streamflow as the target. LSTM
is not shown, as it is unable to output physical variables on which it
has not been explicitly trained.

3.3 The impacts of extrapolation on evapotranspiration

Spatial interpolation and extrapolation seemed to have a
moderate impact on evapotranspiration (ET) seasonality and
a muted impact on annual mean ET (Fig. 9). For δ(γ t, β t),
from temporal tests to PUB and then PUR, the median corre-
lation and RMSE between simulated ET and 8 d integrated
ET from the MODIS satellite product did not vary much,
around 0.84 and 6.4 mm per 8 d, respectively. The impact of
extrapolation on ET was more muted compared to stream-
flow. Understandably, ET is controlled by the energy input
and physics-based calculations, and thus the models can-
not deviate too much from each other. It is worthwhile to
note that we only trained δ models on streamflow and used
MODIS ET as an independent data source for verification,
while the LSTM trained on streamflow is unable to output
ET or other physical variables on which it has not been ex-
plicitly trained.

Moreover, the dynamic parameterization (DP) models,
δ(γ t, β t) and δ(β t), were better than static parameter mod-
els in all comparable cases (temporal test, PUB, or PUR).
The decline due to spatial interpolation or extrapolation was
minimal. Even for the most adverse case, i.e., PUR, δ(γ t,
β t) provided a high-quality ET seasonality as compared to
MODIS (median correlation of 0.84) and low RMSE. It ap-
pears that DP indeed captured missing dynamics in data, pos-
sibly attributable to long-term water storage and vegetation
dynamics and presented better models for the right reasons.

3.4 Further discussion and future work

For all cases tested, and for both streamflow and ET, the mod-
els with dynamical parameterization (DP), δ(γ t, β t), had bet-
ter generalization than the δ models without DP. In theory,

the models with DP have more flexibility, and correspond-
ingly, we had expected DP models to be more overfitted
in some cases. However, the results showed δ(γ t, β t) to be
comparable or slightly better in most cases (either trends or
NSE/KGE) than δ and δ(β t); thus, the expected overfitting
did not occur. Although the LSTM-based parameterization
unit gA has a large amount of weight, it can only influence
the computation through restricted interfaces (the HBV pa-
rameters). In contrast, the full LSTM model we tested al-
lows attributes to influence all steps of the calculations. The
fact that δ(γ t, β t) was more generalizable also suggests that
whether the model will overfit or not depends on the way the
computation is regulated, rather than simply the number of
weights. It seems DP may have enabled the learning of some
true processes that are missing from HBV, possibly related to
deep soil water storage and/or vegetation dynamics (Feng et
al., 2022a).

While not directly tested here, it is easy to imagine that
in the future we can constrain the δ models using multiple
sources of observations. So far, the simulation quality seems
consistent between streamflow and ET, e.g., δ(γ t, β t) is bet-
ter than δ in streamflow (NSE/KGE) and also ET. This has
not always been true traditionally, due to equifinality (Beven,
2006), and it means a better conditioning of one of these
variables could have positive impacts on other variables.
Over the globe, while gauged basins are limited, there are
many sources of information on soil moisture (ESA, 2022;
NSIDC, 2022; Wanders et al., 2014), water storage (Eicker
et al., 2014; Landerer et al., 2020), in situ measurements of
ET (Christianson, 2022; Velpuri et al., 2013), snow cover
(Duethmann et al., 2014), and other measurements that pro-
vide additional opportunities for learning from multiple types
of data sources, or data sources on different scales (Liu et al.,
2022).

This study demonstrated how well the novel differentiable
models can generalize in space with other regionalized meth-
ods providing context. To ensure comparability across dif-
ferent models, we have chosen the same setups, e.g., me-
teorological forcings, training and testing samples and peri-
ods, and random seeds, rather than configurations that would
maximize performance metrics. This work also does not in-
validate deep learning models as valuable tools, as LSTM
is a critical part of the parameterization pipeline for the dif-
ferentiable models. The point of differentiable models is to
maximally leverage the best attributes of both deep networks
(learning capability) and physical models (interpretability).
Several strategies can be applied to enhance the pure data-
driven LSTM performance, as shown in earlier studies. For
example, some auxiliary information like soil moisture can
be integrated by a kernel to constrain and enhance the extrap-
olation (Feng et al., 2021). LSTM models can utilize multi-
ple precipitation inputs simultaneously to gain better perfor-
mance (Kratzert et al., 2021), which can be more complicated
to achieve for models with physical structures. Ensemble-
average prediction from different initializations (Kratzert et
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al., 2019a) or different input options (Feng et al., 2021; Rah-
mani et al., 2021a) can often lead to higher performance met-
rics. Here, however, we used a less computationally expen-
sive but comparable setup without these strategies applied,
which can certainly be studied in the future.

We used CONUS basins and large regional hold-outs to
examine the spatial generalization of different models. PUR
is a global issue because many large regions in the world
lack consistent streamflow data. We ran experiments over the
CONUS in this paper to ensure comparability with previ-
ous work and to benchmark on a well-understood dataset.
It has been demonstrated that models trained on data-rich
continents can be migrated to data-poor continents. Ma et
al. (2021) showed that deep learning models may learn
generic hydrologic information from data-rich continents
and leverage the information to improve predictions in data-
poor continents with transfer learning. More recently, Le et
al. (2022) examined PUR in global basins for monthly pre-
diction with traditional machine learning methods, and the
results demonstrated the difficulties of this issue. In future
work, we will establish differentiable models for a large sam-
ple of global basins by integrating modern DL and physical
representations that have shown promising spatial generaliz-
ability and examine their value for accurate daily PUR at the
global scale.

4 Conclusions

We demonstrated the high competitiveness of differentiable,
learnable hydrologic models (δ models) for both spatial in-
terpolation (PUB) and extrapolation (PUR). Evidence for
such high competitiveness is provided in terms of daily hy-
drograph metrics, including NSE and KGE, and in terms
of decadal-scale trends, which are of particular importance
for climate change impact assessments. For the daily hydro-
graph metrics, the δ models closely approached the LSTM
model in the PUB test (while showing less spread) and out-
performed the LSTM model in the PUR test. For the decadal-
scale trends, the δ models outperformed the LSTM model no-
ticeably in the PUR tests, especially for the annual mean flow
and high flows, although LSTM still fared better for the tem-
poral (in-sample) test. In the temporal test, both LSTM and
δ models surpassed an existing process-based model with a
parameter regionalization scheme by varying extents for dif-
ferent flow percentiles, indicating better rainfall–runoff dy-
namics.

Out of the variants of differentiable models tested, δ(γ t,
β t) stood out for having the best overall test performance,
attesting to the strength of the structural constraints. Even
though its structure is more complex, it was not more over-
fitted than other models. It also showed markedly better ET
seasonality than δ or δ(β t), which barely deteriorated in PUB
or PUR scenarios. As δ models can simulate a wide variety
of variables, they stand to benefit from assimilating multi-

ple data sources. The need for additional memory units (in
the LSTM that infers dynamical parameters) suggests that
there is still significant room for structural improvement of
the backbone model (HBV).

While LSTM models have achieved monumental ad-
vances, the δ models combine the fundamental strength
of neural network learning with an interpretable, physics-
based backbone to provide more constraints and better inter-
pretability. The training of the δ models resulted in remark-
ably stable parameter fields despite large differences in train-
ing datasets (temporal test vs. PUB vs. PUR). The δ mod-
els are not only reliable candidates for global climate change
impact assessment but also can highlight potential deficien-
cies in current process-based model structures (in the case of
HBV, we suspect work is needed on the representations of
vegetation and deep subsurface water storage). The δ models
can thus be used as a guide to future improvements of model
mechanisms, and what we learn from δ models can in fact be
ported to traditional process-based models. Last, we want to
clarify that this conclusion does not mean LSTM or existing
models are not suitable for global applications. As one can
see, LSTM remained a ferocious competitor for both PUB
and PUR, and existing models also presented decent trend
metrics. We call for more benchmarking on large datasets for
different scenarios such as PUB, PUR, and more variables.

Appendix A

Here we describe the equations related to the parameters β
and γ .

Peff =min{(Ss/θFC)
β ,1} ∗ (Pr+ Isnow) (A1)

Ea =min{[Ss/(θFCθLP)]
γ ,1} ∗Ep (A2)

Here Peff represents the effective rainfall to produce
runoff, Pr represents the rainfall, Isnow represents the
snowmelt infiltration to soil, Ss represents the soil water stor-
age, Ep represents the potential evapotranspiration (ET), Ea
represents the actual ET, and the parameters θFC and θLP (a
fraction of θFC) represent the thresholds for maximum soil
moisture storage and actual ET reaching to potential ET, re-
spectively. β is the shape coefficient of the runoff relation-
ship, while γ is a newly added shape coefficient of the ET
relationship. For the δ models with dynamic parameters in
this study, we modified the static β and γ into dynamic pa-
rameters β t and γ t, which change with time, based on the
meteorological forcings.
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Table A1. The attribute variables used in this study for regionalized models.

Attribute variables Description Unit

p_mean Mean daily precipitation mm d−1

pet_mean Mean daily potential evapotranspiration (Ep) mm d−1

p_seasonality Seasonality and timing of precipitation –
frac_snow Fraction of precipitation falling as snow –
aridity Ratio of mean Ep to mean precipitation –
high_prec_freq Frequency of high precipitation days d yr−1

high_prec_dur Average duration of high precipitation events d
low_prec_freq Frequency of dry days d yr−1

low_prec_dur Average duration of dry periods d
elev_mean Catchment mean elevation m
slope_mean Catchment mean slope m km−1

area_gages2 Catchment area (GAGESII estimate) km2

frac_forest Forest fraction –
lai_max Maximum monthly mean of the leaf area index –
lai_diff Difference between the maximum and minimum monthly mean of the leaf area index –
gvf_max Maximum monthly mean of the green vegetation –
gvf_diff Difference between the maximum and minimum monthly mean of the green vegetation fraction -
dom_land_cover_frac Fraction of the catchment area associated with the dominant land cover –
dom_land_cover Dominant land cover type –
root_depth_50 Root depth at 50th percentiles m
soil_depth_pelletier Depth to bedrock m
soil_depth_statgso Soil depth m
soil_porosity Volumetric soil porosity –
soil_conductivity Saturated hydraulic conductivity cm h−1

max_water_content Maximum water content m
sand_frac Sand fraction %
silt_frac Silt fraction %
clay_frac Clay fraction %
geol_class_1st Most common geologic class in the catchment –
geol_class_1st_frac Fraction of the catchment area associated with its most common geologic class –
geol_class_2nd Second most common geologic class in the catchment –
geol_class_2nd_frac Fraction of the catchment area associated with its second most common geologic class –
carbonate_rocks_frac Fraction of the catchment area as carbonate sedimentary rocks –
geol_porosity Subsurface porosity –
geol_permeability Subsurface permeability m2

Appendix B

Figure B1. Division of the CAMELS dataset into seven large regions for the PUR cross validation test. For every fold, the models were
trained on six of the seven regions and tested on the one held out. We ran the experiments for seven rounds so that each region would be the
test region once. The results for the test basins were then collected, and the test metrics were reported for this collection.
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Figure B2. The PUR performance comparison in different regions (shown in Fig. B1) in terms of (a) NSE and (b) KGE.

Code availability. The code for the differentiable δ models is
available at https://doi.org/10.5281/zenodo.7091334 (Feng et al.,
2022b). The code for the LSTM streamflow model is available at
https://doi.org/10.5281/zenodo.5015120 (Fang et al., 2021).

Data availability. The CAMELS dataset can be ac-
cessed at https://doi.org/10.5065/D6MW2F4D (Addor et
al., 2017; Newman et al., 2014). The extended Mau-
rer forcing data for CAMELS can be downloaded at
https://doi.org/10.4211/hs.17c896843cf940339c3c3496d0c1c077
(Kratzert, 2019a), and the benchmark results of tra-
ditional process-based models can be downloaded at
https://doi.org/10.4211/hs.474ecc37e7db45baa425cdb4fc1b61e1
(Kratzert, 2019b). The MODIS ET product can be downloaded at
https://doi.org/10.5067/MODIS/MOD16A2.006 (Running et al.,
2017).
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