The suitability of differentiable, physics-informed machine learning hydrologic models for ungauged regions and climate change impact assessment
Data sets
A large-sample watershed-scale hydrometeorological dataset for the contiguous USA https://doi.org/10.5065/D6MW2F4D
CAMELS Extended Maurer Forcing Data https://doi.org/10.4211/hs.17c896843cf940339c3c3496d0c1c077
CAMELS benchmark models https://doi.org/10.4211/hs.474ecc37e7db45baa425cdb4fc1b61e1
MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500\,m SIN Grid V006 https://doi.org/10.5067/MODIS/MOD16A2.006
Model code and software
Differentiable hydrologic models: dPL+evolved HBV https://doi.org/10.5281/zenodo.7091334
mhpi/hydroDL: MHPI-hydroDL (v2.0) https://doi.org/10.5281/zenodo.5015120