Articles | Volume 27, issue 1
https://doi.org/10.5194/hess-27-191-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-191-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of distributed meteorological forcing on simulated snow cover and hydrological fluxes over a mid-elevation alpine micro-scale catchment
Aniket Gupta
CORRESPONDING AUTHOR
Univ. Grenoble Alpes, CNRS, IRD, Institut des Géosciences de l’Environnement (IGE), UMR 5001, Grenoble, France
Alix Reverdy
Univ. Grenoble Alpes, CNRS, IRD, Institut des Géosciences de l’Environnement (IGE), UMR 5001, Grenoble, France
Jean-Martial Cohard
Univ. Grenoble Alpes, CNRS, IRD, Institut des Géosciences de l’Environnement (IGE), UMR 5001, Grenoble, France
Basile Hector
Univ. Grenoble Alpes, CNRS, IRD, Institut des Géosciences de l’Environnement (IGE), UMR 5001, Grenoble, France
Marc Descloitres
Univ. Grenoble Alpes, CNRS, IRD, Institut des Géosciences de l’Environnement (IGE), UMR 5001, Grenoble, France
Jean-Pierre Vandervaere
Univ. Grenoble Alpes, CNRS, IRD, Institut des Géosciences de l’Environnement (IGE), UMR 5001, Grenoble, France
Catherine Coulaud
Univ. Grenoble Alpes, CNRS, IRD, Institut des Géosciences de l’Environnement (IGE), UMR 5001, Grenoble, France
Romain Biron
Univ. Grenoble Alpes, CNRS, IRD, Institut des Géosciences de l’Environnement (IGE), UMR 5001, Grenoble, France
Lucie Liger
Univ. Grenoble Alpes, CNRS, Lautaret Garden, 38000, Grenoble, France
Reed Maxwell
Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
Jean-Gabriel Valay
Univ. Grenoble Alpes, CNRS, Lautaret Garden, 38000, Grenoble, France
Didier Voisin
Univ. Grenoble Alpes, CNRS, IRD, Institut des Géosciences de l’Environnement (IGE), UMR 5001, Grenoble, France
Related authors
No articles found.
Guillaume Evin, Benoit Hingray, Guillaume Thirel, Agnès Ducharne, Laurent Strohmenger, Lola Corre, Yves Tramblay, Jean-Philippe Vidal, Jérémie Bonneau, François Colleoni, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Peng Huang, Matthieu Le Lay, Claire Magand, Paola Marson, Céline Monteil, Simon Munier, Alix Reverdy, Jean-Michel Soubeyroux, Yoann Robin, Jean-Pierre Vergnes, Mathieu Vrac, and Eric Sauquet
EGUsphere, https://doi.org/10.5194/egusphere-2025-2727, https://doi.org/10.5194/egusphere-2025-2727, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Explore2 provides hydrological projections for 1,735 French catchments. Using QUALYPSO, this study assesses uncertainties, including internal variability. By the end of the century, low flows are projected to decline in southern France under high emissions, while other indicators remain uncertain. Emission scenarios and regional climate models are key uncertainty sources. Internal variability is often as large as climate-driven changes.
Vy Ngoc Thuy Dinh, Jean-Luc Jaffrezo, Pamela Dominutti, Rhabira Elazzouzi, Sophie Darfeuil, Céline Voiron, Anouk Marsal, Stéphane Socquet, Gladys Mary, Julie Cozic, Catherine Coulaud, Marc Durif, Olivier Favez, and Gaëlle Uzu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2933, https://doi.org/10.5194/egusphere-2025-2933, 2025
Short summary
Short summary
Long-term particulate matter (PM) filter sampling at a French urban background and temperature measurements at different altitudes were used to investigate decadal trends of the main PM sources and related oxidative potential metrics. Positive Matrix Factorization analyses were conducted on the corresponding 11-year dataset, which determined ten PM sources. Temporal evolution of these sources is investigated, highlighting a strong downward trend of anthropogenic sources over 11 years.
Erwan Le Roux, Valentin Wendling, Gérémy Panthou, Océane Dubas, Jean-Pierre Vandervaere, Basile Hector, Guillaume Favreau, Jean-Martial Cohard, Caroline Pierre, Luc Descroix, Eric Mougin, Manuela Grippa, Laurent Kergoat, Jérôme Demarty, Nathalie Rouche, Jordi Etchanchu, and Christophe Peugeot
EGUsphere, https://doi.org/10.5194/egusphere-2025-1965, https://doi.org/10.5194/egusphere-2025-1965, 2025
Short summary
Short summary
In hydrological science, better accounting for regime shift (abrupt and/or irreversible changes) remains a challenge that could lead to a new paradigm for the adaptation to extreme events (flood , drought). In this article, we present a simple model that can account for a hydrological regime shift in Sahelian watersheds. Based on this model, we find that the Dargol, Nakanbé, and Sirba watersheds have shifted during the droughts of the '70s–'80s, while the Gorouol watershed has shifted before.
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci., 29, 2201–2218, https://doi.org/10.5194/hess-29-2201-2025, https://doi.org/10.5194/hess-29-2201-2025, 2025
Short summary
Short summary
We developed the first high-resolution, integrated surface water–groundwater hydrologic model of the entirety of continental China using ParFlow. The model shows good performance in terms of streamflow and water table depth when compared to global data products and observations. It is essential for water resources management and decision-making in China within a consistent framework in the changing world. It also has significant implications for similar modeling in other places in the world.
Max Berkelhammer, Gerald F. M. Page, Frank Zurek, Christopher Still, Mariah S. Carbone, William Talavera, Laura Hildebrand, James Byron, Kyle Inthabandith, Angellica Kucinski, Melissa Carlson, Kelsey Foss, Wendy Brown, Rosemary W. H. Carroll, Austin Simonpietri, Marshall Worsham, Ian Breckheimer, Anna Ryken, Reed Maxwell, David Gochis, Mark S. Raleigh, Eric Small, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 29, 701–718, https://doi.org/10.5194/hess-29-701-2025, https://doi.org/10.5194/hess-29-701-2025, 2025
Short summary
Short summary
Warming in montane systems is affecting the snowmelt input amount. At the global scale, this will impact subalpine forests that rely on spring snowmelt to support their water demands. We use a network of sensors across a hillslope in the Upper Colorado Basin to show that the changing spring snowpack has a more pronounced impact on dense forest stands, while open stands show a higher reliance on summer rain and are less sensitive to significant changes in snow.
Benjamin D. West, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 29, 245–259, https://doi.org/10.5194/hess-29-245-2025, https://doi.org/10.5194/hess-29-245-2025, 2025
Short summary
Short summary
This article describes the addition of reservoirs to the hydrologic model ParFlow. ParFlow is particularly good at helping us understand some of the broader drivers behind different parts of the water cycle. By having reservoirs in such a model, we hope to be able to better understand both our impacts on the environment and how to adjust our management of reservoirs to changing conditions.
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci., 28, 5511–5539, https://doi.org/10.5194/hess-28-5511-2024, https://doi.org/10.5194/hess-28-5511-2024, 2024
Short summary
Short summary
Evapotranspiration (ET) is computed from the vegetation (plant transpiration) and soil (soil evaporation). In western Africa, plant transpiration correlates with vegetation growth. Vegetation is often represented using the leaf area index (LAI). In this study, we evaluate the importance of the LAI for ET calculation. We take a close look at this interaction and highlight its relevance. Our work contributes to the understanding of terrestrial water cycle processes .
Peyman Abbaszadeh, Fadji Zaouna Maina, Chen Yang, Dan Rosen, Sujay Kumar, Matthew Rodell, and Reed Maxwell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-280, https://doi.org/10.5194/hess-2024-280, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
To manage Earth's water resources effectively amid climate change, it's crucial to understand both surface and groundwater processes. We developed a new modeling system that combines two advanced tools, ParFlow and LIS/Noah-MP, to better simulate both land surface and groundwater interactions. By testing this integrated model in the Upper Colorado River Basin, we found it improves predictions of hydrologic processes, especially in complex terrains.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024, https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Short summary
Large-scale hydrologic simulators are a needed tool to explore complex watershed processes and how they may evolve with a changing climate. However, calibrating them can be difficult because they are costly to run and have many unknown parameters. We implement a state-of-the-art approach to model calibration using neural networks with a set of experiments based on streamflow in the upper Colorado River basin.
Jean Emmanuel Sicart, Victor Ramseyer, Ghislain Picard, Laurent Arnaud, Catherine Coulaud, Guilhem Freche, Damien Soubeyrand, Yves Lejeune, Marie Dumont, Isabelle Gouttevin, Erwan Le Gac, Frédéric Berger, Jean-Matthieu Monnet, Laurent Borgniet, Éric Mermin, Nick Rutter, Clare Webster, and Richard Essery
Earth Syst. Sci. Data, 15, 5121–5133, https://doi.org/10.5194/essd-15-5121-2023, https://doi.org/10.5194/essd-15-5121-2023, 2023
Short summary
Short summary
Forests strongly modify the accumulation, metamorphism and melting of snow in midlatitude and high-latitude regions. Two field campaigns during the winters 2016–17 and 2017–18 were conducted in a coniferous forest in the French Alps to study interactions between snow and vegetation. This paper presents the field site, instrumentation and collection methods. The observations include forest characteristics, meteorology, snow cover and snow interception by the canopy during precipitation events.
Juliette Blanchet, Alix Reverdy, Antoine Blanc, Jean-Dominique Creutin, Périne Kiennemann, and Guillaume Evin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-197, https://doi.org/10.5194/hess-2023-197, 2023
Revised manuscript not accepted
Short summary
Short summary
The Alpine region is strongly affected by torrential floods, sometimes leading to severe negative impacts on society, economy, and the environment. Understanding such natural hazards and their drivers is essential to mitigate related risks. In this article we study the atmospheric conditions at the origin of damaging torrential events in the Northern French Alps over the long run, using a database of reported occurrence of damaging torrential flooding in the Grenoble conurbation since 1851.
Marie Dumont, Simon Gascoin, Marion Réveillet, Didier Voisin, François Tuzet, Laurent Arnaud, Mylène Bonnefoy, Montse Bacardit Peñarroya, Carlo Carmagnola, Alexandre Deguine, Aurélie Diacre, Lukas Dürr, Olivier Evrard, Firmin Fontaine, Amaury Frankl, Mathieu Fructus, Laure Gandois, Isabelle Gouttevin, Abdelfateh Gherab, Pascal Hagenmuller, Sophia Hansson, Hervé Herbin, Béatrice Josse, Bruno Jourdain, Irene Lefevre, Gaël Le Roux, Quentin Libois, Lucie Liger, Samuel Morin, Denis Petitprez, Alvaro Robledano, Martin Schneebeli, Pascal Salze, Delphine Six, Emmanuel Thibert, Jürg Trachsel, Matthieu Vernay, Léo Viallon-Galinier, and Céline Voiron
Earth Syst. Sci. Data, 15, 3075–3094, https://doi.org/10.5194/essd-15-3075-2023, https://doi.org/10.5194/essd-15-3075-2023, 2023
Short summary
Short summary
Saharan dust outbreaks have profound effects on ecosystems, climate, health, and the cryosphere, but the spatial deposition pattern of Saharan dust is poorly known. Following the extreme dust deposition event of February 2021 across Europe, a citizen science campaign was launched to sample dust on snow over the Pyrenees and the European Alps. This campaign triggered wide interest and over 100 samples. The samples revealed the high variability of the dust properties within a single event.
Juliette Blanchet, Alix Reverdy, Antoine Blanc, Jean-Dominique Creutin, Périne Kiennemann, and Guillaume Evin
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-276, https://doi.org/10.5194/nhess-2022-276, 2023
Manuscript not accepted for further review
Short summary
Short summary
We study the atmospheric conditions at the origin of damaging torrential events in the Northern French Alps over the long run. We consider seven atmospheric variables that describe the nature of the air masses involved and the possible triggers of precipitation and we try to isolate the most discriminating variables. The results show that humidity and particularly humidity transport plays the greatest role under westerly flows while instability potential is mostly at play under southerly flows.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-345, https://doi.org/10.5194/hess-2022-345, 2022
Publication in HESS not foreseen
Short summary
Short summary
As the stress on water resources from climate change grows, we need models that represent water processes at the scale of counties, states, and even countries in order to make viable predictions about things will change. While such models are powerful, they can be cumbersome to deal with because they are so large. This research explores a novel way of increasing the efficiency of large-scale hydrologic models using an approach called Simulation-Based Inference.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Mary M. F. O'Neill, Danielle T. Tijerina, Laura E. Condon, and Reed M. Maxwell
Geosci. Model Dev., 14, 7223–7254, https://doi.org/10.5194/gmd-14-7223-2021, https://doi.org/10.5194/gmd-14-7223-2021, 2021
Short summary
Short summary
Modeling the hydrologic cycle at high resolution and at large spatial scales is an incredible opportunity and challenge for hydrologists. In this paper, we present the results of a high-resolution hydrologic simulation configured over the contiguous United States. We discuss simulated water fluxes through groundwater, soil, plants, and over land, and we compare model results to in situ observations and satellite products in order to build confidence and guide future model development.
Jun Zhang, Laura E. Condon, Hoang Tran, and Reed M. Maxwell
Earth Syst. Sci. Data, 13, 3263–3279, https://doi.org/10.5194/essd-13-3263-2021, https://doi.org/10.5194/essd-13-3263-2021, 2021
Short summary
Short summary
Existing national topographic datasets for the US may not be compatible with gridded hydrologic models. A national topographic dataset developed to support physically based hydrologic models at 1 km and 250 m over the contiguous US is provided. We used a Priority Flood algorithm to ensure hydrologically consistent drainage networks and evaluated the performance with an integrated hydrologic model. Datasets and scripts are available for direct data usage or modification of processing as desired.
Jaber Rahimi, Expedit Evariste Ago, Augustine Ayantunde, Sina Berger, Jan Bogaert, Klaus Butterbach-Bahl, Bernard Cappelaere, Jean-Martial Cohard, Jérôme Demarty, Abdoul Aziz Diouf, Ulrike Falk, Edwin Haas, Pierre Hiernaux, David Kraus, Olivier Roupsard, Clemens Scheer, Amit Kumar Srivastava, Torbern Tagesson, and Rüdiger Grote
Geosci. Model Dev., 14, 3789–3812, https://doi.org/10.5194/gmd-14-3789-2021, https://doi.org/10.5194/gmd-14-3789-2021, 2021
Short summary
Short summary
West African Sahelian and Sudanian ecosystems are important regions for global carbon exchange, and they provide valuable food and fodder resources. Therefore, we simulated net ecosystem exchange and aboveground biomass of typical ecosystems in this region with an improved process-based biogeochemical model, LandscapeDNDC. Carbon stocks and exchange rates were particularly correlated with the abundance of trees. Grass and crop yields increased under humid climatic conditions.
François Tuzet, Marie Dumont, Ghislain Picard, Maxim Lamare, Didier Voisin, Pierre Nabat, Mathieu Lafaysse, Fanny Larue, Jesus Revuelto, and Laurent Arnaud
The Cryosphere, 14, 4553–4579, https://doi.org/10.5194/tc-14-4553-2020, https://doi.org/10.5194/tc-14-4553-2020, 2020
Short summary
Short summary
This study presents a field dataset collected over 30 d from two snow seasons at a Col du Lautaret site (French Alps). The dataset compares different measurements or estimates of light-absorbing particle (LAP) concentrations in snow, highlighting a gap in the current understanding of the measurement of these quantities. An ensemble snowpack model is then evaluated for this dataset estimating that LAPs shorten each snow season by around 10 d despite contrasting meteorological conditions.
Cited articles
Aguayo, M. A., Flores, A. N., McNamara, J. P., Marshall, H.-P., and Mead, J.: Examining cross-scale influences of forcing resolutions in a hillslope-resolving, integrated hydrologic model, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2020-451, 2020. a
Ajami, H., McCabe, M. F., Evans, J. P., and Stisen, S.: Assessing the impact of
model spin‐up on surface water‐groundwater interactions using an
integrated hydrologic model, Water Resour. Res., 50, 2636–2656, 2014. a
Arora, B., Briggs, M. A., Zarnetske, J. P., Stegen, J., Gomez-Velez, J. D.,
Dwivedi, D., and Steefel, C.: Hot spots and hot moments in the critical zone:
identification of and incorporation into reactive transport models, in:
Biogeochemistry of the Critical Zone, 9–47, Springer, https://doi.org/10.1007/978-3-030-95921-0_2, 2022. a
Ashby, S. F. and Falgout, R. D.: A parallel multigrid preconditioned conjugate
gradient algorithm for groundwater flow simulations, Nucl. Sci. Eng., 124, 145–159, 1996. a
Avanzi, F., Ercolani, G., Gabellani, S., Cremonese, E., Pogliotti, P., Filippa, G., Morra di Cella, U., Ratto, S., Stevenin, H., Cauduro, M., and Juglair, S.: Learning about precipitation lapse rates from snow course data improves water balance modeling, Hydrol. Earth Syst. Sci., 25, 2109–2131, https://doi.org/10.5194/hess-25-2109-2021, 2021. a
Baba, M. W., Gascoin, S., Kinnard, C., Marchane, A., and Hanich, L.: Effect of
Digital Elevation Model Resolution on the Simulation of the Snow
Cover Evolution in the High Atlas, Water Resour. Res., 55,
5360–5378, https://doi.org/10.1029/2018WR023789, 2019. a
Bertoldi, G., Della Chiesa, S., Notarnicola, C., Pasolli, L., Niedrist, G., and
Tappeiner, U.: Estimation of soil moisture patterns in mountain grasslands by
means of SAR RADARSAT2 images andhydrological modeling, J. Hydrol., 516, 245–257,
https://doi.org/10.1016/j.jhydrol.2014.02.018, 2014. a
Blöschl, G., Bierkens, M. F. P., Chambel, A., Cudennec, C., Destouni, G.,
Fiori, A., Kirchner, J. W., McDonnell, J. J., Savenije, H. H. G., Sivapalan,
M., Stumpp, C., Toth, E., Volpi, E., Carr, G., Lupton, C., Salinas, J.,
Széles, B., Viglione, A., Aksoy, H., Allen, S. T., Amin, A., Andréassian,
V., Arheimer, B., Aryal, S. K., Baker, V., Bardsley, E., Barendrecht, M. H.,
Bartosova, A., Batelaan, O., Berghuijs, W. R., Beven, K., Blume, T., Bogaard,
T., Amorim, P. B. d., Böttcher, M. E., Boulet, G., Breinl, K., Brilly, M.,
Brocca, L., Buytaert, W., Castellarin, A., Castelletti, A., Chen, X., Chen,
Y., Chen, Y., Chifflard, P., Claps, P., Clark, M. P., Collins, A. L., Croke,
B., Dathe, A., David, P. C., Barros, F. P. J. d., Rooij, G. d., Baldassarre,
G. D., Driscoll, J. M., Duethmann, D., Dwivedi, R., Eris, E., Farmer, W. H.,
Feiccabrino, J., Ferguson, G., Ferrari, E., Ferraris, S., Fersch, B., Finger,
D., Foglia, L., Fowler, K., Gartsman, B., Gascoin, S., Gaume, E., Gelfan, A.,
Geris, J., Gharari, S., Gleeson, T., Glendell, M., Bevacqua, A. G.,
González-Dugo, M. P., Grimaldi, S., Gupta, A. B., Guse, B., Han, D., Hannah,
D., Harpold, A., Haun, S., Heal, K., Helfricht, K., Herrnegger, M., Hipsey,
M., Hlaváčiková, H., Hohmann, C., Holko, L., Hopkinson, C., Hrachowitz,
M., Illangasekare, T. H., Inam, A., Innocente, C., Istanbulluoglu, E.,
Jarihani, B., Kalantari, Z., Kalvans, A., Khanal, S., Khatami, S., Kiesel,
J., Kirkby, M., Knoben, W., Kochanek, K., Kohnová, S., Kolechkina, A.,
Krause, S., Kreamer, D., Kreibich, H., Kunstmann, H., Lange, H., Liberato, M.
L. R., Lindquist, E., Link, T., Liu, J., Loucks, D. P., Luce, C., Mahé, G.,
Makarieva, O., Malard, J., Mashtayeva, S., Maskey, S., Mas-Pla, J.,
Mavrova-Guirguinova, M., Mazzoleni, M., Mernild, S., Misstear, B. D.,
Montanari, A., Müller-Thomy, H., Nabizadeh, A., Nardi, F., Neale, C.,
Nesterova, N., Nurtaev, B., Odongo, V. O., Panda, S., Pande, S., Pang, Z.,
Papacharalampous, G., Perrin, C., Pfister, L., Pimentel, R., Polo, M. J.,
Post, D., Sierra, C. P., Ramos, M.-H., Renner, M., Reynolds, J. E., Ridolfi,
E., Rigon, R., Riva, M., Robertson, D. E., Rosso, R., Roy, T., Sá, J. H. M.,
Salvadori, G., Sandells, M., Schaefli, B., Schumann, A., Scolobig, A.,
Seibert, J., Servat, E., Shafiei, M., Sharma, A., Sidibe, M., Sidle, R. C.,
Skaugen, T., Smith, H., Spiessl, S. M., Stein, L., Steinsland, I., Strasser,
U., Su, B., Szolgay, J., Tarboton, D., Tauro, F., Thirel, G., Tian, F., Tong,
R., Tussupova, K., Tyralis, H., Uijlenhoet, R., Beek, R. v., Ent, R. J.
v. d., Ploeg, M. v. d., Loon, A. F. V., Meerveld, I. v., Nooijen, R. v., Oel,
P. R. v., Vidal, J.-P., Freyberg, J. v., Vorogushyn, S., Wachniew, P., Wade,
A. J., Ward, P., Westerberg, I. K., White, C., Wood, E. F., Woods, R., Xu,
Z., Yilmaz, K. K., and Zhang, Y.: Twenty-three unsolved problems in hydrology
(UPH) – a community perspective, Hydrolog. Sci. J., 64,
1141–1158, https://doi.org/10.1080/02626667.2019.1620507, 2019. a
Brutsaert, W.: The surface roughness parameterization, in: Evaporation into the
Atmosphere, 113–127, Springer, https://doi.org/10.1007/978-94-017-1497-6_5, 1982. a
Chen, L., Šimůnek, J., Bradford, S. A., Ajami, H., and Meles, M. B.: A
computationally efficient hydrologic modeling framework to simulate
surface-subsurface hydrological processes at the hillslope scale, J. Hydrol., 614, 128539, https://doi.org/10.1016/j.jhydrol.2022.128539, 2022. a
Clark, M. P., Fan, Y., Lawrence, D. M., Adam, J. C., Bolster, D., Gochis,
D. J., Hooper, R. P., Kumar, M., Leung, L. R., Mackay, D. S., Maxwell, R. M.,
Shen, C., Swenson, S. C., and Zeng, X.: Improving the representation of
hydrologic processes in Earth System Models, Water Resour. Res.,
51, 5929–5956, https://doi.org/10.1002/2015WR017096, 2015. a
Condon, L. E. and Maxwell, R. M.: Modified priority flood and global slope
enforcement algorithm for topographic processing in physically based
hydrologic modeling applications, Comput. Geosci., 126, 73–83,
https://doi.org/10.1016/j.cageo.2019.01.020, 2019. a, b
Costa, D., Shook, K., Spence, C., Elliott, J., Baulch, H., Wilson, H., and
Pomeroy, J. W.: Predicting Variable Contributing Areas, Hydrological
Connectivity, and Solute Transport Pathways for a Canadian
Prairie Basin, Water Resour. Res., 56, e2020WR027984,
https://doi.org/10.1029/2020WR027984, 2020. a
Dahri, Z. H., Ludwig, F., Moors, E., Ahmad, B., Khan, A., and Kabat, P.: An
appraisal of precipitation distribution in the high-altitude catchments of
the Indus basin, Sci. Total Environ., 548, 289–306, 2016. a
Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich,
M. G., Denning, A. S., Dirmeyer, P. A., Houser, P. R., Niu, G., Oleson,
K. W., Schlosser, C. A., and Yang, Z.-L.: The Common Land Model,
B. Am. Meteorol. Soc., 84, 1013–1024,
https://doi.org/10.1175/BAMS-84-8-1013, 2003. a
Dozier, J.: Spectral signature of alpine snow cover from the Landsat
Thematic Mapper, Remote Sens. Environ., 28, 9–22, 1989. a
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F.,
Hoersch, B., Isola, C., Laberinti, P., and Martimort, P.: Sentinel-2: ESA's
optical high-resolution mission for GMES operational services, Remote Sens. Environ., 120, 25–36, 2012. a
Dunne, T.: Relation of field studies and modeling in the prediction of storm
runoff, J. Hydrol., 65, 25–48, https://doi.org/10.1016/0022-1694(83)90209-3,
1983. a
Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S. L.,
Brooks, P. D., Dietrich, W. E., Flores, A., Grant, G., Kirchner, J. W.,
Mackay, D. S., McDonnell, J. J., Milly, P. C. D., Sullivan, P. L., Tague, C.,
Ajami, H., Chaney, N., Hartmann, A., Hazenberg, P., McNamara, J., Pelletier,
J., Perket, J., Rouholahnejad‐Freund, E., Wagener, T., Zeng, X., Beighley,
E., Buzan, J., Huang, M., Livneh, B., Mohanty, B. P., Nijssen, B., Safeeq,
M., Shen, C., Verseveld, W. v., Volk, J., and Yamazaki, D.: Hillslope
Hydrology in Global Change Research and Earth System Modeling,
Water Resour. Res., 55, 1737–1772,
https://doi.org/10.1029/2018WR023903, 2019. a, b, c, d
Fang, X. and Pomeroy, J. W.: Diagnosis of future changes in hydrology for a Canadian Rockies headwater basin, Hydrol. Earth Syst. Sci., 24, 2731–2754, https://doi.org/10.5194/hess-24-2731-2020, 2020. a, b
Gupta, A., Reverdy, A., Cohard, J.-M., Voisin, D., Hector, B., Descloitres, M., Vandervaere, J.-P., Coulaud, C., Biron, R., Liger, L., Valay, J.-G., and Maxwell, R.: Data from: Impact of distributed meteorological forcing on snow dynamic and induced water fluxes over a mid-elevation alpine micro-scale catchment, https://doi.org/10.18709/PERSCIDO.2022.09.DS375, 2022. a
Günther, D., Marke, T., Essery, R., and Strasser, U.: Uncertainties in
Snowpack Simulations – Assessing the Impact of Model Structure,
Parameter Choice, and Forcing Data Error on Point-Scale
Energy Balance Snow Model Performance, Water Resour. Res.,
55, 2779–2800, https://doi.org/10.1029/2018WR023403, 2019. a
Hellström, M., Vermeulen, A., Mirzov, O., Sabbatini, S., Vitale, D., Papale,
D., Tarniewicz, J., Hazan, L., Rivier, L., and Jones, S. D.: Near Real
Time Data Processing In ICOS RI, in: 2nd international workshop
on interoperable infrastructures for interdisciplinary big data sciences
(it4ris 16) in the context of ieee real-time system symposium (rtss), 29 November–2 December 2016, Porto, Portugal, 2016. a
Hofmeister, F., Arias-Rodriguez, L. F., Premier, V., Marin, C., Notarnicola,
C., Disse, M., and Chiogna, G.: Intercomparison of Sentinel-2 and modelled
snow cover maps in a high-elevation Alpine catchment, J. Hydrol., 15, 100123, https://doi.org/10.1016/j.hydroa.2022.100123, 2022. a
Hojatimalekshah, A., Uhlmann, Z., Glenn, N. F., Hiemstra, C. A., Tennant, C. J., Graham, J. D., Spaete, L., Gelvin, A., Marshall, H.-P., McNamara, J. P., and Enterkine, J.: Tree canopy and snow depth relationships at fine scales with terrestrial laser scanning, The Cryosphere, 15, 2187–2209, https://doi.org/10.5194/tc-15-2187-2021, 2021. a
Horton, R. E.: The Rôle of infiltration in the hydrologic cycle, Eos,
Transactions American Geophysical Union, 14, 446–460,
https://doi.org/10.1029/TR014i001p00446, 1933. a
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl,
J., and Marshall, S.: The Community Earth System Model: A
Framework for Collaborative Research, B. Am. Meteorol. Soc., 94, 1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1, 2013. a
Iseri, Y., Diaz, A. J., Trinh, T., Kavvas, M. L., Ishida, K., Anderson, M. L.,
Ohara, N., and Snider, E. D.: Dynamical downscaling of global reanalysis data
for high-resolution spatial modeling of snow accumulation/melting at the
central/southern Sierra Nevada watersheds, J. Hydrol., 598,
126445, https://doi.org/10.1016/j.jhydrol.2021.126445, 2021. a
Jabot, E., Zin, I., Lebel, T., Gautheron, A., and Obled, C.: Spatial
interpolation of sub-daily air temperatures for snow and hydrologic
applications in mesoscale Alpine catchments, Hydrol. Process., 26,
2618–2630, 2012. a
Jacobs, J. M., Hunsaker, A. G., Sullivan, F. B., Palace, M., Burakowski, E. A., Herrick, C., and Cho, E.: Snow depth mapping with unpiloted aerial system lidar observations: a case study in Durham, New Hampshire, United States, The Cryosphere, 15, 1485–1500, https://doi.org/10.5194/tc-15-1485-2021, 2021. a
Jefferson, J. L. and Maxwell, R. M.: Evaluation of simple to complex
parameterizations of bare ground evaporation, J. Adv. Model. Earth Sy., 7, 1075–1092, https://doi.org/10.1002/2014MS000398, 2015. a
Jones, J. E. and Woodward, C. S.: Newton–Krylov-multigrid solvers for
large-scale, highly heterogeneous, variably saturated flow problems, Adv. Water Resour., 24, 763–774, 2001. a
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple
parameterisation for flux footprint predictions,
Bound.-Lay. Meteorol.,
112, 503–523, 2004. a
Klok, E. J., Jasper, K., Roelofsma, K. P., Gurtz, J., and Badoux, A.:
Distributed hydrological modelling of a heavily glaciated Alpine river
basin, Hydrolog. Sci. J., 46, 553–570, 2001. a
Kollet, S. J. and Maxwell, R. M.: Integrated surface–groundwater flow
modeling: A free-surface overland flow boundary condition in a parallel
groundwater flow model, Adv. Water Resour., 29, 945–958,
https://doi.org/10.1016/j.advwatres.2005.08.006, 2006. a, b, c
Kollet, S. J. and Maxwell, R. M.: Capturing the influence of groundwater
dynamics on land surface processes using an integrated, distributed watershed
model, Water Resour. Res., 44, W02402, https://doi.org/10.1029/2007WR006004, 2008. a
Kuffour, B. N. O., Engdahl, N. B., Woodward, C. S., Condon, L. E., Kollet, S., and Maxwell, R. M.: Simulating coupled surface–subsurface flows with ParFlow v3.5.0: capabilities, applications, and ongoing development of an open-source, massively parallel, integrated hydrologic model, Geosci. Model Dev., 13, 1373–1397, https://doi.org/10.5194/gmd-13-1373-2020, 2020. a, b, c
Liston, G. E. and Elder, K.: A Meteorological Distribution System for
High-Resolution Terrestrial Modeling (MicroMet),
J. Hydrometeorol., 7, 217–234, https://doi.org/10.1175/JHM486.1, 2006. a, b, c, d
Liston, G. E., Perham, C. J., Shideler, R. T., and Cheuvront, A. N.: Modeling
snowdrift habitat for polar bear dens, Ecol. Model., 320, 114–134,
https://doi.org/10.1016/j.ecolmodel.2015.09.010, 2016. a
Loritz, R., Hrachowitz, M., Neuper, M., and Zehe, E.: The role and value of distributed precipitation data in hydrological models, Hydrol. Earth Syst. Sci., 25, 147–167, https://doi.org/10.5194/hess-25-147-2021, 2021. a
Marsh, C. B., Pomeroy, J. W., Spiteri, R. J., and Wheater, H. S.: A Finite
Volume Blowing Snow Model for Use With Variable Resolution
Meshes, Water Resour. Res., 56, e2019WR025307,
https://doi.org/10.1029/2019WR025307, 2020. a
Maxwell, R. M.: A terrain-following grid transform and preconditioner for
parallel, large-scale, integrated hydrologic modeling, Adv. Water Resour., 53, 109–117, 2013. a
Maxwell, R. M. and Miller, N. L.: Development of a coupled land surface and
groundwater model, J. Hydrometeorol., 6, 233–247,
2005. a
Meerveld, H. J. T.-v., James, A. L., McDonnell, J. J., and Peters, N. E.: A
reference data set of hillslope rainfall-runoff response, Panola Mountain
Research Watershed, United States, Water Resour. Res., 44, W06502, https://doi.org/10.1029/2007WR006299, 2008. a
Melton, F. S., Huntington, J., Grimm, R., Herring, J., Hall, M., Rollison, D.,
Erickson, T., Allen, R., Anderson, M., and Fisher, J. B.: Openet: Filling a
critical data gap in water management for the western united states, J. Am. Water. Resour. As., 1–24, https://doi.org/10.1111/1752-1688.12956, 2021. a
Nijssen, B. and Lettenmaier, D. P.: A simplified approach for predicting
shortwave radiation transfer through boreal forest canopies, J. Geophys. Res.-Atmos., 104, 27859–27868,
https://doi.org/10.1029/1999JD900377, 1999. a
Oishi, A. C., Oren, R., and Stoy, P. C.: Estimating components of forest
evapotranspiration: a footprint approach for scaling sap flux measurements,
Agr. Forest Meteorol., 148, 1719–1732, 2008. a
Oleson, K. W., Dai, Y., Bonan, G., Bosilovich, M., Dickinson, R., Dirmeyer, P.,
Hoffman, F., Houser, P., Levis, S., and Niu, G.-Y.: Technical description of
the community land model (CLM), Tech. Note NCAR/TN-461+ STR, https://doi.org/10.5065/D6N877R0, 2004. a
Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems,
J. S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, R., and Marks, D.: The
Airborne Snow Observatory: Fusion of scanning lidar, imaging
spectrometer, and physically-based modeling for mapping snow water equivalent
and snow albedo, Remote Sens. Environ., 184, 139–152, 2016. a
Parsekian, A. D., Grana, D., Neves, F. d. A., Pleasants, M. S., Seyfried, M.,
Moravec, B. G., Chorover, J., Moraes, A. M., Smeltz, N. Y., and Westenhoff,
J. H.: Hydrogeophysical comparison of hillslope critical zone architecture
for different geologic substrates, Geophysics, 86, WB29–WB49, 2021. a
Pomeroy, J. W. and Li, L.: Prairie and arctic areal snow cover mass balance
using a blowing snow model, J. Geophys. Res.-Atmos.,
105, 26619–26634, https://doi.org/10.1029/2000JD900149, 2000. a
Pomeroy, J. W., Toth, B., Granger, R. J., Hedstrom, N. R., and Essery, R.
L. H.: Variation in Surface Energetics during Snowmelt in a Subarctic
Mountain Catchment, J. Hydrometeorol., 4, 702–719,
https://doi.org/10.1175/1525-7541(2003)004<0702:VISEDS>2.0.CO;2, 2003. a
Pomeroy, J. W., Gray, D. M., Brown, T., Hedstrom, N. R., Quinton, W. L.,
Granger, R. J., and Carey, S. K.: The cold regions hydrological model: a
platform for basing process representation and model structure on physical
evidence, Hydrol. Process., 21, 2650–2667,
https://doi.org/10.1002/hyp.6787, 2007. a
Pradhananga, D. and Pomeroy, J. W.: Diagnosing changes in glacier hydrology
from physical principles using a hydrological model with snow redistribution,
sublimation, firnification and energy balance ablation algorithms, J. Hydrol., 608, 127545, https://doi.org/10.1016/j.jhydrol.2022.127545, 2022. a
Revuelto, J., Azorin-Molina, C., Alonso-González, E., Sanmiguel-Vallelado, A., Navarro-Serrano, F., Rico, I., and López-Moreno, J. I.: Meteorological and snow distribution data in the Izas Experimental Catchment (Spanish Pyrenees) from 2011 to 2017, Earth Syst. Sci. Data, 9, 993–1005, https://doi.org/10.5194/essd-9-993-2017, 2017. a
Revuelto, J., Billecocq, P., Tuzet, F., Cluzet, B., Lamare, M., Larue, F., and
Dumont, M.: Random forests as a tool to understand the snow depth
distribution and its evolution in mountain areas, Hydrol. Process., 34,
5384–5401, https://doi.org/10.1002/hyp.13951, 2020. a, b
Riggs, G., Hall, D., and Salomonson, V.: A snow index for the Landsat
Thematic Mapper and Moderate Resolution Imaging
Spectroradiometer, in: Proceedings of IGARSS '94 – 1994 IEEE
International Geoscience and Remote Sensing Symposium, vol. 4, 1942–1944, https://doi.org/10.1109/IGARSS.1994.399618, 1994. a
Rush, M., Rajaram, H., Anderson, R. S., and Anderson, S. P.: Modeling
Aspect‐Controlled Evolution of Ground Thermal Regimes on
Montane Hillslopes, J. Geophys. Res.-Earth, 126,
e2021JF006126, https://doi.org/10.1029/2021JF006126, 2021. a
Sampaio, R. J., Rodriguez, D. A., Von Randow, C., da Silva, F. P., de Araújo,
A. A. M., and Filho, O. C. R.: Sensible heat flux assessment in a complex
coastal-mountain urban area in the metropolitan area of Rio de Janeiro,
Brazil, Meteorol. Atmos. Phys., 133, 973–987, https://doi.org/10.1007/s00703-021-00812-2, 2021. a
Sevruk, B. and WMO, G.: Correction of precipitation
measurements(Proceedings), Zuerich (Switzerland) ETH, Zurich, Switzerland, Geographisches Inst., ETH/IAHS/WMO Workshop on the Correction of Precipitation
Measurements, 1986. a
Sidle, R. C.: Field observations and process understanding in hydrology:
essential components in scaling, Hydrol. Process., 20, 1439–1445, 2006. a
Sidle, R. C.: Strategies for smarter catchment hydrology models: incorporating
scaling and better process representation, Geoscience Letters, 8, 1–14, 2021. a
Smith, S., reedmaxwell, i-ferguson, Engdahl, N., Gasper, F., Chennault, C., Avery, P., Jourdain, S., grapp1, Condon, L., Bennett, A., Rigor, P., Kulkarni, K., Bansal, V., xy124, basileh, Thompson, D, DrewLazzeriKitware, Swilley, J., ... zperzan: aniketgupta2009/treeac-alp-parflow-ver-meteo: treeac-alp-parflow-ver-meteo (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.7470757, 2022. a
Song, J., Miller, G. R., Cahill, A. T., Aparecido, L. M. T., and Moore, G. W.: Modeling land surface processes over a mountainous rainforest in Costa Rica using CLM4.5 and CLM5, Geosci. Model Dev., 13, 5147–5173, https://doi.org/10.5194/gmd-13-5147-2020, 2020. a, b
Sun, N., Wigmosta, M., Zhou, T., Lundquist, J., Dickerson-Lange, S., and
Cristea, N.: Evaluating the functionality and streamflow impacts of
explicitly modelling forest–snow interactions and canopy gaps in a
distributed hydrologic model, Hydrol. Process., 32, 2128–2140,
https://doi.org/10.1002/hyp.13150, 2018. a, b
Tran, H., Zhang, J., Cohard, J.-M., Condon, L. E., and Maxwell, R. M.:
Simulating Groundwater-Streamflow Connections in the Upper Colorado
River Basin, Groundwater, 58, 392–405,
https://doi.org/10.1111/gwat.13000, 2020. a, b
van den Hurk, B., Best, M., Dirmeyer, P., Pitman, A., Polcher, J., and
Santanello, J.: Acceleration of land surface model development over a decade
of GLASS, B. Am. Meteorol. Soc., 92, 1593–1600, 2011. a
Van Genuchten, M. T.: A closed‐form equation for predicting the hydraulic
conductivity of unsaturated soils, Soil Sci. Soc. Am. J.,
44, 892–898, 1980. a
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012. a
Wlostowski, A. N., Molotch, N., Anderson, S. P., Brantley, S. L., Chorover, J.,
Dralle, D., Kumar, P., Li, L., Lohse, K. A., and Mallard, J. M.: Signatures
of hydrologic function across the critical zone observatory network, Water
Resour. Res., 57, e2019WR026635, https://doi.org/10.1029/2019WR026635, 2021. a
Yan, R., Zhang, X., Yan, S., Zhang, J., and Chen, H.: Spatial patterns of
hydrological responses to land use/cover change in a catchment on the Loess
Plateau, China, Ecol. Indic., 92, 151–160, 2018. a
Zhu, B., Xie, X., Lu, C., Lei, T., Wang, Y., Jia, K., and Yao, Y.: Extensive
evaluation of a continental-scale high-resolution hydrological model using
remote sensing and ground-based observations, Remote Sens., 13, 1247, https://doi.org/10.3390/rs13071247, 2021. a
Short summary
Patchy snow cover during spring impacts mountainous ecosystems on a large range of spatio-temporal scales. A hydrological model simulated such snow patchiness at 10 m resolution. Slope and orientation controls precipitation, radiation, and wind generate differences in snowmelt, subsurface storage, streamflow, and evapotranspiration. The snow patchiness increases the duration of the snowmelt to stream and subsurface storage, which sustains the plants and streamflow later in the summer.
Patchy snow cover during spring impacts mountainous ecosystems on a large range of...