Articles | Volume 27, issue 5
https://doi.org/10.5194/hess-27-1047-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/hess-27-1047-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Machine-learning- and deep-learning-based streamflow prediction in a hilly catchment for future scenarios using CMIP6 GCM data
Symbiosis Institute of Geo-informatics, Symbiosis International (Deemed University), Pune 411016, India
Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650091, China
Manu Vardhan
Computer Science and Engineering Department, National Institute of
Technology Raipur, Raipur 492010, India
Rakesh Sahu
Computer Science and Engineering Department, Chandigarh University, Mohali 140413, India
Debrupa Chatterjee
Symbiosis Institute of Geo-informatics, Symbiosis International (Deemed University), Pune 411016, India
Pankaj Chauhan
Geomorphology and Glaciology Department, Wadia Institute of Himalayan Geology, Dehradun 248001, India
Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650091, China
Related authors
No articles found.
Yu Zhu, Shiyin Liu, Junfeng Wei, Kunpeng Wu, Tobias Bolch, Junli Xu, Wanqin Guo, Zongli Jiang, Fuming Xie, Ying Yi, Donghui Shangguan, Xiaojun Yao, and Zhen Zhang
Earth Syst. Sci. Data, 17, 1851–1871, https://doi.org/10.5194/essd-17-1851-2025, https://doi.org/10.5194/essd-17-1851-2025, 2025
Short summary
Short summary
This study compiled a near-complete inventory of glacier mass changes across the eastern Tibetan Plateau using topographical maps. These data enhance our understanding of glacier change variability before 2000. When combined with existing research, our dataset provides a nearly 5-decade record of mass balance, aiding hydrological simulations and assessments of mountain glacier contributions to sea-level rise.
Miaomiao Qi, Shiyin Liu, Zhifang Zhao, Yongpeng Gao, Fuming Xie, Georg Veh, Letian Xiao, Jinlong Jing, Yu Zhu, and Kunpeng Wu
Hydrol. Earth Syst. Sci., 29, 969–982, https://doi.org/10.5194/hess-29-969-2025, https://doi.org/10.5194/hess-29-969-2025, 2025
Short summary
Short summary
Here we propose a new mathematically robust and cost-effective model to improve glacial lake water storage estimation. We have also provided a dataset of measured water storage in glacial lakes through field depth measurements. Our model incorporates an automated calculation process and outperforms previous ones, achieving an average relative error of only 14 %. This research offers a valuable tool for researchers seeking to improve the risk assessment of glacial lake outburst floods.
Yu Zhu, Shiyin Liu, Ben W. Brock, Lide Tian, Ying Yi, Fuming Xie, Donghui Shangguan, and Yiyuan Shen
Hydrol. Earth Syst. Sci., 28, 2023–2045, https://doi.org/10.5194/hess-28-2023-2024, https://doi.org/10.5194/hess-28-2023-2024, 2024
Short summary
Short summary
This modeling-based study focused on Batura Glacier from 2000 to 2020, revealing that debris alters its energy budget, affecting mass balance. We propose that the presence of debris on the glacier surface effectively reduces the amount of latent heat available for ablation, which creates a favorable condition for Batura Glacier's relatively low negative mass balance. Batura Glacier shows a trend toward a less negative mass balance due to reduced ablation.
Fuming Xie, Shiyin Liu, Yongpeng Gao, Yu Zhu, Tobias Bolch, Andreas Kääb, Shimei Duan, Wenfei Miao, Jianfang Kang, Yaonan Zhang, Xiran Pan, Caixia Qin, Kunpeng Wu, Miaomiao Qi, Xianhe Zhang, Ying Yi, Fengze Han, Xiaojun Yao, Qiao Liu, Xin Wang, Zongli Jiang, Donghui Shangguan, Yong Zhang, Richard Grünwald, Muhammad Adnan, Jyoti Karki, and Muhammad Saifullah
Earth Syst. Sci. Data, 15, 847–867, https://doi.org/10.5194/essd-15-847-2023, https://doi.org/10.5194/essd-15-847-2023, 2023
Short summary
Short summary
In this study, first we generated inventories which allowed us to systematically detect glacier change patterns in the Karakoram range. We found that, by the 2020s, there were approximately 10 500 glaciers in the Karakoram mountains covering an area of 22 510.73 km2, of which ~ 10.2 % is covered by debris. During the past 30 years (from 1990 to 2020), the total glacier cover area in Karakoram remained relatively stable, with a slight increase in area of 23.5 km2.
Yu Zhu, Shiyin Liu, Junfeng Wei, Kunpeng Wu, Tobias Bolch, Junli Xu, Wanqin Guo, Zongli Jiang, Fuming Xie, Ying Yi, Donghui Shangguan, Xiaojun Yao, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-473, https://doi.org/10.5194/essd-2022-473, 2023
Preprint withdrawn
Short summary
Short summary
In this study, we presented a nearly complete inventory of glacier mass change dataset across the eastern Tibetan Plateau by using topographical maps, which will enhance the knowledge on the heterogeneity of glacier change before 2000. Our dataset, in combination with the published results, provide a nearly five decades mass balance to support hydrological simulation, and to evaluate the contribution of mountain glacier loss to sea level.
Dahong Zhang, Xiaojun Yao, Hongyu Duan, Shiyin Liu, Wanqin Guo, Meiping Sun, and Dazhi Li
The Cryosphere, 15, 1955–1973, https://doi.org/10.5194/tc-15-1955-2021, https://doi.org/10.5194/tc-15-1955-2021, 2021
Short summary
Short summary
Glacier centerlines are crucial input for many glaciological applications. We propose a new algorithm to derive glacier centerlines and implement the corresponding program in Python language. Application of this method to 48 571 glaciers in the second Chinese glacier inventory automatically yielded the corresponding glacier centerlines with an average computing time of 20.96 s, a success rate of 100 % and a comprehensive accuracy of 94.34 %.
Cited articles
Abbasian, M., Moghim, S., and Abrishamchi, A.: Performance of the general circulation models in simulating temperature and precipitation over Iran, Theor. Appl. Climatol., 135, 1465–1483,
https://doi.org/10.1007/s00704-018-2456-y, 2019.
Adib, M. N. M. and Harun, S.: Metalearning Approach Coupled with CMIP6
Multi-GCM for Future Monthly Streamflow Forecasting, J. Hydrol. Eng., 27,
05022004, https://doi.org/10.1061/(ASCE)HE.1943-5584.0002176, 2022.
Adnan, R. M., Yuan, X., Kisi, O., Yuan, Y., Tayyab, M., and Lei, X.:
Application of soft computing models in streamflow forecasting. In
Proceedings of the institution of civil engineers-water, Manage., 172,
123–134, https://doi.org/10.1680/jwama.16.00075, 2019.
Adnan, R. M., Liang, Z., Heddam, S., Zounemat-Kermani, M., Kisi, O., and Li,
B.: Least square support vector machine and multivariate adaptive regression
splines for streamflow prediction in mountainous basin using
hydro-meteorological data as inputs, J. Hydrol., 586, 124371,
https://doi.org/10.1016/j.jhydrol.2019.124371, 2020.
Ali, S. A., Aadhar, S., Shah, H. L., and Mishra, V.: Projected increase in
hydropower production in India under climate change, Sci. Rep., 8, 1–12, https://doi.org/10.1038/s41598-018-30489-4, 2018.
Archer, D.: Contrasting hydrological regimes in the upper Indus Basin, J.
Hydrol., 274, 198–210, https://doi.org/10.1016/S0022-1694(02)00414-6, 2003.
Beven, K. J.: Rainfall-runoff modelling: the primer, John Wiley & Sons, ISBN 978-0-470-71459-1, 2011.
Chen, H., Sun, J., Lin, W., and Xu, H.: Comparison of CMIP6 and CMIP5 models
in simulating climate extremes, Sci. Bull., 65, 1415–1418,
https://doi.org/10.1016/j.scib.2020.05.015, 2020.
Choudhury, B. A., Rajesh, P. V., Zahan, Y., and Goswami, B. N.: Evolution of the Indian summer monsoon rainfall simulations from CMIP3 to CMIP6 models, Clim. Dynam., 58, 2637–2662, https://doi.org/10.1007/s00382-021-06023-0, 2022.
Conan, C., De Marsily, G., Bouraoui, F., and Bidoglio, G.: A long-term
hydrological modelling of the Upper Guadiana River basin (Spain), Phys.
Chem. Earth. A/B/C, 28, 193–200, https://doi.org/10.1016/S1474-7065(03)00025-1 2003.
Dai, A., Qian, T., Trenberth, K. E., and Milliman, J. D.: Changes in
continental freshwater discharge from 1948 to 2004, J. Climate, 22, 2773–2792, https://doi.org/10.1175/2008JCLI2592.1, 2009.
Das, J. and Nanduri, U. V.: Assessment and evaluation of potential climate
change impact on monsoon flows using machine learning technique over
Wainganga River basin, India, Hydrol. Sci. J., 63, 1020–1046,
https://doi.org/10.1080/02626667.2018.1469757, 2018.
Easterling, D. R., Meehl G, A., Parmesan, C., Changnon S, A., Karl, T. R.,
and Mearns, L. O.: Climate extremes: observations, modeling, and impacts,
Science, 289, 2068–2074, https://doi.org/10.1126/science.289.5487.2068, 2000.
Eng, K. and Wolock D. M.: Evaluation of machine learning approaches for
predicting streamflow metrics across the conterminous United States, No. 2022-5058, US Geological Survey, https://doi.org/10.3133/sir20225058, 2022.
Fu, M., Fan, T., Ding Z, A., Salih S, Q., Al-Ansari, N., and Yaseen Z. M.:
Deep learning data-intelligence model based on adjusted forecasting window
scale: application in daily streamflow simulation, IEEE Access., 8,
32632–32651, https://doi.org/10.1109/ACCESS.2020.2974406, 2020.
Gao, Y., Gao, X., and Zhang, X.: The 2 ∘C global temperature target and the
evolution of the long-term goal of addressing climate change – from the
United Nations framework convention on climate change to the Paris
agreement, Engineering, 3, 272–278, https://doi.org/10.1016/J.ENG.2017.01.022, 2017.
Gerten, D., Rost, S., von Bloh, W., and Lucht, W.: Causes of change in 20th
century global river discharge, Geophys. Res. Lett., 35, L20405,
https://doi.org/10.1029/2008GL035258, 2008.
Ghimire, S., Yaseen, Z. M., Farooque, A. A., Deo, R. C., Zhang, J., and Tao, X.: Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks, Sci. Rep., 11, 1–26, https://doi.org/10.1038/s41598-021-96751-4, 2021.
Ghobadi, F. and Kang, D.: Improving long-term streamflow prediction in a
poorly gauged basin using geo-spatiotemporal mesoscale data and
attention-based deep learning: A comparative study, J. Hydrol., 615,
128608, https://doi.org/10.1016/j.jhydrol.2022.128608, 2022.
Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., and
Xavier, P. K.: Increasing trend of extreme rain events over India in a
warming environment, Science., 314, 1442–1445, https://doi.org/10.1126/science.1132027, 2006.
Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration, J. Hydrol. Eng., 4, 135–143, 1999.
Gusain, A., Ghosh, S., and Karmakar, S.: Added value of CMIP6 over CMIP5
models in simulating Indian summer monsoon rainfall, Atmos. Res., 232,
104680, https://doi.org/10.1016/j.atmosres.2019.104680, 2020.
Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M.,
Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., Schewe, J., and Stacke,
T.: Global water resources affected by human interventions and climate
change, P. Natl. Acad. Sci. USA, 111, 3251–3256,
https://doi.org/10.1073/pnas.1222475110, 2014.
Hagen, J. S., Leblois, E., Lawrence, D., Solomatine, D., and Sorteberg, A.:
Identifying major drivers of daily streamflow from large-scale atmospheric
circulation with machine learning, J. Hydrol., 596, 126086,
https://doi.org/10.1016/j.jhydrol.2021.126086, 2021.
Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H.: The
elements of statistical learning: data mining, inference, and prediction,
Vol. 2, 1–758, Springer, New York, https://www.sas.upenn.edu/~fdiebold/NoHesitations/BookAdvanced.pdf (last access: 24 July 2022), 2009.
Hawkins, E., Osborne, T. M., Ho, C. K., and Challinor, A. J.: Calibration and
bias correction of climate projections for crop modelling: an idealised case
study over Europe, Agr. Forest Meteorol., 170, 19–31,
https://doi.org/10.1016/j.agrformet.2012.04.007, 2013.
Herath, H. M. V. V., Chadalawada, J., and Babovic, V.: Hydrologically informed machine learning for rainfall–runoff modelling: towards distributed modelling, Hydrol. Earth Syst. Sci., 25, 4373–4401, https://doi.org/10.5194/hess-25-4373-2021, 2021.
Hussain, D. and Khan, A. A.: Machine learning techniques for monthly river
flow forecasting of Hunza River, Pakistan, Earth. Sci. Inf., 13,
939–949, https://doi.org/10.1007/s12145-020-00450-z, 2020.
Hussain, D., Hussain, T., Khan, A. A., Naqvi, S. A. A., and Jamil, A.: A deep
learning approach for hydrological time-series prediction: A case study of
Gilgit river basin, Earth. Sci. Inf., 13, 915–927, 2020.
Jose, D. M. and Dwarakish, G. S.: Bias Correction and trend analysis of
temperature data by a high-resolution CMIP6 Model over a Tropical River
Basin, Asia-Pac. J. Atmos. Sci., 58, 97–115,
https://doi.org/10.1007/s13143-021-00240-7, 2022.
Kabir, S., Patidar, S., and Pender, G.: Investigating capabilities of
machine learning techniques in forecasting stream flow, in: Proceedings of
the Institution of Civil Engineers-Water Manage., 173, 69–86, https://doi.org/10.1680/jwama.19.00001, 2020.
Kadel, I., Yamazaki, T., Iwasaki, T., and Abdillah M, R.: Projection of
future monsoon precipitation over the central Himalayas by CMIP5 models
under warming scenarios, Clim. Res., 75, 1–21, https://doi.org/10.3354/cr01497, 2018.
Karan, K., Singh, D., Singh, P. K., Bharati, B., Singh, T. P., and Berndtsson, R.: Implications of future climate change on crop and irrigation water requirements in a semi-arid river basin using CMIP6 GCMs, J. Arid. Land., 14, 1234–1257, https://doi.org/10.1007/s40333-022-0081-1, 2022.
Kim, Y. H., Min, S. K., and Zhang, X.: Evaluation of the CMIP6 multi-model
ensemble for climate extreme indices, Weat. Clim. Extremes, 29, 100269,
https://doi.org/10.1016/j.wace.2020.100269, 2020.
Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., and Inman,
D. J.: 1D convolutional neural networks and applications: A survey,
Mech. Syst. Signal Pr., 151, 107398, https://doi.org/10.1016/j.ymssp.2020.107398, 2021.
Kirchner, J. W.: Getting the right answers for the right reasons: Linking
measurements, analyses, and models to advance the science of hydrology,
Water. Resour. Res., 42, W03S04, https://doi.org/10.1029/2005WR004362, 2006.
Krysanova, V.,Wortmann, M., Bolch, T., Merz, B., Duethmann, D., Walter, J., Huang, S., Tong, J., Buda, S., and Kundzewicz, Z. W.: Analysis of current trends in climate parameters,
river discharge and glaciers in the Aksu River basin (Central Asia), Hydrol.
Sci. J., 60, 566–590, https://doi.org/10.1080/02626667.2014.925559, 2015.
Kundzewicz, Z. W., Nohara, D., Tong, J., Oki, T., Buda, S., and Takeuchi,
K.: Discharge of large Asian rivers–Observations and projections, Quat.
Int., 208, 4–10, https://doi.org/10.1016/j.quaint.2009.01.011, 2009.
Lalande, M., Ménégoz, M., Krinner, G., Naegeli, K., and Wunderle, S.: Climate change in the High Mountain Asia in CMIP6, Earth Syst. Dynam., 12, 1061–1098, https://doi.org/10.5194/esd-12-1061-2021, 2021.
Legates, D. R. and McCabe Jr., G. J.: Evaluating the use of
“goodness-of-fit” measures in hydrologic and hydroclimatic model
validation, Water. Resour. Res., 35, 1, 233–241,
https://doi.org/10.1029/1998WR900018, 1999.
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., and Bierkens, M. F. P.:
Consistent increase in High Asia's runoff due to increasing glacier melt and
precipitation, Nat. Clim. Change., 4, 587–592,
https://doi.org/10.1038/nclimate2237, 2014.
Lutz, A. F., Ter Maat, H. W., Wijngaard, R. R., Biemans, H., Syed, A., Shrestha, A. B., Wester, P., and Immerzeel, W. W.: South Asian River basins in a 1.5 C warmer world, Reg. Enviro. Change., 19, 833–847,
https://doi.org/10.1007/s10113-018-1433-4, 2019.
Mahato, P. K., Singh, D., Bharati, B., Gagnon, A. S., Singh, B. B., and Brema, J.: Assessing the impacts of human interventions and climate change on
fluvial flooding using CMIP6 data and GIS-based hydrologic and hydraulic
models, Geocarto. Int., 37, 11483–11508, https://doi.org/10.1080/10106049.2022.2060311, 2022.
Mazrooei, A., Sankarasubramanian, A., and Wood, A. W.: Potential in improving
monthly streamflow forecasting through variational assimilation of observed
streamflow, J. Hydrol., 600, 126559, https://doi.org/10.1016/j.jhydrol.2021.126559, 2021.
Miller, J. D., Immerzeel, W. W., and Rees, G.: Climate change impacts on
glacier hydrology and river discharge in the Hindu Kush–Himalayas, Mt. Res.
Dev., 32, 461–467, https://doi.org/10.1659/MRD-JOURNAL-D-12-00027.1, 2012.
Mishra, V., Bhatia, U., and Tiwari, A. D.: Bias-corrected climate projections
for South Asia from Coupled Model Intercomparison Project-6, Sci. Data, 7,
338, https://doi.org/10.1038/s41597-020-00681-1, 2020.
Moriasi, D. N., Arnold, J. G., Van-Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L.: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, T. ASABE, 50, 885–900, https://doi.org/10.13031/2013.23153, 2007.
Murphy, J. M., Sexton, D. M., Barnett, D. N., Jones, G. S., Webb, M. J., Collins, M., and Stainforth, D. A.: Quantification of modelling uncertainties in a large ensemble of climate change simulations, Nature, 430, 768–772,
https://doi.org/10.1038/nature02771, 2004.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10, 282–290,
https://doi.org/10.1016/0022-1694(70)90098-3, 1970.
Nepal, S. and Shrestha, A. B.: Impact of climate change on the hydrological
regime of the Indus, Ganges and Brahmaputra River basins: a review of the
literature, Int. J. Water. Resou. Dev., 31, 201–218,
https://doi.org/10.1080/07900627.2015.1030494, 2015.
Niu, X., Wang, S., Tang, J., Lee, D. K., Gutowski, W., Dairaku, K., McGregor,
J., Katzfey, J., Gao, X., Wu, J., and Hong, S.: Projection of Indian summer
monsoon climate in 2041–2060 by multiregional and global climate models,
J. Geophys. Res.-Atmos., 120, 1776–1793, https://doi.org/10.1002/2014JD022620, 2015.
Oki, T. and Kanae, S.: Global hydrological cycles and world water
resources, Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845, 2006.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Otto, F. E., Skeie, R. B., Fuglestvedt, J. S., Berntsen, T., and Allen, M.
R.: Assigning historic responsibility for extreme weather events, Nat. Clim.
Change., 7, 757–759, https://doi.org/10.1038/nclimate3419, 2017.
Pasquini, A. I. and Depetris, P. J.: Discharge trends and flow dynamics of
South American rivers draining the southern Atlantic seaboard: An overview,
J. Hydrol., 333, 385–399, https://doi.org/10.1016/j.jhydrol.2006.09.005, 2007.
Rahimzad, M., Moghaddam Nia, A., Zolfonoon, H., Soltani, J., Danandeh Mehr,
A., and Kwon, H. H.: Performance comparison of an lstm-based deep learning
model versus conventional machine learning algorithms for streamflow
forecasting, Water. Resour. Manage., 35, 4167–4187,
https://doi.org/10.1007/s11269-021-02937-w, 2021.
Rasouli, K., Hsieh, W. W., and Cannon, A. J.: Daily streamflow forecasting by
machine learning methods with weather and climate inputs, J. Hydrol, 414,
284–293, https://doi.org/10.1016/j.jhydrol.2011.10.039, 2012.
Refsgaard, J. C.: Parameterisation, calibration and validation of distributed
hydrological models, J. Hydrol., 198, 69–97, https://doi.org/10.1016/S0022-1694(96)03329-X, 1997.
Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., Sameer, K. C., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, H., Da Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-campen, H., Obersteiner, M., Tabeau, A., and Tavoni, M.: The shared socioeconomic pathways and
their energy, land use, and greenhouse gas emissions implications: an
overview, Global Environ. Change, 42, 153–168,
https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017.
Sabin, T. P., Krishnan, R., Vellore, R., Priya, P., Borgaonkar, H. P., Singh,
B. B., and Sagar, A.: Climate change over the Himalayas. In Assessment of
climate change over the Indian region, Springer, Singapore, 207–222,
https://doi.org/10.1007/978-981-15-4327-2_11, 2020.
Sanjay, J., Krishnan, R., Shrestha, A. B., Rajbhandari, R., and Ren, G. Y.:
Downscaled climate change projections for the Hindu Kush Himalayan region
using CORDEX South Asia regional climate models, Adv. Clim. Change. Res., 8,
185–198, https://doi.org/10.1016/j.accre.2017.08.003, 2017.
Schreiner-McGraw, A. P. and Ajami, H.: Impact of uncertainty in
precipitation forcing data sets on the hydrologic budget of an integrated
hydrologic model in mountainous terrain, Water. Resour. Res., 56, e2020WR027639, https://doi.org/10.1029/2020WR027639, 2020.
Shortridge, J. E., Guikema, S. D., and Zaitchik, B. F.: Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds, Hydrol. Earth Syst. Sci., 20, 2611–2628, https://doi.org/10.5194/hess-20-2611-2016, 2016.
Shu, X., Ding, W., Peng, Y., Wang, Z., Wu, J., and Li, M.: Monthly streamflow
forecasting using convolutional neural network. Water Resour. Manag., 35,
5089–5104, https://doi.org/10.1007/s11269-021-02961-w, 2021.
Shukla, S., Jain, S. K., and Kansal, M. L.: Hydrological modelling of a
snow/glacier-fed western Himalayan basin to simulate the current and future
streamflows under changing climate scenarios, Sci. Total. Environ., 795,
148871, https://doi.org/10.1016/j.scitotenv.2021.148871, 2021.
Singh, D., Gupta, R. D., and Jain, S. K.: Study of long-term trend in river
discharge of Sutlej River (NW Himalayan region), Geogr. Environ.
Sustain., 7, 87–96, https://doi.org/10.24057/2071-9388-2014-7-3-50-57, 2014.
Singh, D., Gupta, R. D., and Jain, S. K.: Assessment of impact of climate
change on water resources in a hilly river basin, Arabian J. Geosci., 8,
10625–10646, https://doi.org/10.1007/s12517-015-1985-2, 2015a.
Singh, D., Gupta, R. D., and Jain, S. K.: Statistical analysis of long term
spatial and temporal trends of temperature parameters over Sutlej River
basin, India, J. Earth. Syst. Sci., 124, 17–35,
https://doi.org/10.1007/s12517-015-1985-2, 2015b.
Singh, D., Jain, S. K., and Gupta, R. D.: Statistical downscaling and
projection of future temperature and precipitation change in middle
catchment of Sutlej River Basin, India, J. Earth. Syst. Sci., 124,
843–860, https://doi.org/10.1007/s12040-015-0575-8, 2015c.
Singh, D., Rai, S. P., and Rai, D.: Application of geospatial techniques in
hydrological modelling, in: Sustainable Green Technologies for Environmental Management, edited by: Shah, S., Venkatramanan, V., and Prasad, R., Springer, Singapore, https://doi.org/10.1007/978-981-13-2772-8_8, 2019.
Singh, D., Zhu, Y., Liu, S., Srivastava, P. K., Dharpure, J. K., Chatterjee, D., Sahu, R., and Gagnon, A. S.: Exploring the links between variations in snow cover area and climatic variables in a Himalayan catchment using earth
observations and CMIP6 climate change scenarios, J. Hydrol., 608, 127648,
https://doi.org/10.1016/j.jhydrol.2022.127648, 2022.
Singh, P. and Jain, S. K.: Snow, and glacier melt in the Satluj River at
Bhakra Dam in the western Himalayan region, Hydrol. Sci. J., 47, 93–106,
https://doi.org/10.1080/02626660209492910, 2002.
Sood, A. and Smakhtin, V.: Global hydrological models: a review, Hydrol.
Sci. J., 60, 549–565, https://doi.org/10.1080/02626667.2014.950580, 2015.
Sperna Weiland, F. C., van Beek, L. P. H., Kwadijk, J. C. J., and Bierkens, M. F. P.: The ability of a GCM-forced hydrological model to reproduce global discharge variability, Hydrol. Earth Syst. Sci., 14, 1595–1621, https://doi.org/10.5194/hess-14-1595-2010, 2010.
Stahl, K., Hisdal, H., Hannaford, J., Tallaksen, L. M., van Lanen, H. A. J., Sauquet, E., Demuth, S., Fendekova, M., and Jódar, J.: Streamflow trends in Europe: evidence from a dataset of near-natural catchments, Hydrol. Earth Syst. Sci., 14, 2367–2382, https://doi.org/10.5194/hess-14-2367-2010, 2010.
Stahl, K., Tallaksen, L. M., Hannaford, J., and van Lanen, H. A. J.: Filling the white space on maps of European runoff trends: estimates from a multi-model ensemble, Hydrol. Earth Syst. Sci., 16, 2035–2047, https://doi.org/10.5194/hess-16-2035-2012, 2012.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001.
Thapa, S., Li, H., Li, B., Fu, D., Shi, X., Yabo, S., Lu, L., Qi, H., and
Zhang, W.: Impact of climate change on snowmelt runoff in a Himalayan basin,
Nepal, Environ. Monit. Assess., 193, 1–17, https://doi.org/10.1007/s10661-021-09197-6, 2021.
Trenberth, K. E.: Changes in precipitation with climate change, Clim. Res.,
47, 123–138, https://doi.org/10.3354/cr00953, 2011.
Turner A, G. and Annamalai, H.: Climate change and the South Asian summer
monsoon, Nat. Clim. Change, 2, 587–595, https://doi.org/10.1038/nclimate1495, 2012.
Van, S. P., Le, H. M., Thanh, D. V., Dang, T. D., Loc, H. H., and Anh, D. T.: Deep learning convolutional neural network in rainfall–runoff modelling, J.
Hydroinf., 22, 541–561, https://doi.org/10.2166/hydro.2020.095, 2020.
Van der Wiel, K., Wanders, N., Selten, F. M., and Bierkens, M. F. P.: Added
value of large ensemble simulations for assessing extreme river discharge in
a 2 ∘C warmer world, Geophys. Res. Lett., 46, 2093–2102,
https://doi.org/10.1029/2019GL081967, 2019.
Van-Liew, M. W., Arnold, J. G., and Garbrecht, J. D.: Hydrologic simulation on agricultural watersheds: Choosing between two models, T. ASAE, 46, 1539, https://doi.org/10.13031/2013.15643, 2003.
Wang, T., Zhao, Y., Xu, C., Ciais, P., Liu, D., Yang, H., Piao, S., and Yao, T.: Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris
climate targets, Nat. Clim. Change, 11, 219–225,
https://doi.org/10.1038/s41558-020-00974-8, 2021.
Xenarios, S., Gafurov, A., Schmidt-Vogt, D., Sehring, J., Manandhar, S., Hergarten, C., Shigaeva, J., and Foggin, M.: Climate change and adaptation of mountain societies in Central Asia: uncertainties, knowledge gaps, and data
constraints, Reg. Environ. Change, 19, 1339–1352,
https://doi.org/10.1007/s10113-018-1384-9, 2019.
Xiang, Z., Yan, J., and Demir, I.: A rainfall-runoff model with LSTM-based
sequence-to-sequence learning, Water. Resour. Res., 56, e2019WR025326,
https://doi.org/10.1029/2019WR025326, 2020.
Yang, Q., Zhang, H., Wang, G., Luo, S., Chen, D., Peng, W., and Shao, J.:
Dynamic runoff simulation in a changing environment: A data stream approach,
Environ. Modell. Soft., 112, 157–165,
https://doi.org/10.1016/j.envsoft.2018.11.007, 2019.
Yaseen, Z. M., El-Shafie, A., Jaafar, O., Afan, H. A., and Sayl, K. N.:
Artificial intelligence based models for stream-flow forecasting:
2000–2015, J. Hydrol., 530, 829–844, https://doi.org/10.1016/j.jhydrol.2015.10.038, 2015.
Zhao, B., Sun, H., Yan, D., Wei, G., Tuo, Y., and Zhang, W.: Quantifying
changes and drivers of runoff in the Kaidu River Basin associated with
plausible climate scenarios, J. Hydrol.-Reg. Stud., 38, 100968,
https://doi.org/10.1016/j.ejrh.2021.100968, 2021.
Short summary
This study examines, for the first time, the potential of various machine learning models in streamflow prediction over the Sutlej River basin (rainfall-dominated zone) in western Himalaya during the period 2041–2070 (2050s) and 2071–2100 (2080s) and its relationship to climate variability. The mean ensemble of the model results shows that the mean annual streamflow of the Sutlej River is expected to rise between the 2050s and 2080s by 0.79 to 1.43 % for SSP585 and by 0.87 to 1.10 % for SSP245.
This study examines, for the first time, the potential of various machine learning models in...