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Abstract. The alteration in river flow patterns, particularly
those that originate in the Himalaya, has been caused by
the increased temperature and rainfall variability brought
on by climate change. Due to the impending intensification
of extreme climate events, as predicted by the Intergovern-
mental Panel on Climate Change (IPCC) in its Sixth As-
sessment Report, it is more essential than ever to predict
changes in streamflow for future periods. Despite the fact
that some research has utilised machine-learning- and deep-
learning-based models to predict streamflow patterns in re-
sponse to climate change, very few studies have been un-
dertaken for a mountainous catchment, with the number of
studies for the western Himalaya being minimal. This study
investigates the capability of five different machine learning
(ML) models and one deep learning (DL) model, namely the
Gaussian linear regression model (GLM), Gaussian gener-
alised additive model (GAM), multivariate adaptive regres-
sion splines (MARSs), artificial neural network (ANN), ran-
dom forest (RF), and 1D convolutional neural network (1D-
CNN), in streamflow prediction over the Sutlej River basin in
the western Himalaya during the periods 2041–2070 (2050s)
and 2071–2100 (2080s). Bias-corrected data downscaled at
a grid resolution of 0.25◦× 0.25◦ from six general circu-
lation models (GCMs) of the Coupled Model Intercompar-
ison Project Phase 6 GCM framework under two green-
house gas (GHG) trajectories (SSP245 and SSP585) were
used for this purpose. Four different rainfall scenarios (R0,
R1, R2, and R3) were applied to the models trained with
daily data (1979–2009) at Kasol (the outlet of the basin)

in order to better understand how catchment size and the
geo-hydromorphological aspects of the basin affect runoff.
The predictive power of each model was assessed using
six statistical measures, i.e. the coefficient of determina-
tion (R2), the ratio of the root mean square error to the
standard deviation of the measured data (RSR), the mean
absolute error (MAE), the Kling–Gupta efficiency (KGE),
the Nash–Sutcliffe efficiency (NSE), and the percent bias
(PBIAS). The RF model with rainfall scenario R3, which
outperformed other models during the training (R2

= 0.90;
RSR= 0.32; KGE= 0.87; NSE= 0.87; PBIAS= 0.03) and
testing (R2

= 0.78; RSR= 0.47; KGE= 0.82; NSE= 0.71;
PBIAS=−0.31) period, therefore was chosen to simulate
streamflow in the Sutlej River in the 2050s and 2080s un-
der the SSP245 and SSP585 scenarios. Bias correction was
further applied to the projected daily streamflow in order
to generate a reliable times series of the discharge. The
mean ensemble of the model results shows that the mean an-
nual streamflow of the Sutlej River is expected to rise be-
tween 2050s and 2080s by 0.79 % to 1.43 % for SSP585 and
by 0.87 % to 1.10 % for SSP245. In addition, streamflow
will increase during the monsoon (9.70 % to 11.41 % and
11.64 % to 12.70 %) in the 2050s and 2080s under both emis-
sion scenarios, but it will decrease during the pre-monsoon
(−10.36 % to −6.12 % and −10.0 % to −9.13 %), post-
monsoon (−1.23 % to −0.22 % and −5.59 % to −2.83 %),
and during the winter (−21.87 % to−21.52 % and−21.87 %
to −21.11 %). This variability in streamflow is highly corre-
lated with the pattern of precipitation and temperature pre-
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dicted by CMIP6 GCMs for future emission scenarios and
with physical processes operating within the catchment. Pre-
dicted declines in the Sutlej River streamflow over the pre-
monsoon (April to June) and winter (December to March)
seasons might have a significant impact on agriculture down-
stream of the river, which is already having problems due to
water restrictions at this time of year. The present study will
therefore assist in strategy planning to ensure the sustainable
use of water resources downstream by acquiring knowledge
of the nature and causes of unpredictable streamflow pat-
terns.

1 Introduction

Human-induced global warming has altered the patterns of
rainfall worldwide (Goswami et al., 2006; Trenberth, 2011)
and has also increased the risks of extreme events such as
the droughts and floods (Easterling et al., 2000; Trenberth
et al., 2015; Otto et al., 2017). It has impacted hydrology of
many river basins globally, including the variation in stream-
flow (Gerten et al., 2008; Nepal and Shrestha, 2015; Singh
et al., 2015a; Ali et al., 2018; Lutz et al., 2019; Singh et
al., 2022). A study of the long-term (1948–2004) streamflow
(discharge) data of the 200 largest rivers of the globe showed
considerable changes in their annual discharge; however, the
results were statistically significant only for 64 rivers (Dai
et al., 2009). Out of these, 45 were marked with decreas-
ing trends, and the remaining 19 showed increasing trends
in their annual discharge. Similar decreasing and increasing
trends in discharge of the rivers were also reported at the re-
gional scale, i.e. Asia (Kundzewicz et al., 2009; Krysanova et
al., 2015), Europe (Stahl et al., 2010; Stahl et al., 2012), and
North America (Pasquini and Depetris, 2007). Moreover, it
has been established that the effects of rainfall variation and
extreme events on annual discharge are likely strong com-
pared with other drivers (Kundzewicz et al., 2009; Miller et
al., 2012; Van der Wiel et al., 2019). Zhao et al. (2021) ex-
amined how precipitation, evapotranspiration, and the tim-
ing of snowmelt impacted runoff in the Kaidu River basin in
China. They discovered that, as global warming increased,
the timing of snowmelt became less significant, while the in-
fluence of precipitation increased comparatively. A projected
rise of ∼ 2 to 5 ◦C in the mean annual global temperature
by 2100 under higher greenhouse gas emission scenarios, as
predicted by the general circulation models (GCMs; Gao et
al., 2017), will considerably affect the rainfall pattern (in-
tensity and amount) and may alter hydrological cycles (Oki
and Kanae, 2006; Haddeland et al., 2014). This could subse-
quently impact the availability of water resources and present
challenges for their management, since a rise in the demand
of water is also predicted (Lutz et al., 2019). Therefore, it is
indispensable to know the underlying hydrological dynam-
ics occurring within a basin in the context of climate change

for effective management and sustainable use of the water
resources.

The underlying hydrological processes controlling
rainfall–runoff generation in a basin can be understood with
the use of a hydrological model which is based on complex
mathematical equations and theoretical laws governing
physical processes in the basin (Kirchner, 2006; Singh et al.,
2019). It simulates/or predicts the response of the basin to
climatological forcings such as rainfall (Sood and Smakhtin,
2015) and generates a synthetic time series of hydrological
data that can be used by water managers and scientists
for varied applications ranging from water budgeting and
partitioning (Conan et al., 2003; Schreiner-McGraw and
Ajami, 2020) to inundation mapping and modelling (Mahato
et al., 2022). A hydrological model is supposed to not only
have a good predictive power but also the ability to capture
relationships among the forcing factors and catchment
response so that an accurate estimate of the rainfall–runoff
could be made (Shortridge et al., 2016). However, until now,
there has been no hydrological model that can simulate basin
behaviour universally well against all the hydrological chal-
lenges inflicted by climate change and human interventions
(Yang et al., 2019). As a result, many hydrological models
have been devised, considering the functioning and robust-
ness of models for explaining the underlying complexity
in quantifying the basin-scale response to the small-scale
spatial complexity of physical processes (Shortridge et al.,
2016; Herath et al., 2021). Broadly, these can be grouped
into two categories, i.e. physical or process-based models
and empirical or data-driven models (Yang et al., 2019;
Kabir et al., 2020). The latter category of models uses a
mathematical relationship established between runoff and
affecting factors in the basin for deriving the runoff (Adnan
et al., 2019).

It is purported that the data-driven model, despite the in-
herited limitations in the physical interpretability of the pro-
cesses, has outperformed the physical models in terms of
the prediction accuracy in many hydrological applications
(Shortridge et al., 2016; Adnan et al., 2019; Kabir et al.,
2020; Herath et al., 2021). Also, data-driven models are pre-
ferred over the physical models for rainfall–runoff modelling
and/or streamflow prediction modelling due to the limited re-
quirements of data as input, where the data limitation is the
major challenge (Beven, 2011). These models, in the past,
were heavily criticised on the grounds of being incompe-
tent to model the non-linear behaviour of streamflow (Yang
et al., 2019). But recent developments in computational in-
telligence, in the areas of machine learning (ML) and deep
learning (DL) in particular, have greatly expanded the capa-
bilities of empirical modelling (Adnan et al., 2020; Fu et al.,
2020; Rahimzad et al., 2021; Ghobadi and Kang, 2022). This
has resulted in the development of many non-linear models
such as the artificial neural network (ANN), random forest
(RF), support vector regression (SVR), and long short-term
memory (LSTM) models, which can capture and model the
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non-stationarity of the rainfall–runoff relationships (Yaseen
et al., 2015; Shortridge et al., 2016; Adnan et al., 2019;
Yang et al., 2019; Xiang et al., 2020). Yang et al. (2019)
applied three machine learning models, namely ANN, SVR,
and RF, to predict monthly streamflow over the Qingliu River
basin in China, under changing environmental conditions be-
tween 1989 and 2010, and compared their results with the six
process-based hydrological models. They concluded that the
ML model performed better than the process-based model
not only in terms of prediction accuracy but also in terms of
flexibility when it came to including other runoff-effect fac-
tors into the model. Similar outcomes for Lake Tana and the
adjacent rivers in Ethiopia were also reported by Shortridge
et al. (2016), where ML models demonstrated noticeably
lower streamflow prediction errors than the physical models
developed for the region. However, they inferred that linear
machine learning models, such as the multivariate adaptive
regression splines (MARSs) and generalised additive model
(GAM), were sensitive to extreme climate events, so the de-
gree of uncertainty in their predictions needed to be carefully
considered.

The limitations of such data-driven models can be over-
come by adopting more advanced ML and DL models (Xiang
et al., 2020). Rasouli et al. (2012) compared the performance
of the multilinear regression (MLR) model with the Bayesian
neural network (BNN), SVR, and Gaussian process (GP) in
terms of the daily streamflow prediction for the Stave River, a
mountainous basin, in British Columbia, Canada, and found
that the BNN model performed better than others. According
to Hussain and Khan (2020), the supervised-learning model
RF outperformed the multilayer perceptron (MLP) and SVR,
in terms of accuracy, while predicting monthly streamflow
for the Hunza River in Pakistan by 33.6 % and 17.85 %,
respectively. Recently, deep neural network (DNN), convo-
lutional neural network (CNN), and LSTM models, which
are based on deep learning, have seen a surge in the num-
ber of streamflow prediction applications due to their abil-
ities to handle complex stochastic datasets and abstract the
internal physical mechanism (Fu et al., 2020; Ghobadi and
Kang, 2022). Based on statistical performance evaluation
criteria, Rahimzad et al. (2021) found that the LSTM out-
performed the LR, SVR, and MLP models in daily stream-
flow prediction over the Kentucky River basin in the USA.
However, Van et al. (2020) showed that CNN outperformed
LSTM in streamflow modelling in the Vietnamese Mekong
Delta by a small margin. Comparing data-driven models to a
given problem yields a range of results for distinct geograph-
ical and climatic conditions (Hagen et al., 2021). Adnan et
al. (2020) examined the predictive accuracy of the optimally
pruned extreme learning machine (OP-ELM), least-square
support vector machine (LSSVM), MARSs, and model tree
(M5Tree) models in order to estimate monthly streamflow in
the Swat River basin (Hindukush Himalaya), Pakistan. They
came to the conclusion that the LSSVM and MARSs are the
most effective at forecasting streamflow. In contrast, Hussain

et al. (2020) discovered that ELM outperformed 1D-CNN
while forecasting streamflow on three timescales, i.e. daily,
weekly, and monthly in the Gilgit River, Pakistan. This sug-
gests that it is challenging to find a data-driven model that is
effective across all application domains and scales (Yaseen
et al., 2015; Fu et al., 2020).

The use of machine-learning- and deep-learning-based
models for streamflow simulations within catchments is gen-
erally limited to observable periods and the resulting fore-
casts (Eng and Wolock, 2022). There are very limited studies
worldwide in which these models were applied for predict-
ing the long-term streamflow for future periods in the con-
text of climate change (Das and Nanduri, 2018; Thapa et
al., 2021; Adib and Harun, 2022). This can be attributed to
the challenges associated with data assimilation brought on
by the use of coarse-resolution-scenario data obtained from
general circulation models (GCMs), which limits their di-
rect application in regional impact assessment (Hagen et al.,
2021; Adib and Harun, 2022). Das and Nanduri (2018) inte-
grated relevance vector machine (RVM) and support vector
machine (SVM) models with the Coupled Model Intercom-
parison Project Phase (CMIP5) GCMs to project monthly
monsoon streamflow across the Wainganga basin (India) for
monsoon season. Adib and Harun (2022) studied the varia-
tions in the monthly streamflow pattern of the Kurau River
(Malaysia) from 2021 to 2080 by coupling two ML mod-
els (RF and SVR) with the Coupled Model Intercompari-
son Project Phase (CMIP6) GCMs. Despite the significance
potential of the ML and DL models in streamflow predic-
tion, relevant studies assessing the application of these mod-
els for streamflow prediction under future scenarios over the
mountainous basins are limited due to non-availability of
long-term data (Xenarios et al., 2019; Adnan et al., 2020).
Thapa et al. (2021) used a combination of the LSTM model
and the CMIP5 GCM scenarios to estimate streamflow pat-
terns in the Langtang basin of the central Himalaya. Their
analyses revealed a notable increase in streamflow as a re-
sult of the predicted increase in precipitation. The projec-
tions from Coupled Model Intercomparison Project Phase 3
(CMIP3) GCMs and CMIP5 GCMs inherit limitations in the
simulation of extreme precipitation (Kim et al., 2020), which
are the principal drivers for the runoff generation in the catch-
ment. This causes large uncertainty in streamflow predictions
(Wang et al., 2021). Uncertainty in streamflow prediction can
be minimised by using scenarios from the CMIP6 GCMs,
which are likely to be more realistic than previous genera-
tions, i.e. CMIP3 GCMs and CMIP5 GCMs, given their sig-
nificant improvement in simulating rainfall and temperature
for historical records (Chen et al., 2020; Gusain et al., 2020;
Kim et al., 2020). Therefore, projected changes in streamflow
patterns derived from the CMIP6 GCM scenarios would give
a better understanding of the catchment’s future hydrologi-
cal regime than previous ones. To the authors’ knowledge,
no work has been published about a mountainous basin that
integrates ML and/or DL models with CMIP6 GCMs scenar-
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ios to predict changes in streamflow patterns for future peri-
ods. Hence, it is important to test whether machine learning
approaches can be effectively used over a mountainous river
basin to predict streamflow using hydrometeorological vari-
ables and CMIP6 GCM scenarios as the input data.

With a catchment area of 56 874 km2 (up to Bhakra Dam),
the Sutlej also pronounced as “Satluj”, is an important river
in the western Himalaya and runs through diverse climatic
zones. The flow in the upper and middle catchment is pri-
marily impacted by glacier melt and snowmelt induced by a
seasonal temperature shift and the preceding winter precipi-
tation, while the lower section of the catchment area is mostly
regulated by rainfall, both in the winter and during the mon-
soon season (Singh and Jain, 2002; Archer, 2003; Miller et
al., 2012). Based on data from the period 1986–1996, Singh
and Jain (2002) estimated the mean yearly contribution of
snowmelt and glacier melt and rainfall to the Sutlej River to
be 59 % and 41 %, respectively. However, the discharge in the
river peaks is directly related to the peak in rainfall during the
monsoon (Lutz et al., 2014). Recent studies on this basin has
raised concerns about the implications of climatic changes
on streamflow, since a warming climate has brought changes
in the amount and spatiotemporal distribution of precipita-
tion (Singh et al., 2014, 2015b). To date, previous research
has only used process-based hydrological models and scenar-
ios from CMIP3 GCMs and CMIP5 GCMs when examining
the effects of climate change (past and future) on streamflow
patterns in the region (Singh and Jain, 2002; Singh et al.,
2015a; Ali et al., 2018; Shukla et al., 2021), which leaves
a gap in the use of machine and deep learning models and
scenarios from the latest CMIP6 GCMs. This study, for the
very first time, examines the potential of five ML models
and one DL model, namely the Gaussian linear regression
model (GLM), Gaussian generalised additive model (GAM),
MARSs, ANN, RF, and 1D-CNN, in streamflow prediction
over the middle Sutlej River basin (rainfall-dominated zone)
in western Himalaya using different Shared Socioeconomic
Pathway (SSP) scenarios from CMIP6 GCMs. The pattern of
variations in the Sutlej River’s monthly, seasonal, and annual
streamflow is assessed for the future periods of 2041–2070
(2050s) and 2071–2100 (2080s), with respect to the refer-
ence period of 1979–2009, under SSP245 and SSP585. The
findings of the study will help to develop a better plan for
the operation of hydroelectric power projects and water re-
sources management in the catchment.

2 Study area

The selected study area is a sub-catchment within the Satluj
basin (Fig. 1), with an area of 2457 km2. Topographically, it
is very rugged (0–80◦) and is dominated mostly by forests
(56.20 %), grassland (26.4 %), agricultural lands (17.1 %),
and glaciers and snow cover (0.3 %; Singh et al., 2015a). The
presence of mountain barriers in the sub-basin’s north, the

large variation in altitudes (500–5000 m), and the aspect all
contribute to the region’s diverse climate. It varies from a hot
and moist tropical climate in the lower valleys to a cool tem-
perate climate at about 2000 m and tends towards an alpine
climate as the altitude increases beyond 2000 m. The mean
annual discharge (averaged over the period of 1979–2009) of
the river gauged at Kasol was 12 469.43 m3 s−1. There is a
large inter-diurnal and monthly variation in the pattern of the
river discharge. The minimum and maximum daily discharge
recorded at Kasol was 64.30 and 2891 m3 s−1, respectively.
The early months of the year, i.e. starting from January up to
March, are characterised by low streamflow. After this, a con-
tinuous and rapid rise in flow occurs, with the maximum be-
ing in the month of July (∼ 22 %–23 %). Then, it again starts
decreasing, and the flow reaches its minimum in the month
of December (2 %–3 %). The details of the sub-catchment are
summarised in Table 1.

The sub-basin is bestowed with large hydropower
potential. There are three major hydroelectric power
projects, namely the Sunni Dam Hydro Electric Project
of 1080 MW,Rampur hydroelectric power plant (RHEP) of
412 MW, and Nathpa Jhakri India Hydroelectric Power Plant
(NJHEP) of 1500 MW. The sub-basin is climatologically
sensitive and, at present, facing challenges due to climate
change and human interventions (Singh et al., 2015b, c).
Changes in future climate will alter the patterns of flow in
the river and could further affect the water resources and hy-
droelectric power production (Singh et al., 2014).

3 Description of the data and methods

The methodology involved in predicting streamflow for the
period 2041–2100 in the Sutlej River is included in Sect. 3.1,
which is a collection of hydrometeorological data, Sect. 3.2,
which is a selection of machine and deep learning models,
Sect. 3.3, which is a performance evaluation of the devel-
oped models, and Sect. 3.4, which is a bias correction in the
streamflow projection. These are described in detail under
following sub-headings.

3.1 Hydrometeorological data

The daily rainfall, temperature (Tmax and Tmin), relative hu-
midity, solar radiation, wind speed, and discharge data used
to study the performance of the different machine and deep
learning models on streamflow modelling were collected for
31 years, i.e. 1979–2009. Rainfall, temperature, and dis-
charge data were obtained from the Bhakra Beas Manage-
ment Board (BBMB), while relative humidity, solar radia-
tion, and wind data were extracted from the Climate Fore-
cast System Reanalysis (CFSR) Global Weather Data (http://
globalweather.tamu.edu/, last access: 4 October 2020). These
data were collected for three hydrometeorological stations,
namely Kasol, Sunni, and Rampur (Fig. 1).
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Figure 1. The location of the sub-catchment within Sutlej River basin. The three hydrometeorological stations (Kasol, Sunni, and Rampur),
from which this study employed observed data for the years 1979 to 2009, are also shown.

Table 1. Characteristics of the study catchment over the evaluation period of 1979–2009.

Parameters Details

Details of the sub-catchment

Drainage area of the sub-catchment (km2) 2457 km2

Altitude ∼ 500–5000 m
Slope 0–80◦

Geology Granite, Jutogh formation, and Chail, Salkhala, and Hemanta formations
Soil Dystric Cambisols, dystric Regosols, and eutric Fluvisols

Streamflow measured at the outlet (Kasol) of the sub-catchment

Average annual streamflow 411.2 m3 s−1

Minimum streamflow (daily) 64.3 m3 s−1

Maximum streamflow (daily) 2891 m3 s−1

Standard deviation (SD) of the annual streamflow 1750.7 m3 s−1

Coefficient of variation (CV) of the annual streamflow 0.1 m3 s−1

Rainfall integrated over the sub-catchment

Average annual rainfall 1001.3 mm
Average monsoon rainfall (July–September) 403.0 mm
Average winter rainfall (December–March) 277.3 mm

Temperature integrated over the sub-catchment

Average annual maximum temperature (Tmax) 28.3 ◦C
Average annual minimum temperature (Tmin) 13.9 ◦C
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The downscaled outputs from the CMIP6 GCMs, the lat-
est generation of climate models, were used for streamflow
prediction in the future (2050s and 2080s). This framework
of CMIP6 GCMs was run to simulate future climate un-
der four Shared Socioeconomic Pathway (SSP) scenarios,
which are designed to explain potential future greenhouse
gas (GHG) emissions under various global socioeconomic
shifts that could occur by 2100 (Riahi et al., 2017; Karan
et. al, 2022). Even when using downscaled outputs, how-
ever, the regional climate change projections inherit biases
from the GCM boundary conditions (Jose and Dwarakish,
2022), which were corrected in the dataset detailed in Mishra
et al. (2020) for South Asia. They used the empirical quan-
tile mapping (EQM) method to remove bias in the down-
scaled data. This dataset provides bias-corrected downscaled
climate change projections for 13 CMIP6 GCMs and four
GHG emission scenarios (SSP126, SSP245, SSP370, and
SSP585), and the latter are briefly summarised in Riahi et
al. (2017). Climate projections from CMIP6 GCMs that have
been generated under the SSP245 and SSP585 scenarios are
used in this study. SSP245, a medium scenario, represents
the average pathway of future GHG emissions, with a radia-
tive forcing of 4.5 W m−2 by the year 2100, while SSP585
is the scenario with an upper limit in the range of scenarios
with a radiative forcing of 8.5 W m−2 by the end of this cen-
tury (O’Neill et al., 2016). The data are available at a daily
timescale and horizontal spatial resolution of 0.25◦× 0.25◦.
Seven grids of the downscaled CMIP6 GCM data cover the
study area. The temperature (Tmax and Tmin) data were ad-
justed for topographical bias by separating the study area
into a number of homogenous elevation bands spaced by
at an interval of 1000 m and applying a temperature lapse
rate of 6.5 ◦C per 1000 m within each grid. A digital eleva-
tion model (DEM) of 30 m spatial resolution derived from
CartoSat-1 stereo data (http://www.bhuvan.nrsc.gov.in, last
access: 20 November 2020) was used for this purpose. The
values of rainfall and temperature at each grid were then
averaged over the catchment, using the Thiessen polygon
method, in order to provide daily rainfall data integrated at
the catchment scale for assessing changes in the future cli-
mate with respect to the observed period, i.e. 1979–2009.

Furthermore, the ranking of CMIP6 GCMs was done to
find the most appropriate models that can generate the most
plausible scenarios of future climate in the catchment and,
ultimately, be employed in the streamflow projection. A Tay-
lor diagram (Taylor, 2001), a robust graphical plot, is widely
used to rank GCMs due to its effectiveness in determining
the relative strengths of the competing models and in eval-
uating overall performance as a model evolves (Abbasian et
al., 2019; Ghimire et al., 2021). It integrates three statistical
metrics, including the degree of correlation (r), centred root
mean square error (CRMSE), and ratio of spatial standard
deviation (SD). Combining these metrics allows the determi-
nation of the degree of pattern correspondence and explains
how exactly a model represents the observed climate (Taylor,

2001). Therefore, the performance of 13 CMIP6 GCMs in
modelling climatic variables (rainfall, Tmax, and Tmin) in the
Sutlej sub-basin was compared to the observed data (1979–
2009) using a Taylor diagram (Fig. 2a–c). The models were
then ranked as a result of this comparison. A high positive
correlation (r = 0.84 to 0.96) and low CRMSE (< 3 ◦C) er-
ror were found in all 13 CMIP6 GCMs for temperature (Tmax
and Tmin; Fig. 2b–c). Additionally, it was found that the mod-
els’ standard deviations, which ranged from 5.60 to 6.03 ◦C
for Tmax and 6.34 to 6.63 ◦C for Tmin, were close to the SD
of the observed data (6.01 and 6.07 ◦C). These results imply
that all CMIP6 GCMs may be able to predict the most likely
future temperature over the catchment.

However, not all CMIP6 GCMs showed the high degree
of similarity in predicting rainfall; in fact, 2 (CanESM5 and
NorESM2-LR) of the 13 models revealed a negative cor-
relation (Fig. 2a). In the pool of 13 CMIP6 GCMs, only
six models showed relatively higher correlation (r ≥ 0.56),
smaller CRMSE (< 12 cm) errors, and a high similarity to
the standard deviation of the observed data (13.2 cm). They
were the (1) Earth Consortium Earth 3 Veg model (EC-
Earth3-Veg), (2) Russian Institute for Numerical Mathe-
matics climate model version 4.8 (INM-CM4-8), (3) Rus-
sian Institute for Numerical Mathematics climate model ver-
sion 5.0 (INM-CM5-0), (4) Max Planck Institute for Meteo-
rology Earth System Model version 1.2 with higher resolu-
tion (MPI-ESM1-2-HR), (5) Max Planck Institute for Meteo-
rology Earth System Model version 1.2 with lower resolution
(MPI-ESM1-2-LR), and (6) Norwegian Earth System Model
version 2 with medium resolution (NorESM2-MR). Further-
more, within these models, the highest and lowest correla-
tions between observed and simulated rainfall were found for
the INM-CM4-8 (r = 0.69) and NorESM2-MR (r = 0.56),
respectively. These six CMIP6 GCMs were finally selected to
examine future patterns in streamflow for the periods 2050s
and 2080s in the Sutlej River basin, as they had also shown
high performance in simulating temperatures (r = 0.90 to
0.96).

3.2 Selection of machine learning and deep learning
models for streamflow modelling

In this study, five machine learning models and one deep
learning model, namely GLM, GAM, MARSs, ANN, RF and
1D convolution neural network (1D-CNN), were selected,
and their performances in predicting streamflow in Sutlej
River were compared. These are regression-based models
which capture the relationship between the predictors (de-
pendent variables) and the predictand (independent vari-
ables) and provide the value of the output variables (Adnan
et al., 2019; Kabir et al., 2020). The models were trained
with daily observed data recorded during 1979–2009 at Ka-
sol (the gauging site) and simulated historical projections of
CMIP6 GCMs. The climatic projections of the grid corre-
sponding to the Kasol station were taken into consideration
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Figure 2. Taylor diagram showing comparative skills of 13CMIP6 GCMs in simulating climatic variables (rainfall, Tmax, and Tmin) over the
Sutlej sub-basin during reference period (1979–2009). The degree of the correlation coefficient (r) between the observed and CMIP6 GCMs,
centred root mean square error (CRMSE), and departure of the models’ standard deviation (SD) from the observed data (dashed black arc
line) are shown in panel (a) for rainfall, panel (b) for Tmax, and panel (c) for Tmin. The units of SD for rainfall and temperature are in
centimetres and degrees Celsius, respectively.

as the input from the CMIP6 GCMs. However, prior to build-
ing the models, all of the data were normalised, using stan-
dard normalisation techniques, to standardise the features on
a common scale. Furthermore, the entire dataset was split
into training and testing datasets, since a cross-validation
method was adopted in this study. The training dataset (80 %)
was used for fitting the models, whereas a testing dataset was
used for checking model accuracy (20 %). Under the cross-
validation method, the process was repeated until every part
of the allocated data was used in testing (Kabir et al., 2020).
Six different program codes were written in the Python lan-
guage for ANN, GAM, GLM, MARSs, RF, and 1D-CNN
simulations. Out of these six selected models, GLM, GAM,
and MARSs are linear models, whereas other three i.e. ANN,
RF, and 1D-CNN, are non-linear in nature (Shortridge et al.,
2016; Yang et al., 2019; Herath et al., 2021). Additionally,
excluding GLM, all of the remaining models are based on
a non-parametric regression approach, where the functional
relationship between the predictor and predictand is not pre-
determined but can be adjusted to capture the unusual or un-
expected features of the data (Shortridge et al., 2016). A de-
tailed description of these models can be found elsewhere
(Shortridge et al., 2016; Adnan et al., 2019; Yang et al., 2019;
Kabir et al., 2020; Ghimire et al., 2021; Herath et al., 2021;
Shu et al.,2021).

Since the 1D-CNN model is based on weight sharing, it
needs fewer training parameters than other models (Kiranyaz
et al., 2021). It has mainly three layers, i.e. a convolution
layer, pooling layer, and fully connected layer. The primary
job of the convolution layer is to non-linearly map input data
into a set of feature maps or a series of feature vectors. When
working as a visual cortical perceptron, the filter kernels are
convoluted with the input data of their receptive fields. The
convolution results with biases are then passed on to the ac-

tivation function to create feature maps. The pooling layer,
which comes after each convolution layer, primarily serves
to reduce the dimension of the feature maps and maintain the
invariance of characteristic scale. The fully connected layer
uses a completely connected single layer perceptron to com-
bine the feature maps that were acquired by the prior con-
volution and pooling layers in order to build a higher-level
feature (Kiranyaz et al., 2021). In this study, one convolution
layer with 64 filters, a kernel of size 2, and a rectified lin-
ear activation function (ReLU) was employed. This was fol-
lowed by max pooling layer with pool size of 2 and the falt-
term layer. After that, two fully connected layers are applied
with ReLU and a linear activation function, respectively.
However, for optimisation, the adaptive moment estimation
(Adam) algorithm was applied (Ghimire et al., 2021; Shu et
al., 2021). Six variables, namely rainfall, Tmax, Tmin, relative
humidity, solar radiation, and wind speed were used as input
for developing the models. Additionally, to understand the
control of the catchment size and geo-hydromorphological
characteristics of the basin in generating runoff, these mod-
els were simulated under the following four rainfall scenar-
ios: rainfall on the same day (R0), rainfall lagged by 1 d (R1),
rainfall lagged by 2 d (R2), and rainfall lagged by 3 d (R3).
The remaining meteorological parameters were held constant
during the processes.

3.3 Model performance evaluation

It has been found that overfitting in a model may lead to
large errors in out-of-sample predictions (Hastie et al., 2009).
Therefore, it has been evaded by establishing model param-
eters for GLM, GAM, MARSs, ANN, and RF through au-
tomated hyperparameter tuning methods. In total, 500 boot-
strapped resamples of the training dataset were generated for
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Table 2. The information on hyperparameters used for estimating model parameters.

Model name Hyperparameter Values

Artificial neural network
(ANN)

build_fn
warm_start
random_state
optimizer
loss
metrics
batch_size
validation_batch_size
verbose
callbacks
validation_split
shuffle
run_eagerly
epochs

value= build_regressor
value=False
value=None
value= rmsprop
value=None
value=None
value= 64
value=None
value= 1
value=None
value= 0.0
value=True
value=False
value= 500

Generalised additive model
(GAM)

formula
family
data
weights
subset
na.action offset
method
optimizer
control
scale
select
knots
sp
min.sp
H
gamma
fit
paraPen
G
drop.unused.levels
drop.intercept
discrete

value=None
value= gaussian()
value= list()
value=Null
value=Null
value=Null
value= “GCV.Cp”
value= c(“outer”, “newton”)
value= list(),
value= 0
value=False
value=Null
value=Null
value=Null
value – Null,
value= 1
value=True
value=Null
value=Null
value=True
value=Null
value=False

Generalised linear model
(GLM)

endog
exog
family
offset
exposure
freq_weights
var_weights
missing

value= 1D
value= 1D
value= sm.families.Gaussian(sm.families.links.log())
value=None
value=None
value=None
value=None
value= str

Multivariate adaptive
regression splines (MARSs)

max_terms
max_degree
allow_missing
penalty
endspan_alpha
endspan
minspan_alpha
minspan
thresh

value= 20
value= 3
value=False
value= 3.0
value= 0.005
value=−1
value= 0.005
value=−1
value= 0.001
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Table 2. Continued.

Model name Hyperparameter Values

zero_tol
min_search_points
check_every
allow_linear
use_fast
fast_K
fast_h
smooth
enable_pruning
feature_importance_type
feature_importance_type

value= 1× 10−12

value= 100
value=−1
value=True
value=False
value= 5
value= 1
value=False
value=True
value=None
value= 0

Random forest (RF) n_estimators
criterion
max_depth
min_samples_split
min_samples_leaf
min_weight_fraction_leaf
max_features
max_leaf_nodes
min_impurity_decrease

value= 500
value= “squared_error”
value=None
value= 2
value= 5
value= 0.0
value= auto
value=None
value= 0.0

1D convolution
neural network (1D-CNN)

Conv1D_filter
Conv1D_kernel_size
Conv1D_pool_size
Learning rate
Epoc
Batch size
loss

value= 64
value= 2
value= 2
value= 0.0001
value= 30
value= 280
value=MSE

each parameter value to be assessed. Table 2 presents the
information on the specific parameters evaluated for each
model.

The accuracy with which the simulated flow matches the
observed flow during the training (calibration) and testing
(validation) phases determines whether a hydrological model
is appropriate for a given application (Refsgaard, 1997). Sev-
eral methods, including quantitative statistics and graphical
methods, have been developed in the past for assessing the
accuracy of model predictions (Legates and McCabe, 1999).
Moriasi et al. (2007) grouped these methods into three cate-
gories, namely standard regression, dimensionless, and error
index, depending on how well each method explains the re-
lationship between observed and simulated values, compares
the relative performance of the models, and quantifies the de-
viation in the units of the data of interest. Moreover, it has
been established from previous studies that a single metric is
inadequate to evaluate a model’s performance; hence, multi-
ple metrics should be used (Adnan et al., 2020). Therefore,
in this study, the prediction accuracy of different models was
compared using six statistical measures, out of which one
was a standard regression (coefficient of determination, R2),
two of which were dimensionless (Kling–Gupta efficiency,

KGE, and Nash–Sutcliffe efficiency, NSE), and the remain-
ing three were the error index (ratio of the root mean square
error to the standard deviation of the measured data, RSR,
the mean absolute error, MAE, and the percent bias, PBIAS).
These metrics are defined below by Eqs. (2)–(7):

R2
=


n∑
i=1

(
Qi −Q

)(
Pi −P

)
√

n∑
i=1

(
Qi −Q

)2
×

√(
Pi −P

)2


(range: 0 to 1) (Van Liew et al., 2003) (1)

KGE= 1−

√
(r − 1)2+

(
σp

σob
− 1

)2

+

(
Pi

Qi

− 1
)2

(range: 0 to 1) (Gupta et al., 1999) (2)

NSE= 1−


n∑
i=1
(Qi −Pi)

2

n∑
i=1

(
Qi −Q

)2


(range: −∞ to 1) (Nash and Sutcliffe, 1970) (3)
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Figure 3. Evaluation of the models’ (ANN, GAM, GLM, MARSs, RF, and 1D-CNN) performance in simulating streamflow under rainfall
scenarios (a) R0, (b) R1, (c) R2, and (d) R3 at Kasol during the training phase using six statistical metrics (R2, KGE, NSE, RSR, MAE, and
PBIAS).

RSR=

√∑n
i=1(Qi −Pi)

2

σob

(range: 0 to∞) (Murphy et al., 2004) (4)

MAE=
∑n
i=1 |Pi −Oi |

n

(range: 0 to∞) (Adnan et al., 2020) (5)

PBIAS=


n∑
i=1
(Qi −Pi)

n∑
i=1
(Qi)

× 100

(range: − 100 % to 100 %) (Gupta et al., 1999), (6)

where Pi are the predicted values, and Qi are the observed
values. n accounts for the number of samples, Q represents
the mean of the observed data, and P is the mean of the pre-

Hydrol. Earth Syst. Sci., 27, 1047–1075, 2023 https://doi.org/10.5194/hess-27-1047-2023



D. Singh et al.: ML- and DL-based streamflow prediction in a hilly catchment using CMIP6 GCM data 1057

Figure 4. Evaluation of the models’ (ANN, GAM, GLM, MARSs, RF, and 1D-CNN) performance in simulating streamflow under rainfall
scenarios (a) R0, (b) R1, (c) R2, and (d) R3 at Kasol during the testing phase using six statistical metrics (R2, KGE, NSE, RSR, MAE, and
PBIAS).

dicted data. However, r is the Pearson’s correlation coeffi-
cient, whereas σob and σp refer to the standard deviation of
the observed and predicted values, respectively.
R2 evaluates the percentage of the variation in the mea-

sured data that can be explained by the model, whereas the
NSE estimates the relative size of the residual variance in
relation to the variance in the measured data (Nash and Sut-
cliffe, 1970; Van-Liew et al., 2003). According to Mazrooei

et al. (2021), the NSE is sensitive to extreme flows; as a re-
sult, the KGE is also used to evaluate a model’s performance,
while taking extreme flows into account (Adib and Harun,
2022). Other metrics, like RSR, MAE, and PBIAS, shed light
on the overall inaccuracies in the projected flow relative to
the observed. The values of R2, KGE, and NSE should all
be 1 in an ideal model, whereas RSR, MAE, and PBIAS
values should be 0 (Nash and Sutcliffe, 1970; Van-Liew et
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Figure 5. Comparison of observed and simulated streamflow for all six models (ANN, GAM, GLM, MARSs, RF, and 1D-CNN) under
rainfall scenarios R0.

al., 2003; Gupta et al., 1999; Adnan et al., 2020). Moriasi et
al. (2007) developed a guideline for interpreting the results of
these metrics and a rank for the hydrological models based on
a thorough review of the available literature. They found that
a model can be classified as very good, good, satisfactory, or
unsatisfactory if its NSE value is between 0.75 and 1, 0.65
and 0.75, 0.50 and 0.65, or less than 0.50, respectively. Simi-
larly, R2 values between 0.6 and 0.7 are considered satisfac-
tory, 0.85 and 1 are very good, and numbers below 0.5 are
unsatisfactory (Van-Liew et al., 2003). However, for RSR,
numbers above 0.7 are considered to be poor, whereas val-
ues between 0 and 0.5 are considered to be in the very good
range. Thus, the lower the RSR value, the better the model.
This is also true for PBIAS and MAE, where lower values
are favourable. According to Moriasi et al. (2007), PBIAS
values of less than ±10 % are considered to be highly ac-
ceptable, while values of more than ±25 % are considered
to be unsatisfactory. The negative number indicates that the
model has overestimated its bias, whereas the positive value
indicates that the model has underestimated its bias (Gupta
et al., 1999).

3.4 Bias correction

Uncertainty in streamflow prediction may be caused by the
GCM shortcomings (e.g. coarse spatial resolution, simplified
physics and thermodynamic processes, numerical methods,
or poor knowledge of climate system dynamics) in accurately
replicating natural climate variability (Sperna Weiland et al.,
2010). As a result, its quantification and correction are crit-
ical for generating a future time series of streamflow that is
reliable and recommended for devising water resource man-
agement plans in the catchment. This study used the bias cor-
rection method proposed in Hawkins et al. (2013) to correct
the uncertainty (bias) between observed and CMIP6-GCM-
predicted streamflow. The mathematical expression for this
formula is given below:

Qbc =Qob+
σob

σp

(
Qfuture−Qp

)
, (7)

where Qbc and Qfuture are the bias-corrected and raw daily
discharge for future simulation, respectively.
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Figure 6. A comparison of observed and simulated streamflow for all six models (ANN, GAM, GLM, MARSs, RF, and 1D-CNN) under
rainfall scenarios R1.

Qob and Qp are the mean discharge of observed and his-
torical simulation for the reference period (1979–2009), re-
spectively. σo and σp are the standard deviation in the ob-
served and historical simulation for the reference period, re-
spectively. This method captures the variability in both the
observation and GCM simulations (Hawkins et al., 2013),
which is the interest of this study.

4 Results

4.1 Streamflow simulation and evaluation of model
performance

The simulation (1979–2009) results generated under dif-
ferent rainfall scenarios (R0, R1, R2, and R3) on a daily
timescale for all six models (GLM, GAM, MARSs, ANN,
RF, and 1D-CNN) during training and testing are shown in
Figs. 3 and 4, respectively. The model performed slightly bet-
ter during training than during testing periods. R2, NSE, and
KGE values across models ranged from 0.69 to 0.90, 0.52 to
0.87, and 0.69 to 0.91 and from 0.69 to 0.81, 0.49 to 0.74, and

0.68 to 0.82 during training and testing, respectively. Like-
wise, it was found that RSR, MAE, and PBIAS varied from
0.31 to 0.55, from 71.95 to 123.25 m3 s−1, and from−2.11 %
to +4.31 % during training, as well as from 0.56 to 0.46,
from 123.06 to 106.64 m3 s−1, and from−3.74 % to+2.21 %
during testing, respectively. Non-linear models (ANN, 1D-
CNN, and RF) outperformed linear models (GAM and GLM)
in runoff prediction under all rainfall scenarios (R0, R1, R2,
and R3), with the exception of MARSs, which produced re-
sults that were more or less comparable with those of the
ANN model. Figures 3–4 show that both models (RF and
1D-CNN) satisfy the performance requirements outlined by
Moriasi et al. (2007), but RF slightly outperformed CNN in
terms of the error index. R2, NSE, KGE, RSR, MAE, and
PBIAS values for the RF model during the training ranged
from 0.88 to 0.90, 0.85 to 0.87, 0.86 to 0.87, 0.32 to 0.34,
71.95 to 77.49 m3 s−1, and +0.03 % to +0.13 %, respec-
tively. For the 1D-CNN, however, it varied from 0.87 to 0.89,
0.85 to 0.87, 0.90 to 0.91, 0.34 to 0.35, 80.29 to 83.14 m3 s−1,
and −1.25 % to +0.13 %. A similar pattern with slightly
lower values was revealed during testing for the both mod-
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Figure 7. Comparison of observed and simulated streamflow for all six models (ANN, GAM, GLM, MARSs, RF, and 1D-CNN) under
rainfall scenarios R2.

els. This implies that RF can effectively capture non-linear
interactions and can provide insights about actual watershed
functions (Shortridge et al., 2016). On the other hand, GLM
showed the poorest results. R2, NSE, KGE, RSR, MAE, and
PBIAS values for the GLM during the training varied from
0.69 to 0.71, 0.52 to 0.56, 0.71 to 0.72, 0.54 to 0.55, 134.80 to
140.56 m3 s−1, and +2.63 % to +2.73 %, respectively. Dur-
ing testing, they varied between 0.69 and 0.71, 0.49 and 0.54,
0.68 and 0.70, 0.54 and 0.56, 134.35 and 141.26 m3 s−1, and
+1 % and +1.31 %, respectively. Furthermore, it was ob-
served that the models with rainfall scenario R3 revealed
reasonably better results in comparison to the R0, R1, and
R2 scenarios, indicating the delayed contribution of rainfall–
runoff to the river.

Figures 5, 6, 7, and 8 show a comparison of the observed
and simulated streamflow under rainfall scenarios of R0, R1,
R2, and R3 for all the models at Kasol, which is the outlet
of the basin. As observed in Figs. 5–8, RF was able to fol-
low the curve better compared to the other models. It is also
deduced from the comparison of scatterplots wherein a rel-
atively smaller deviation in the observed and estimated dis-

charge of streamflow was found for the RF model. GLM per-
formed the worst out of the six models with respect to the
time variation graphs. A limitation faced by all the six mod-
els was the simulation of peak values. The models slightly
underperformed at the prediction of higher values of stream-
flow. These findings led to the ultimate decision to use the
RF model with rainfall scenario R3 to predict streamflow in
the Sutlej River in the future (2050s and 2080s) under the
SSP245 and SSP585 scenarios.

4.2 Comparison of streamflow simulated with observed
and CMIP6 GCMs data

The uncertainty between observed and CMIP6-GCM-
predicted streamflow during the reference period (1979–
2009) was investigated by comparing the streamflow simu-
lated by the RF model with the observed and CMIP6 GCM
data. A large difference in streamflow patterns was seen in
the box plot of observed and CMIP6-GCM-simulated dis-
charge (Fig. 9) derived for various months of the year, par-
ticularly from June through September (monsoon season),
when a pattern of intense daily rainfall was observed over
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Figure 8. Comparison of observed and simulated streamflow for all six models (ANN, GAM, GLM, MARSs, RF, and 1D-CNN) under
rainfall scenarios R3.

Figure 9. Box plot comparing observed and CMIP6-GCM-simulated (mean ensemble of models) streamflow for various months of the year,
as derived over the period 1979–2009. The line inside the box denotes the median values of the streamflow, while the upper and lower
whiskers indicate the highest and minimum values, respectively.
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Figure 10. Probability exceedance curves developed using 10 % of the highest and lowest flows from the observed and CMIP6-GCM-
simulated (mean ensemble of models) flows over the time span of 1979–2009 for annual and seasonal (pre-monsoon and monsoon) flows.

the catchment. Additionally, it was discovered through the
analysis of the probability exceedance curves generated us-
ing 10 % of the time series’ highest flows that, despite the
streamflow in the two datasets being comparable throughout
the pre-monsoon season (Fig. 10c), they differ noticeably for
high flows during the annual (Fig. 10a) and monsoon season
(Fig. 10c). Similar trends were seen in the comparison of the
probability exceedance curves for low flows during the mon-
soon season, although there was strong agreement for an-
nual (Fig. 10b) and pre-monsoon measurements (Fig. 10d).
This may be due to the fact that orography has a consider-
able impact on the regional Indian summer monsoon (ISM)
climate, making it challenging for climate models to pre-
dict daily monsoonal rainfall accurately across the Himalaya
(Turner and Annamalai, 2012; Niu et al., 2015; Choudhary
et al., 2022). The regional climate model (RCM) based on
CMIP5 GCMs was used by Sanjay et al. (2017) to study the
pattern of change in precipitation and temperature over the

Hindukush Himalaya region. As a condition of the model’s
inability to accurately represent complicated feedback mech-
anisms, the results revealed large uncertainty in the summer
and winter precipitation over the northwestern Himalaya.
This is also supported by the study of Kadel et al. (2018).
They evaluated the performance of 38 CMIP5 GCMs in sim-
ulating rainfall over the central Himalaya and came to the
conclusion that the majority of the models studied performed
poorly when it came to reproducing the spatial distribution of
monsoonal rainfall. Although the most recent study by Gu-
sain et al. (2020) in India reported that an ISM simulation us-
ing CMIP6 GCMs over CMIP5 GCMs had significantly im-
proved, there are discrepancies between the models, and this
indicated uncertainty in the predictions. Lalande et al. (2021)
examined the abilities of 26 CMIP6 GCMs to simulate the
rate of precipitation across the Himalayan region and con-
cluded that the models consistently overestimated the rate
of precipitation by 31 % to 281 %. Additionally, a cold bias
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Figure 11. Projected change in the mean monthly rainfall in the sub-basin using different CMIP6 GCMs under the SSP245 and SSP585
scenarios in the (a, c) 2050s and (b, d) 2080s.

in temperature estimation was also reported. Therefore, bias
correction, as described in Sect. 3.4, was applied to the pro-
jected streamflow for the future periods (2050s and 2080s)
under all scenarios and for all six models in order to provide
accurate times series of the discharge.

4.3 Projected change in rainfall and temperatures in
2050s and 2080s under SSP245 and SSP585

Figure 11 shows how the catchment’s mean monthly rain-
fall is expected to change under SSP245 and SSP585 in the
2050s and 2080s compared to the reference period (1979–
2009). Within the months and for the CMIP6 GCMs, a size-
able shift in the rainfall pattern is seen. With the exception

of March, June, and September, the mean ensemble of the
models generally predicts a rise in rainfall throughout the
year in the 2050s and 2080s under all scenarios. The models
also show a significant variation in the seasonal and yearly
rainfall patterns expected for the catchment in the 2050s and
2080s under various emission scenarios. However, based on
the mean ensemble of the models, it is predicted that sea-
sonal (Fig. 12) and annual (Fig. 13a) rainfall will generally
increase in the 2050s and 2080s under SSP245 and SSP585.
Pre-monsoon, monsoon, post-monsoon, and winter rainfall
in the 2050s will increase by 8.75 % to 8.85 %, 10 % to
20.80 %, 85 % to 91.91 %, and 12.48 % to 14.16 %, respec-
tively, under SSP245 and SSP585. However, under SSP245
and SSP585 in the 2080s, it will rise by 7.69 % to 17.50 %,
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Figure 12. Projected change in the mean seasonal rainfall in the sub-basin using different CMIP6 GCMs under the SSP245 and SSP585
scenarios in the (a, c) 2050s and (b, d) 2080s.

21.52 % to 41.43 %, 56.16 % to 89.66 %, and 22.48 % to
12.43 %, respectively. Under both scenarios in the 2050s
and 2080s, the pre-monsoon and post-monsoon will have the
lowest and highest percentage increases in rainfall, respec-
tively. The monsoon season is, however, anticipated to have
the greatest rise in terms of quantity (∼ 40–167 mm). The
predicted range for the increase in mean annual rainfall is
13.85 % to 18.61 % in the 2050s and 17.91 % to 34.31 % in
the 2080s. It is observed that the predicted pattern of change
in rainfall across the sub-basin under various SSPs is con-
sistent in terms of the direction of change with other stud-
ies conducted over the Sutlej and Himalaya region. Lalande
et al. (2021) reported an overall increase in the mean an-
nual precipitation over the Himalayan region based on 10
CMIP6 GCMs. According to their analysis, the mean en-
semble of model precipitation is predicted to increase by
8.6 % to 25.4 % in 2081–2100 under SSP245 and SSP585.

The same study also showed an increase in the region’s win-
ter (November to April) and ISM (June to September) rain-
fall. This contradicts past studies that showed a trend towards
declining ISM rainfall after the 1950s (Sabin et al., 2020).
They postulated that the region’s higher winter rainfall would
have been caused by the strengthening of the western distur-
bances; however, the intensification of the ISM is responsible
for the region’s enhanced summer rainfall.

The analysis of the CMIP6 GCM projections leads to the
conclusion that, for all months and seasons in the 2050s and
2080s, maximum (excluding April and pre-monsoon in the
2050s under SSP245) and minimum temperatures will rise
under both scenarios (Figs. 14a–d and 15a–d). Similarly, in-
crease in mean annual Tmin and Tmax is also predicted in the
2050s and 2080s under all scenarios (Fig. 13b and c). The
increase will be relatively higher for the Tmin compared to
the Tmax. This is also reported by Singh et al. (2015c). The
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Figure 13. Projected changes in the (a) mean annual rainfall, (b) Tmax, and (c) Tmin in the sub-basin using different CMIP6 GCMs under
the SSP245 and SSP585 scenarios in the 2050s and 2080s.

increase in rainfall and temperature is typically higher under
SSP585 than SSP245 in both eras (2050s and 2080s), as ex-
pected, due to a larger increase in radiative forcing brought
on by increased greenhouse gas emissions.

4.4 Assessment of the change in streamflow in 2050s
and 2080s under SSP245 and SSP585

The Sutlej River’s mean monthly streamflow change, com-
pared to the reference period’s observed flow (1979–2009),
is shown in Fig. 16 under scenarios SSP245 and SSP585
for the future periods (2050s and 2080s). According to both
scenarios and all six models, the Sutlej River’s streamflow
will decrease between January (−33.80 % to −14.38 %),
February (−32.40 % to −14.15 %), March (−23.55 % to
−0.84 %), November (−21.06 % to −5.14 %), and Decem-
ber (−29.88 % to −18.38 %) in the 2050s and 2080s. More-
over, except for MPI-ESM1-2-HR and MPI-ESM1-2-LR,
which show an increase in streamflow in the 2080s under
the higher-emission scenario, all of the CMIP6 GCMs indi-
cate a decrease in the river’s discharge in June (−20.24 %
to −0.57 %) under SSP245 and SSP585 for both the pe-

riods. Similarly, excluding EC-Earth3-Veg (under SSP245
in 2050s) and INM-CM5-0 (under SSP245 in the 2050s
and 2080s and under SSP585 in the 2050s), all of the
CMIP6 GCMs indicate a decrease in the river’s discharge
in May (−25 % to −2.85 %) during the study period. In con-
trast, under SSP245 and SSP585 in the 2050s and 2080s, all
of the CMIP6 GCMs predict a rise in the river’s discharge in
April (20.24 % to−0.57 %; excluding SSP585 in the 2080s),
August (16.84 % to 5.28 %), and September (55.27 % to
4.35 %). But no clear pattern of streamflow change is seen
for the remaining months (July and October) of the year,
making results difficult to generalise because the projected
decrease and/or increase in streamflow over the months is in-
consistent among models under various emission scenarios
in the 2050s and 2080s. The variations in climate-variable
projections caused by differing spatial resolutions and pa-
rameterisation levels in the climate models may be the cause
of these discrepancies in streamflow estimates (Sperna Wei-
land et al., 2010; Singh et al., 2015a). According to Murphy
et al. (2004), the average of an ensemble of GCMs cancels
out the errors in each individual model, and as more models
are used, the ensemble uncertainty decreases. Therefore, in
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Figure 14. Projected change in the mean seasonal maximum temperature (Tmax) in the sub-basin using different CMIP6 GCMs under the
SSP245 and SSP585 scenarios in the (a, c) 2050s and (b, d) 2080s.

order to reduce the uncertainty in the projection of stream-
flow related to individual CMIP6 GCMs, the streamflow pat-
tern of the Sutlej River was analysed by also using the mean
ensemble of all six GCMs.

The mean ensemble of the models predicts that the Sut-
lej River’s mean monthly streamflow (excluding April) will
decrease under both scenarios from November (−18.45 %
to −17.17 %) to June (−10.90 % to −8.06 %) between the
2050s and 2080s (Fig. 17). The river flow, which would
have been expected to increase in April under both scenar-
ios in 2050s, will also decline in the 2080s for the higher
emission scenarios (SPP585). The maximum and minimum
streamflow declines are predicted to occur in the 2050s un-
der SSP245 for the months of December (−24.25 %) and
May (−7.77 %), respectively. In comparison to SPP245, the
decline will generally be slightly higher under SSP585 in
2050s, and for the 2080s, the projected decrease in stream-

flow will not show much difference under both the scenarios.
Opposite to this, the mean ensemble of the models predicts
that the Sutlej River’s flow will increase from July (5.50 %
to 5.91 %) to October (3.01 % to 11.42 %) in the 2050s and
2080s under both scenarios. The maximum and minimum
streamflow increases are predicted to occur in the 2080s un-
der SSP245 for the months of September (25.82 %) and July
(5.50 %), respectively. In all scenarios, the increase will be
slightly greater in the 2080s than it will be in the 2050s.
When compared to SPP245, it will be higher for SSP585 in
the scenarios.

The projected change in the seasonal streamflow of the
Sutlej River in 2050s and 2080s is shown in Fig. 18. The
2050s and 2080s would see an increase in streamflow during
the monsoon (4.46 % to 16.14 %) and a decrease during the
pre-monsoon (−17.40 % to −0.51 %) and winter (−28.81 %
to−12.42 %) for all six CMIP6 GCMs, with the exception of
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Figure 15. Projected changes in the mean seasonal minimum temperature (Tmin) in the sub-basin using different CMIP6 GCMs under the
SSP245 and SSP585 scenarios in the (a, c) 2050s and (b, d) 2080s.

INM-CM5-0 in the 2050s under SSP245 and MPI-ESM1-2-
HR and MPI-ESM1-2-LR in the 2080s under SPP585, which
indicate an increase rather than a decrease in streamflow dur-
ing the pre-monsoon. The predicted streamflow for the post-
monsoon season, however, does not show a consistent pat-
tern of change across time within the models under SSP245
and SSP585 scenarios. But there is a high probability, based
on the mean ensembles of models projections, that stream-
flow will also decline during the post-monsoon in 2050s
(−1.23 % to −0.22 %) and 2080s (−5.59 % to −2.83 %) un-
der all scenarios. Similarly, the predicted decline for pre-
monsoon and winter will be between−10.36 % and−6.12 %
and −21.87 % and −21.52 % under SSP245 and between
−10.0 % and −9.13 % and −21.87 % and −21.11 % under
SSP585, respectively. With the exception of winter, when
there are no significant differences in the projected stream-
flow, the decline will be slightly larger in the 2080s than in

the 2050s in all scenarios. In addition, the results of the mean
ensemble of the models indicate that the Sutlej River’s flow
will increase during the monsoon under both scenarios, from
9.70 % to 11.41 % in the 2050s and 11.64 % to 12.70 % in
the 2080s.

Similarly, Fig. 19 lists the projected change in the mean
annual streamflow for the Sutlej River in 2050s and 2080s
with respect to the reference period (1979–2009) under dif-
ferent emission scenarios. Although the nature of the di-
rection of change within models varies, the mean ensemble
of the models reveals a persistent increasing pattern in the
streamflow for all scenarios in 2050s and 2080s. The Sutlej
River’s annual streamflow will rise between 2050 and 2080
by 0.79 % to 1.43 % for SSP585 and 0.87 % to 1.10 % for
SSP245, according to the mean ensemble of the models. The
rise is expected to be higher in the 2080s as compared to
2050s under SSP585.
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Figure 16. Predicted change in monthly streamflow pattern of the Sutlej River with respect to the reference period (1979–2009) in (a, b) 2050s
and (c, d) 2080s under SSP245 and SSP585 scenarios for different CMIP6 GCMs.

5 Discussion

This study reveals an increase in the Sutlej River’s mean
annual and monsoonal streamflow in the 2050s and 2080s,
which is in contrast to earlier studies (Singh et al., 2014;
Ali et al., 2018) that reported a reduction based on long-
term investigation of station data over historical era. The pat-
tern of rainfall and temperature predicted by CMIP6 GCMs
for the future periods under the SSP245 and SSP585 emis-
sion scenarios, in addition to the physical processes occur-
ring within the basin, have contributed to this increase in
the Sutlej River’s streamflow. For instance, it is speculated
that the projected increase in the mean streamflow during the
monsoon season under both scenarios in the 2050s and 2080

for all models is related to the projected percentage increase
in the rainfall amount over the catchment and the melting of
glaciers brought on by the increased maximum and minimum
temperatures. On the one hand, this increase in river stream-
flow and its propensity to raise the silt load may have an im-
pact on both the capacity of reservoirs and the hydropower
potential of hydroelectric facilities situated in the sub-basin
and downstream of it. On the other hand, despite the pre-
dicted increase in rainfall throughout the pre-monsoon, post-
monsoon, and winter seasons, the anticipated decrease in
streamflow of the Sutlej River during pre-monsoon, post-
monsoon, and winter may be explained by the projected rise
in temperatures, which may have led to increased evaporation
from the surface. Similar conclusions were reached by Adib
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Figure 17. Comparison of monthly observed (1979–2009) and projected discharge of the multimodel ensembles for the 2050s and 2080s
under the SSP245 and SSP585 scenarios.

and Harun (2022), who studied the Kurau River in Malaysia
and predicted a drop in streamflow during the months of
January, April, and October, despite receiving more rainfall.
Moreover, during winter and post-monsoon, most of the pre-
cipitation in upper part of the catchment occurs in the form of
snowfall, which has a minimal effect on the runoff generation
in the catchment. Additionally, the large increase in mon-
soonal streamflow predicted during study periods is what led
to the projected increase in the Sutlej River’s mean annual
flow. Predicted decreases in the Sutlej River streamflow over
the pre-monsoon (April to June) and winter (December to
March) seasons may have a significant impact on agriculture
and hydropower generation downstream of the river, which
is already struggling due to water shortages at this time of
year. Ali et al. (2018) predicted that the hydroelectric produc-
tion from the Nathpa Jhakri and Bhakra Nangal hydropower
projects will decline during May to June in the future due to
a projected decline in the streamflow of the Sutlej River.

The projected streamflow patterns for the Sutlej River un-
der SSP245 and SSP585 scenarios in the 2050s and 2080s
show similar tendencies, but with differing magnitudes, that
have been found by past researchers using process-based
hydrological models. For instance, Singh et al. (2015a)
used the SWAT (Soil Water Assessment Tool) model, a
semi-distributed hydrological model, to simulate streamflow
for future periods using two CMIP3 GCMs (CGCM3 and
HadCM3), and they discovered that the Sutlej River’s mean
annual streamflow would increase in the range of 0.6 %
to 7.8 % for the future periods (2050s and 2080s). Simi-
lar to this, using the variable infiltration capacity (VIC) and
SWAT models, respectively, Ali et al. (2018) and Shukla
et al. (2021) estimated increases in the Sutlej River’s mean

annual streamflow for the 2050s and 2080s under RCP4.5
and RCP8.5. The study of Shukla et al. (2021) estimated
that, under RCP4.5 and RCP8.5, the mean streamflow of
the river would increase by 14 % and 21 % (at Rampur), re-
spectively, in the 2080s. The previous studies observed that
a substantially higher increase in projected streamflow may
be attributable to the overestimation by the CMIP3 GCMs
and CMIP5 GCMs of monsoonal precipitation over the Hi-
malayan region (Choudhary et al., 2022; Sanjay et al., 2017;
Gusain et al., 2020; Lalande et al., 2021). Similar to this,
the results of Singh et al. (2015a), Ali et al. (2018), and
Shukla et al. (2021) corroborated the expected decrease in
streamflow during pre-monsoon and winter in addition to a
rise during monsoon. This suggests that the RF model can
accurately predict runoff and analyse the effects of climate
change, while capturing the non-linearity of a hilly catch-
ment.

6 Conclusion

This study compared the performance of the five machine
learning models (GLM, GAM, MARSs, ANN, and RF) and
one deep learning model (1D-CNN), which were further di-
vided into linear (MARSs, ANN, and RF) and non-linear
(ANN, 1D-CNN, and RF) models, in simulating rainfall–
runoff responses over the hilly Sutlej River basin in order
to determine the best model for predicting streamflow re-
sponse to future climate change in the 2050s and 2080s under
SSP245 and SSP585 using CMIP6 GCM data. The important
findings of the study are summarised below.
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Figure 18. Predicted change in seasonal streamflow pattern of the Sutlej River with respect to the reference period (1979–2009) in the
(a, c) 2050s and (b, d) 2080s under the SSP245 and SSP585 scenarios for different GCMs.

– In general, non-linear models (ANN, 1D-CNN, and RF)
outperformed linear models (GAM, GLM, and MARSs)
in runoff prediction under all rainfall scenarios (R0,
R1, R2, and R3). Among all the models, RF and 1D-
CNN were identified as being the best models as per the
model evaluation criteria. However, RF outperformed
CNN in terms of error index (MAE and PBIAS), and
as a result, it was used to investigate impact of future
climate change on the Sutlej River pattern in the 2050s
and 2080s under the SSP245 and SSP585 emission sce-
narios.

– The developed RF model slightly underperformed at the
prediction of higher values of streamflow during train-
ing and testing. This implies that it is less effective at
predicting flash floods that are caused by intense rain-
fall in the catchment. However, it was determined that
the results produced by RF were comparable to process-

based hydrological models for a long-term change study
in streamflow pattern.

– Significant variations in the streamflow pattern were
observed throughout the periods of months, seasons,
and years and for the CMIP6 GCMs. The differences
in the spatial resolution and parameterisation levels of
CMIP6 GCMs, which caused a noticeable change in
the projected amounts of temperature and precipitation
during the study periods, may serve as an illustration
of these variances in streamflow prediction. The Sutlej
River’s mean annual streamflow, based on the mean en-
semble of models, is predicted to rise between the years
2050 and 2080 by 0.79 % to 1.43 % for SSP585 and by
0.87 % to 1.10 % for SSP245. Additionally, under both
emission scenarios, streamflow will decrease during
the pre- and post-monsoon (−1.23 % to −0.22 % and
−5.59 % to −2.83 %) and during the winter (−21.87 %
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Figure 19. Predicted change in the mean annual streamflow of the
Sutlej River with respect to the reference period (1979–2009) in the
2050s and 2080s under SSP245 and SSP585 scenarios for different
GCMs.

to −21.52 % and −21.87 % to −21.11 %) but increase
during the monsoon (9.70 % to 11.41 % and 11.64 % to
12.70 %) in the 2050s and 2080s.

– The increase in the Sutlej River’s streamflow (annual
and monsoon) is due to both physical processes that oc-
cur within the basin and rainfall and temperature pat-
terns that are predicted by CMIP6 GCMs for future time
periods under the SSP245 and SSP585 emission scenar-
ios. On the one hand, the projected rise in mean stream-
flow during the monsoon season is associated with both
the projected percentage increase in rainfall over the
catchment and the melting of glaciers brought on by
the increasing maximum and minimum temperatures.
On the other hand, the predicted increase in tempera-
tures, which may have led to increased evaporation from
the surface, may be used to explain the anticipated re-
duction in streamflow of the Sutlej River during pre-
monsoon, post-monsoon, and winter.

– Additionally, the projected changes in the mean annual
and seasonal streamflow of the river are consistent with
earlier research done using process-based physical hy-
drological models. Thus, the outcomes of the overall
study indicate that the RF model is efficient for simu-
lating streamflow in the Himalayan catchment and that
water availability during monsoon will rise as a result
of an increase in catchment precipitation, which would
eventually lead to an increased sediment load and affect
hydropower generation. However, the predicted reduc-
tion in streamflow during pre-monsoon, post-monsoon,
and winter will put stress on agriculture and hydropower

generation downstream of the river, which is already
struggling due to water shortages at this time of year.
The administrators of local water resources and the gov-
ernment organisations in charge of maintaining reser-
voirs downriver may find these details on streamflow
patterns to be of great use.
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