Articles | Volume 26, issue 24
https://doi.org/10.5194/hess-26-6443-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-6443-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characterization of the highly fractured zone at the Grimsel Test Site based on hydraulic tomography
Lisa Maria Ringel
CORRESPONDING AUTHOR
Applied Geology, Institute of Geosciences and Geography, MLU Halle-Wittenberg, Halle, Germany
Mohammadreza Jalali
Department of Engineering Geology and Hydrogeology, RWTH Aachen, Aachen, Germany
Peter Bayer
Applied Geology, Institute of Geosciences and Geography, MLU Halle-Wittenberg, Halle, Germany
Related authors
No articles found.
Raphael Burchartz, Timo Seemann, Garri Gaus, Lisa Winhausen, Mohammadreza Jalali, Brian Mutuma Mbui, Sebastian Grohmann, Linda Burnaz, Marlise Colling Cassel, Jochen Erbacher, Ralf Littke, and Florian Amann
EGUsphere, https://doi.org/10.5194/egusphere-2025-579, https://doi.org/10.5194/egusphere-2025-579, 2025
Short summary
Short summary
In Germany, claystones are studied for their suitability as host-rocks for the disposal of high-level radioactive waste. The MATURITY project systematically investigates how gradual burial affects key barrier properties in the Lower Jurassic Amaltheenton Formation of the Lower Saxony Basin (Germany). Understanding these changes helps assess claystone suitability for long-term waste isolation, improving site selection for deep geological repositories.
Haegyeong Lee, Manuel Gossler, Kai Zosseder, Philipp Blum, Peter Bayer, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 29, 1359–1378, https://doi.org/10.5194/hess-29-1359-2025, https://doi.org/10.5194/hess-29-1359-2025, 2025
Short summary
Short summary
A systematic laboratory experiment elucidates two-phase heat transport due to water flow in saturated porous media to understand thermal propagation in aquifers. Results reveal delayed thermal arrival in the solid phase, depending on grain size and flow velocity. Analytical modeling using standard local thermal equilibrium (LTE) and advanced local thermal non-equilibrium (LTNE) theory fails to describe temperature breakthrough curves, highlighting the need for more advanced numerical approaches.
Peter Achtziger-Zupančič, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Alexis Shakas, Florian Amann, Whitney Maria Behr, Daniel Escallon Botero, Domenico Giardini, Marian Hertrich, Mohammadreza Jalali, Xiaodong Ma, Men-Andrin Meier, Julian Osten, Stefan Wiemer, and Massimo Cocco
Solid Earth, 15, 1087–1112, https://doi.org/10.5194/se-15-1087-2024, https://doi.org/10.5194/se-15-1087-2024, 2024
Short summary
Short summary
We detail the selection and characterization of a fault zone for earthquake experiments in the Fault Activation and Earthquake Ruptures (FEAR) project at the Bedretto Lab. FEAR, which studies earthquake processes, overcame data collection challenges near faults. The fault zone in Rotondo granite was selected based on geometry, monitorability, and hydro-mechanical properties. Remote sensing, borehole logging, and geological mapping were used to create a 3D model for precise monitoring.
Lisa Winhausen, Kavan Khaledi, Mohammadreza Jalali, Janos L. Urai, and Florian Amann
Solid Earth, 13, 901–915, https://doi.org/10.5194/se-13-901-2022, https://doi.org/10.5194/se-13-901-2022, 2022
Short summary
Short summary
Triaxial compression tests at different effective stresses allow for analysing the deformation behaviour of Opalinus Clay, the potential host rock for nuclear waste in Switzerland. We conducted microstructural investigations of the deformed samples to relate the bulk hydro-mechanical behaviour to the processes on the microscale. Results show a transition from brittle- to more ductile-dominated deformation. We propose a non-linear failure envelop associated with the failure mode transition.
Lisa Winhausen, Mohammadreza Jalali, and Florian Amann
Saf. Nucl. Waste Disposal, 1, 301–301, https://doi.org/10.5194/sand-1-301-2021, https://doi.org/10.5194/sand-1-301-2021, 2021
Peter-Lasse Giertzuch, Joseph Doetsch, Alexis Shakas, Mohammadreza Jalali, Bernard Brixel, and Hansruedi Maurer
Solid Earth, 12, 1497–1513, https://doi.org/10.5194/se-12-1497-2021, https://doi.org/10.5194/se-12-1497-2021, 2021
Short summary
Short summary
Two time-lapse borehole ground penetrating radar (GPR) surveys were conducted during saline tracer experiments in weakly fractured crystalline rock with sub-millimeter fractures apertures, targeting electrical conductivity changes. The combination of time-lapse reflection and transmission GPR surveys from different boreholes allowed monitoring the tracer flow and reconstructing the flow path and its temporal evolution in 3D and provided a realistic visualization of the hydrological processes.
Cited articles
Amann, F., Gischig, V., Evans, K., Doetsch, J., Jalali, R., Valley, B.,
Krietsch, H., Dutler, N., Villiger, L., Brixel, B., Klepikova, M., Kittilä, A., Madonna, C., Wiemer, S., Saar, M. O., Loew, S., Driesner,
T., Maurer, H., and Giardini, D.: The seismo-hydromechanical behavior during
deep geothermal reservoir stimulations: open questions tackled in a
decameter-scale in situ stimulation experiment, Solid Earth, 9, 115–137,
https://doi.org/10.5194/se-9-115-2018, 2018. a
Armand, G., Leveau, F., Nussbaum, C., de La Vaissiere, R., Noiret, A.,
Jaeggi, D., Landrein, P., and Righini, C.: Geometry and Properties of the
Excavation-Induced Fractures at the Meuse/Haute-Marne URL Drifts, Rock Mech. Rock Eng., 47, 21–41, https://doi.org/10.1007/s00603-012-0339-6, 2014. a, b
Barthélémy, J.-F., Guiton, M. L., and Daniel, J.-M.: Estimates of
fracture density and uncertainties from well data, Int. J. Rock Mech. Min. Sci., 46, 590–603, https://doi.org/10.1016/j.ijrmms.2008.08.003, 2009. a
Berre, I., Doster, F., and Keilegavlen, E.: Flow in Fractured Porous Media: A
Review of Conceptual Models and Discretization Approaches, Transp. Porous Media, 130, 215–236, https://doi.org/10.1007/s11242-018-1171-6, 2019. a, b, c
Blessent, D., Therrien, R., and Lemieux, J.-M.: Inverse modeling of hydraulic
tests in fractured crystalline rock based on a transition probability
geostatistical approach, Water Resour. Res., 47, W12530, https://doi.org/10.1029/2011WR011037, 2011. a
Brixel, B., Klepikova, M., Jalali, M., Lei, Q., Roques, C., Kriestch, H., and
Loew, S.: Tracking Fluid Flow in Shallow Crustal Fault Zones: 1. Insights
From Single-Hole Permeability Estimates, J. Geophys. Res.-Solid, 125, e2019JB018200, https://doi.org/10.1029/2019JB018200, 2020a. a, b, c
Brixel, B., Roques, C., Krietsch, H., Klepikova, M., Jalali, M., Lei, Q., and
Loew, S.: Tracking Fluid Flow in Shallow Crustal Fault Zones: 2. Insights From Cross-Hole Forced Flow Experiments in Damage Zones, J. Geophys. Res.-Solid, 125, e2019JB019108, https://doi.org/10.1029/2019JB019108, 2020b. a, b, c
Brooks, S., Gelman, A., Jones, G., and Meng, X.-L. (Eds.): Handbook of Markov
Chain Monte Carlo, Chapman and Hall/CRC, https://doi.org/10.1201/b10905, 2011.
a, b
Chandra, S., Auken, E., Maurya, P. K., Ahmed, S., and Verma, S. K.: Large Scale Mapping of Fractures and Groundwater Pathways in Crystalline Hardrock By AEM, Scient. Rep., 9, 1–11, https://doi.org/10.1038/s41598-018-36153-1, 2019. a, b
Chen, J., Hubbard, S., Peterson, J., Williams, K., Fienen, M., Jardine, P., and Watson, D.: Development of a joint hydrogeophysical inversion approach and application to a contaminated fractured aquifer, Water Resour. Res., 42, W06425, https://doi.org/10.1029/2005WR004694, 2006. a
Day-Lewis, F. D., Lane, J. W., Harris, J. M., and Gorelick, S. M.: Time–lapse imaging of saline–tracer transport in fractured rock using
difference–attenuation radar tomography, Water Resour. Res., 39, 1290, https://doi.org/10.1029/2002WR001722, 2003. a
Day-Lewis, F. D., Slater, L. D., Robinson, J., Johnson, C. D., Terry, N., and
Werkema, D.: An overview of geophysical technologies appropriate for
characterization and monitoring at fractured-rock sites, J. Environ. Manage., 204, 709–720, https://doi.org/10.1016/j.jenvman.2017.04.033, 2017. a
de La Bernardie, J., Bour, O., Le Borgne, T., Guihéneuf, N., Chatton, E., Labasque, T., Le Lay, H., and Gerard, M.-F.: Thermal Attenuation and Lag Time in Fractured Rock: Theory and Field Measurements From Joint Heat and Solute Tracer Tests, Water Resour. Res., 54, 10053–10075, https://doi.org/10.1029/2018WR023199, 2018. a
de La Vaissière, R., Armand, G., and Talandier, J.: Gas and water flow in
an excavation-induced fracture network around an underground drift: A case
study for a radioactive waste repository in clay rock, J. Hydrol.,
521, 141–156, https://doi.org/10.1016/j.jhydrol.2014.11.067, 2015. a, b
Deparis, J., Fricout, B., Jongmans, D., Villemin, T., Effendiantz, L., and
Mathy, A.: Combined use of geophysical methods and remote techniques for
characterizing the fracture network of a potentially unstable cliff site (the
`Roche du Midi', Vercors massif, France), J. Geophys. Eng., 5, 147–157, https://doi.org/10.1088/1742-2132/5/2/002, 2008. a
Doetsch, J., Gischig, V., Krietsch, H., Villiger, L., Amann, F., Dutler, N.,
Jalali, R., Brixel, B., Klepikova, M., Roques, C., Giertzuch, P.-L.,
Kittilä, A., and Hochreutener, R.: Grimsel ISC Experiment Description,
ETH Zurich, https://doi.org/10.3929/ETHZ-B-000310581, 2018. a
Doetsch, J., Krietsch, H., Schmelzbach, C., Jalali, M., Gischig, V., Villiger, L., Amann, F., and Maurer, H.: Characterizing a decametre-scale granitic reservoir using ground-penetrating radar and seismic methods, Solid Earth, 11, 1441–1455, https://doi.org/10.5194/se-11-1441-2020, 2020. a, b
Dong, Y., Fu, Y., Yeh, T.-C. J., Wang, Y.-L., Zha, Y., Wang, L., and Hao, Y.:
Equivalence of Discrete Fracture Network and Porous Media Models by Hydraulic
Tomography, Water Resour. Res., 55, 3234–3247, https://doi.org/10.1029/2018wr024290, 2019. a, b
Dorn, C., Linde, N., Doetsch, J., Le Borgne, T., and Bour, O.: Fracture
imaging within a granitic rock aquifer using multiple-offset single-hole and
cross-hole GPR reflection data, J. Appl. Geophys., 78, 123–132, https://doi.org/10.1016/j.jappgeo.2011.01.010, 2012. a
Dorn, C., Linde, N., Le Borgne, T., Bour, O., and de Dreuzy, J.-R.: Conditioning of stochastic 3-D fracture networks to hydrological and geophysical data, Adv. Water Resour., 62, 79–89, https://doi.org/10.1016/j.advwatres.2013.10.005, 2013. a
Fischer, P., Jardani, A., Cardiff, M., Lecoq, N., and Jourde, H.: Hydraulic
analysis of harmonic pumping tests in frequency and time domains for
identifying the conduits networks in a karstic aquifer, J. Hydrol., 559, 1039–1053, https://doi.org/10.1016/j.jhydrol.2018.03.010, 2018a. a
Fischer, P., Jardani, A., Jourde, H., Cardiff, M., Wang, X., Chedeville, S.,
and Lecoq, N.: Harmonic pumping tomography applied to image the hydraulic
properties and interpret the connectivity of a karstic and fractured aquifer
(Lez aquifer, France), Adv. Water Resour., 119, 227–244,
https://doi.org/10.1016/j.advwatres.2018.07.002, 2018b. a
Follin, S., Hartley, L., Rhén, I., Jackson, P., Joyce, S., Roberts, D., and Swift, B.: A methodology to constrain the parameters of a hydrogeological
discrete fracture network model for sparsely fractured crystalline rock,
exemplified by data from the proposed high-level nuclear waste repository
site at Forsmark, Sweden, Hydrogeol. J., 22, 313–331, https://doi.org/10.1007/s10040-013-1080-2, 2014. a, b
Gelman, A.: Prior distributions for variance parameters in hierarchical models, Bayesian Anal., 1, 515–534, https://doi.org/10.1214/06-BA117A, 2006. a
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B.: Bayesian Data Analysis, Texts in Statistical Science Series, in: 3rd Edn., CRC Press, Boca Raton, ISBN 978-1-4398-9820-8, 2013. a
Geuzaine, C. and Remacle, J.-F.: Gmsh: A 3-D finite element mesh generator
with built-in pre- and post-processing facilities, Int. J. Numer. Meth. Eng., 79, 1309–1331, https://doi.org/10.1002/nme.2579, 2009. a
Giertzuch, P.-L., Doetsch, J., Shakas, A., Jalali, M., Brixel, B., and Maurer, H.: Four-dimensional tracer flow reconstruction in fractured rock through borehole ground-penetrating radar (GPR) monitoring, Solid Earth, 12,
1497–1513, https://doi.org/10.5194/se-12-1497-2021, 2021a. a, b
Giertzuch, P.-L., Shakas, A., Doetsch, J., Brixel, B., Jalali, M., and Maurer, H.: Computing Localized Breakthrough Curves and Velocities of Saline Tracer from Ground Penetrating Radar Monitoring Experiments in Fractured Rock, Energies, 14, 2949, https://doi.org/10.3390/en14102949, 2021b. a
Green, P. J.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, 82, 711–732, https://doi.org/10.1093/biomet/82.4.711, 1995. a
Haario, H., Laine, M., Mira, A., and Saksman, E.: DRAM: Efficient adaptive
MCMC, Stat. Comput., 16, 339–354, https://doi.org/10.1007/s11222-006-9438-0, 2006. a
Illman, W. A., Craig, A. J., and Liu, X.: Practical issues in imaging hydraulic conductivity through hydraulic tomography, Groundwater, 46, 120–132, https://doi.org/10.1111/j.1745-6584.2007.00374.x, 2008. a
Illman, W. A., Liu, X., Takeuchi, S., Jim Yeh, T.-C., Ando, K., and Saegusa,
H.: Hydraulic tomography in fractured granite: Mizunami Underground Research site, Japan, Water Resour. Res., 45, W01406, https://doi.org/10.1029/2007WR006715, 2009. a
Jalali, M., Klepikova, M., Doetsch, J., Krietsch, H., Brixel, B., Dutler, N.,
Gischig, V., and Amann, F.: A Multi-Scale Approach to Identify and
Characterize Preferential Flow Paths in a Fractured Crystalline Rock, in:
Proceedings of the 52nd US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, Alexandria, VA, USA, ARMA 18-0496, https://onepetro.org/ARMADFNE/proceedings-abstract/DFNE18/3-DFNE18/D033S020R001/122786
(last access: 16 December 2022), 2018. a, b, c, d
Jalali, M., Ringel, L. M., and Bayer, P.: Dataset of pressure tomography
between the two injection boreholes during the ISC experiment
characterization phase at Grimsel Test Site, ETH Zurich [data set], https://doi.org/10.3929/ethz-b-000549844, 2022. a
Jiang, L., Sun, R., Xiao, W., Liang, X., and Jim Yeh, T.-C.: Spatial
correlation analysis between hydraulic conductivity and specific storage in a
heterogeneous sandbox by hydraulic tomography, J. Hydrol., 610, 127921, https://doi.org/10.1016/j.jhydrol.2022.127921, 2022. a
Kang, P. K., Le Borgne, T., Dentz, M., Bour, O., and Juanes, R.: Impact of
velocity correlation and distribution on transport in fractured media: Field
evidence and theoretical model, Water Resour. Res., 51, 940–959,
https://doi.org/10.1002/2014WR015799, 2015. a
Kittilä, A., Jalali, M., Evans, K. F., Willmann, M., Saar, M. O., and Kong, X.-Z.: Field Comparison of DNA-Labeled Nanoparticle and Solute Tracer
Transport in a Fractured Crystalline Rock, Water Resour. Res., 55, 6577–6595, https://doi.org/10.1029/2019WR025021, 2019. a, b
Kittilä, A., Jalali, M., Somogyvári, M., Evans, K. F., Saar, M. O., and Kong, X.-Z.: Characterization of the effects of hydraulic stimulation with tracer-based temporal moment analysis and tomographic inversion, Geothermics, 86, 101820, https://doi.org/10.1016/j.geothermics.2020.101820, 2020. a, b
Le Borgne, T., Paillet, F., Bour, O., and Caudal, J.-P.: Cross-Borehole
Flowmeter Tests for Transient Heads in Heterogeneous Aquifers, Groundwater,
44, 444–452, https://doi.org/10.1111/j.1745-6584.2005.00150.x, 2006. a
Lee, I.-H., Ni, C.-F., Lin, F.-P., Lin, C.-P., and Ke, C.-C.: Stochastic
modeling of flow and conservative transport in three-dimensional discrete
fracture networks, Hydrol. Earth Syst. Sci., 23, 19–34,
https://doi.org/10.5194/hess-23-19-2019, 2019. a
Li, L., Zhang, Q., Zhou, Z., Cui, Y., Shao, J., and Zhao, Y.: Groundwater
circulation patterns in bedrock aquifers from a pre-selected area of high-level radioactive waste repository based on two-dimensional numerical
simulation, J. Hydrol., 610, 127849, https://doi.org/10.1016/j.jhydrol.2022.127849, 2022. a, b
Liu, Q., Hu, R., Hu, L., Xing, Y., Qiu, P., Yang, H., Fischer, S., and Ptak,
T.: Investigation of hydraulic properties in fractured aquifers using cross-well travel-time based thermal tracer tomography: Numerical and field
experiments, J. Hydrol., 609, 127751, https://doi.org/10.1016/j.jhydrol.2022.127751, 2022. a
Ma, X., Zhang, K., Yao, C., Zhang, L., Wang, J., Yang, Y., and Yao, J.:
Multiscale-Network Structure Inversion of Fractured Media Based on a
Hierarchical-Parameterization and Data-Driven Evolutionary-Optimization
Method, SPE J., 25, 2729–2748, https://doi.org/10.2118/201237-PA, 2020. a
Massiot, C., Townend, J., Nicol, A., and McNamara, D. D.: Statistical methods
of fracture characterization using acoustic borehole televiewer log
interpretation, J. Geophys. Res.-Solid, 122, 6836–6852, https://doi.org/10.1002/2017JB014115, 2017. a
Park, Y.-J., Sudicky, E. A., McLaren, R. G., and Sykes, J. F.: Analysis of
hydraulic and tracer response tests within moderately fractured rock based on
a transition probability geostatistical approach, Water Resour. Res., 40, W12404, https://doi.org/10.1029/2004WR003188, 2004. a
Pavičić, I., Galić, I., Kucelj, M., and Dragičević, I.:
Fracture System and Rock-Mass Characterization by Borehole Camera Surveying:
Application in Dimension Stone Investigations in Geologically Complex
Structures, Appl. Sci., 11, 764, https://doi.org/10.3390/app11020764, 2021. a
Poduri, S., Kambhammettu, B., and Gorugantula, S.: A New Randomized Binary
Prior Model for Hydraulic Tomography in Fractured Aquifers, Groundwater,
59, 537–548, https://doi.org/10.1111/gwat.13074, 2021. a, b
Ringel, L. M., Somogyvári, M., Jalali, M., and Bayer, P.: Comparison of
Hydraulic and Tracer Tomography for Discrete Fracture Network Inversion,
Geosciences, 9, 274, https://doi.org/10.3390/geosciences9060274, 2019. a, b
Ringel, L. M., Jalali, M., and Bayer, P.: Stochastic Inversion of
Three-Dimensional Discrete Fracture Network Structure With Hydraulic
Tomography, Water Resour. Res., 57, e2021WR030401, https://doi.org/10.1029/2021WR030401, 2021. a, b
Robinson, J., Slater, L., Johnson, T., Shapiro, A., Tiedeman, C., Ntarlagiannis, D., Johnson, C., Day-Lewis, F., Lacombe, P., Imbrigiotta, T.,
and Lane, J.: Imaging Pathways in Fractured Rock Using Three-Dimensional
Electrical Resistivity Tomography, Groundwater, 54, 186–201,
https://doi.org/10.1111/gwat.12356, 2016. a
Sambridge, M., Gallagher, K., Jackson, A., and Rickwood, P.: Trans-dimensional inverse problems, model comparison and the evidence, Geophys. J. Int., 167, 528–542, https://doi.org/10.1111/j.1365-246X.2006.03155.x, 2006. a
Sharmeen, R., Illman, W. A., Berg, S. J., Yeh, T.-C. J., Park, Y.-J., Sudicky, E. A., and Ando, K.: Transient hydraulic tomography in a fractured dolostone: Laboratory rock block experiments, Water Resour. Res., 48, W10532, https://doi.org/10.1029/2012WR012216, 2012. a
Somogyvári, M., Jalali, M., Parras, S. J., and Bayer, P.: Synthetic
fracture network characterization with transdimensional inversion, Water
Resour. Res., 53, 5104–5123, https://doi.org/10.1002/2016WR020293, 2017. a
Spencer, S. A., Anderson, A. E., Silins, U., and Collins, A. L.: Hillslope and groundwater contributions to streamflow in a Rocky Mountain watershed
underlain by glacial till and fractured sedimentary bedrock, Hydrol. Earth Syst. Sci., 25, 237–255, https://doi.org/10.5194/hess-25-237-2021, 2021. a
Tan, L., Xiang, W., Luo, J., Liu, Q., and Zuo, X.: Investigation of the Models of Flow through Fractured Rock Masses Based on Borehole Data, Adv. Civ. Eng., 2020, 4219847, https://doi.org/10.1155/2020/4219847, 2020. a, b
Tiedeman, C. R. and Barrash, W.: Hydraulic Tomography: 3D Hydraulic
Conductivity, Fracture Network, and Connectivity in Mudstone, Groundwater, 58, 238–257, https://doi.org/10.1111/gwat.12915, 2020. a, b
Vogler, D., Walsh, S. D. C., Bayer, P., and Amann, F.: Comparison of Surface
Properties in Natural and Artificially Generated Fractures in a Crystalline
Rock, Rock Mech. Rock Eng., 50, 2891–2909, https://doi.org/10.1007/s00603-017-1281-4, 2017. a
Voorn, M., Exner, U., Barnhoorn, A., Baud, P., and Reuschlé, T.: Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples, J. Petrol. Sci. Eng., 127, 270–285,
https://doi.org/10.1016/j.petrol.2014.12.019, 2015. a
Wang, X., Jardani, A., and Jourde, H.: A hybrid inverse method for hydraulic
tomography in fractured and karstic media, J. Hydrol., 551, 29–46,
https://doi.org/10.1016/j.jhydrol.2017.05.051, 2017. a
Watanabe, N., Blöcher, G., Cacace, M., Held, S., and Kohl, T.: Geoenergy
Modeling III: Enhanced Geothermal Systems, SpringerBriefs in Energy, Springer, Cham, https://doi.org/10.1007/978-3-319-46581-4, 2017. a
Wenning, Q. C., Madonna, C., de Haller, A., and Burg, J.-P.: Permeability and
seismic velocity anisotropy across a ductile–brittle fault zone in crystalline rock, Solid Earth, 9, 683–698, https://doi.org/10.5194/se-9-683-2018, 2018. a, b
Wilske, C., Suckow, A., Mallast, U., Meier, C., Merchel, S., Merkel, B.,
Pavetich, S., Rödiger, T., Rugel, G., Sachse, A., Weise, S. M., and Siebert, C.: A multi-environmental tracer study to determine groundwater
residence times and recharge in a structurally complex multi-aquifer system,
Hydrol. Earth Syst. Sci., 24, 249–267, https://doi.org/10.5194/hess-24-249-2020, 2020. a
Yeh, T.-C. J. and Liu, S.: Hydraulic tomography: Development of a new aquifer
test method, Water Resour. Res., 36, 2095–2105, https://doi.org/10.1029/2000wr900114, 2000. a
Yin, T. and Chen, Q.: Simulation-based investigation on the accuracy of
discrete fracture network (DFN) representation, Comput. Geotech., 121, 103487, https://doi.org/10.1016/j.compgeo.2020.103487, 2020.
a
Zha, Y., Yeh, T.-C. J., Illman, W. A., Tanaka, T., Bruines, P., Onoe, H., and
Saegusa, H.: What does hydraulic tomography tell us about fractured geological media? A field study and synthetic experiments, J. Hydrol., 531, 17–30, https://doi.org/10.1016/j.jhydrol.2015.06.013, 2015. a, b
Zha, Y., Yeh, T.-C. J., Illman, W. A., Tanaka, T., Bruines, P., Onoe, H.,
Saegusa, H., Mao, D., Takeuchi, S., and Wen, J.-C.: An Application of
Hydraulic Tomography to a Large-Scale Fractured Granite Site, Mizunami, Japan, Groundwater, 54, 793–804, https://doi.org/10.1111/gwat.12421, 2016. a
Zhao, H., Luo, N., and Illman, W. A.: The importance of fracture geometry and
matrix data on transient hydraulic tomography in fractured rocks: Analyses of
synthetic and laboratory rock block experiments, J. Hydrol., 601, 126700, https://doi.org/10.1016/j.jhydrol.2021.126700, 2021. a
Zhao, Z. and Illman, W. A.: On the importance of geological data for
three-dimensional steady-state hydraulic tomography analysis at a highly
heterogeneous aquifer-aquitard system, J. Hydrol., 544, 640–657,
https://doi.org/10.1016/j.jhydrol.2016.12.004, 2017. a
Zhao, Z., Illman, W. A., Zha, Y., Yeh, T.-C. J., Mok, C. M. B., Berg, S. J.,
and Han, D.: Transient Hydraulic Tomography Analysis of Fourteen Pumping
Tests at a Highly Heterogeneous Multiple Aquifer–Aquitard System, Water, 11,
1864, https://doi.org/10.3390/w11091864, 2019. a
Zimmerman, R. W. and Bodvarsson, G. S.: Hydraulic conductivity of rock
fractures, Transp. Porous Media, 23, 1–30, https://doi.org/10.1007/BF00145263, 1996. a, b
Short summary
Fractured rocks host a class of aquifers that serve as major freshwater resources worldwide. This work is dedicated to resolving the three-dimensional hydraulic and structural properties of fractured rock. For this purpose, hydraulic tomography experiments at the Grimsel Test Site in Switzerland are utilized, and the discrete fracture network is inverted. The comparison of the inversion results with independent findings from other studies demonstrates the validity of the approach.
Fractured rocks host a class of aquifers that serve as major freshwater resources worldwide....